## LM267X 3A, 5A Evaluation Boards

## INTRODUCTION

The LM267X evaluation board was developed for the evaluation of LM267X SIMPLE SWITCHER® ${ }^{\text {® }}$ series of 3 Amp and 5 Amp high efficiency step-down (Buck) switching voltage regulators. This application note describes the printed circuit board, and provides example circuits and directions on setup and operation of the LM2673S-5_EVAL and LM2679S-5_EVAL evaluation boards.

## GENERAL DESCRIPTION

Many of our boards are intended to provide the user with device characterization and layout optimization data. The LM267x evaluation board was intended to allow the user to experiment with a variety of circuit topologies and components, and therefore not optimized for size. Please refer to the discussions of layout optimization in the PCB Layout Optimization section.
This board was designed such that both through-hole and surface-mount components can be used for construction. The regulator IC can be placed on the board as a surface-mount component only. The ground plane serves as a heatsink.

National Semiconductor Application Note 1135 Ifeanyi Nwachukwu July 1999


Table 1 shows an overview of the family of devices with special features of each indicated. Consult the device data sheet, or use the special power supply design software calledLM267X Made Simple Version 2.0 (available for free download from National Semiconductor's Internet page, www.national.com) to determine all necessary component values for the particular device being used to accomplish a specific design and board layout considerations.
The printed circuit board, PCB, is labeled to indicate the location of all of the needed components for all possible design options. Table 2 shows a complete list of the component labels and their functions.
Figure 1 identifies all components, but not all are necessary in every design.
Figure 2, Figure 3 and Figure 4 show the top, bottom and silk screen of the printed circuit board respectively.

TABLE 1. LM267X Family of High-Current Regulators supported by the Evaluation Board

| DEVICE | Maximum Load Current <br> (A) | SPECIAL FEATURES |
| :--- | :---: | :--- |
| LM2670 | 3 | ON/OFF, External Frequency Sync Capability |
| LM2673 | 3 | Adjustable Current Limit, Softstart |
| LM2676 | 3 | ON/OFF |
| LM2678 | 5 | ON/OFF |
| LM2679 | 5 | Adjustable Current Limit, Softstart |

TABLE 2. List of Component Labels and Functionality

| LABEL |  |
| :---: | :--- |
| U1 | LM267X Switching Regulator IC |
| CIN | Input Capacitor(s); All devices. |
| CINX | 0.47 $\mu$ F, optional high frequency input bypass capacitor, recommended in all designs: <br> All devices. |
| CB | Boost capacitor; All devices. |
| D1 | Output clamp diode; All devices. |
| R1 | Feedback resistor (1k $\Omega$ ) for adjustable output devices and shorted, replaced by a <br> jumper wire, with fixed output voltage devices. |
| R2 | Feedback resistor for adjustable output devices and shorted, replaced by a jumper <br> wire, with fixed output voltage devices. |
| R3* | Current limit resistor for LM2673, LM2679; Sync input resistor (1KK $)$ for LM2670; Not <br> inserted for LM2676 and LM2678. |
| L1 | Inductor; All devices. |
| CSYNC | Sync input capacitor (100pF); LM2670 only. Not inserted with other devices. |
| CSS | Soft start capacitor; LM2673 and LM2679 only. Not inserted with other devices. |
| COUTX | 0.47 $\mu$ F, optional high frequency output bypass capacitor; All devices. |
| COUT | Output capacitor(s); All devices. |

*All devices have internally preset current limits, but those with adjustable current limit capability can be used to set the current limit to any value up to the maximum preset value.


FIGURE 1. Example Schematic Showing Connection for all Components.


FIGURE 2. Top Layer Foil Pattern of Printed Circuit Board (1X size)


AN101145-3
FIGURE 3. Bottom Layer Foil Pattern of Printed Circuit Board (1X size)


FIGURE 4. Silkscreen Image Of Printed Circuit Board

## Special Notes

The evaluation board was designed primarily for circuit implementation using all surface-mount components. The small series "trace inductance", particularly from the Switch Output pin, can create a high frequency ( 10 's of MHz ) ringing signal at the switch output. If problematic, this ringing can be reduced or eliminated by the use of a series RC damper or snubber network from the switch output to ground. The addition of these components is made at the locations labeled CD and RD. Values of $0.01 \mu \mathrm{~F}$ and $10 \Omega$ are good starting values that may need to be varied depending on the magnitude of parasitic factors in a given design. In an actual end application, these components are normally not required if proper care to minimize trace lengths is taken in the PCB design.

## EXAMPLE CIRCUIT DESIGNS

Example 1: $5 \mathrm{~V} / 3 \mathrm{~A}$ Converter with Surface Mount Components.
In this example, it is desired to convert a voltage range of between 8 V and 12 V , to 5 VDC with load current of 3 A . It is also
desired to implement the design with surface mount compo nents only. Softstart duration will be set to between 1 and 1.5 ms.

