Tables

Positioning Calculation Reference

Basics

Force = mass x acceleration Torque = force x distance

For Linear Axes

Sum of Moments = 0

Sum of Forces = 0, except direction of travel F = m x a(mass times acceleration)

For Rotary Axes

Sum of Forces = 0

Sum of Moments = 0, except axis of rotation $T = J x \alpha$ (rotary inertia times angular acceleration)

Typical Analysis

 $(\theta = 0 \text{ degrees} - \text{horizontal})$

 $(\theta = 90 \text{ degrees} - \text{vertical})$

(g = acceleration of gravity)

(m = mass)

Normal Force = $m x g x \cos \theta$

 $(\mu = \text{coefficient of friction})$

Axial Force = $(m x g x \sin \theta) + (\mu x m x g x \cos \theta) +$ (m x a) + externally applied force

Stiffness

Stiffness = force/deflection = K **Compliance = deflection/moment** Linear Deflection = force/stiffness Angular Deflection = compliance x moment 1/K (total) = $(1/K_1) + (1/K_2) + (1/K_3) + (1/K_4) + ...$

Move Profile

V = 1.5 x (D/T) – trapezoidal move profile only $A = 4.5 x (D/T^2)$ – trapezoidal move profile only (D = distance, T = Time)

Duty Cycle

Duty Cycle = move time/total time

Ouick Calculation Reference

Typical Motor Sizing Calculations for Linear Axes

Rotary to Linear Motion Conversion Torque(1) = (Force x lead) / (2 x π x efficiency) (Force = total axial force) ω (angular velocity) = V (velocity)/L (lead) α (angular acceleration) = a (linear acceleration)/L (lead)

Constant Speed For Motor Sizing

Torque(2) = (torque(1) + running torque (due to inherent friction)) / (gear reduction ratio)*

*(if there is no gear reduction, the ratio = 1)

Acceleration For Motor Sizing

J = rotary inertia

Torque(3) = Torque(2) + J(total) $\mathbf{x} \alpha$

J(total) = J(gear reduction) + [J(precision table)/(gear reduction ratio)²]

J(precision table) = J(coupling) + J(drive screw) +(m(moving) x (lead/2 x π)²)

m(moving) = total moving mass including carriage $\alpha < \alpha$ (max) of the motor

RMS Torque

 $T(rms) = \sqrt{T(a)^2 x t(a) + T(b)^2 x t(b) x T(c)^2 x t(c)} / (t(a))$ + t(b) + t(c)T = torquet = time

Typical Safety Margins For Motor Sizing Servo 20%

Stepper 50%

Inertia Ratio for Motor Sizing

(Load Inertia / Motor Inertia) < 5 (ideally)

Please refer to the Engineering Section for further details.

