Basics
Force $=$ mass x acceleration
Torque $=$ force x distance

For Linear Axes

Sum of Moments $=0$
Sum of Forces $=0$, except direction of travel $F=m \times a$ (mass times acceleration)

For Rotary Axes

Sum of Forces $=0$
Sum of Moments $=0$, except axis of rotation $T=\int \times \alpha$ (rotary inertia times angular acceleration)

Typical Analysis
($\theta=0$ degrees - horizontal)
) $(\theta=90$ degrees - vertical)
($\mathrm{g}=$ acceleration of gravity)
($\mathrm{m}=\mathrm{mass}$)
Normal Force $=m \times g \times \cos \theta$
($\mu=$ coefficient of friction)
Axial Force $=(m \times g \times \sin \theta)+(\mu \times m \times g \times \cos \theta)+$
($m \times a$ a) + externally applied force

Stiffness

Stiffness $=$ force $/$ deflection $=K$
Compliance $=$ deflection/moment
Linear Deflection $=$ force/stiffness
Angular Deflection $=$ compliance \times moment
$1 / \mathrm{K}($ total $)=\left(1 / K_{1}\right)+\left(1 / K_{2}\right)+\left(1 / K_{3}\right)+\left(1 / K_{4}\right)+\ldots$

Move Profile

$\mathrm{V}=1.5 \times(\mathrm{D} / \mathrm{T})$ - trapezoidal move profile only
$A=4.5 \times\left(D / T^{2}\right)-$ trapezoidal move profile only
($\mathrm{D}=$ distance, $\mathrm{T}=$ Time)

Typical Motor Sizing Calculations for Linear Axes

Rotary to Linear Motion Conversion Torque(1) $=$ (Force \times lead) $/(2 \times \pi \times$ efficiency $)$
(Force = total axial force)
ω (angular velocity) $=\mathrm{V}$ (velocity)/L (lead)
α (angular acceleration) $=\mathrm{a}$ (linear acceleration)/L (lead)

Constant Speed For Motor Sizing Torque(2) $=$ (torque(1) + running torque (due to inherent friction)) / (gear reduction ratio)*
$*$ (if there is no gear reduction, the ratio $=1$)

Acceleration For Motor Sizing
$J=$ rotary inertia
Torque(3) $=$ Torque(2) +f (total) $\times \alpha$
J (total) $=J($ gear reduction $)+[J($ precision table $) /($ gear reduction ratio ${ }^{2}$]
$J($ precision table $)=J($ coupling $)+J$ (drive screw $)+$ (m(moving) $\left.\times(\text { lead } / 2 \times \pi)^{2}\right)$
m (moving) $=$ total moving mass including carriage $\alpha<\alpha$ (max) of the motor

RMS Torque
$T(r m s)=\sqrt{T(a)^{2} \times t(a)+T(b)^{2} \times t(b) \times T(c)^{2} \times t(c)} /(t(a)$
$+t(b)+t(c))$
T = torque
t = time

Typical Safety Margins For Motor Sizing Servo 20\%
Stepper 50\%

Inertia Ratio for Motor Sizing (Load Inertia / Motor Inertia) < 5 (ideally)

Please refer to the Engineering Section for further details.

Duty Cycle
Duty Cycle = move time/total time