Target Design Specifications

| $\mathrm{V}_{\text {IN }}$ min. | 8 V |
| :---: | :---: |
| $\mathrm{~V}_{\text {IN }}$ max. | 16 V |
| $\mathrm{~V}_{\text {OUT }}$ | 5 V |
| $\mathrm{I}_{\text {LOAD }}$ | 3 A |
| $\mathrm{I}_{\mathrm{CL}}$ | 5.0 A (approx.) |
| $\mathrm{T}_{\text {SS }}$ | 1 to 1.5 ms |

The LM267X Made Simple power supply design software was used for the design and the following components and their values are recommended:

TABLE 3. Component Values for an 8-12V in, 5V/3A Out LM2673S-5.0 Buck Converter

| Component | Value | Suggested Part Number |
| :---: | :---: | :---: |
| U1 |  | National LM2673S-5.0 |
| CIN | $2 \times 33 \mu \mathrm{~F} / 35 \mathrm{~V}$ | Sprague 594D336X0035R2T |
| CINX | $0.47 \mu \mathrm{~F}$ | NOVACAP 1812B472101NT |
| CB | $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ | AVX 08055C103KAT |
| D1 | 3A/60V Schottky (450mV at 3A) | Motorola MBRD360 |
| R3* | $7.15 \mathrm{k} \Omega$ <br> (5.19A current limit) |  |
| L1 | $22 \mu \mathrm{H}$ (L41) | SUMIDA ELECTRIC CO. CDRH127-220 |
| CSS | $3.3 \mathrm{nF} / 100 \mathrm{~V}$ softstart) | 100V AVX 08051C332KAT |
| COUTX | $0.47 \mu \mathrm{~F}$ | NOVACAP 1812B472101NT |
| COUT | $2 \times 180 \mu \mathrm{~F} / 16 \mathrm{~V}$ | Sprague 594D187X0016R2T |

Figure 5 below shows the 5V/3A design circuit. This solution is available as evaluation board LM2673S-5_EVAL
Figure 6, Figure 7, Figure 8 and Figure 9 show the output waveforms for output voltage with 500 mA load, output volt-
age with 1A load, output ripple with 1A load, output voltage with 3A load, output ripple with 3A load, output response to 1A transient load and output response to 3A transient load respectively.


FIGURE 5. 5V/3A Design Circuit


A: OUTPUT VOLTAGE: VOUT; 2V/DIV
B: LOAD CURRENT: $\operatorname{LOAD}=500 \mathrm{~mA} ; 500 \mathrm{~mA} / \mathrm{DIV}$
Output Voltage with 500 mA Load


Time ( $1 \mu \mathrm{~s} / \mathrm{div}$ )

A: OUTPUT RIPPLE; $10 \mathrm{mV} / \mathrm{DIV}$
B: LOAD CURRENT: ILOAD $=0.5 \mathrm{~A} ; 1 \mathrm{~A} / \mathrm{DIV}$
Output Ripple with 500mA Load FIGURE 6. Output Voltage Waveforms with 500 mA Load



Time ( $1 \mu \mathrm{~s} / \mathrm{div}$ )

A: OUTPUT VOLTAGE: VOUT; 2V/DIV
B: LOAD CURRENT: $\operatorname{loAD}=1 \mathrm{~A} ; 500 \mathrm{~mA} / \mathrm{DIV}$
Output Voltage with 1A Load
AN101145-7

FIGURE 7. Output Voltage Waveforms with 1A Load


## Example 2: 5V/5A Design with Surface Mount

 ComponentsFor this example, it is desired to design a power supply to convert an input voltage within the range of 14 V and 28 V to an output voltage of 5 V with a maximum load current of 5 A using only surface mount components. In addition, the current limit of the regulator will be set to approximately 7.0A, and the softstart time will be set to approximately 1.0 ms to limit the startup surge current.

## Target Design Specifications:

| $\mathrm{V}_{\text {IN }} \min$. | 14 V |
| :---: | :---: |
| $\mathrm{~V}_{\text {IN }} \max$. | 28 V |
| $\mathrm{~V}_{\text {OUT }}$ | 5 V |
| $\mathrm{I}_{\text {LOAD }}$ | 5 A |
| $\mathrm{I}_{\mathrm{CL}}$ | 7.0 A (approx.) |
| $\mathrm{T}_{\text {SS }}$ | 1.0 ms (approx.) |

The LM267X Made Simple power supply design software was used for the design and the following components and their values are recommended:

TABLE 4. Component Values for an $14 \mathrm{~V}-28 \mathrm{~V}$ in, $5 \mathrm{~V} / 5 \mathrm{~A}$ Out LM2679S-5.0 Buck Converter

| Component | Value | Suggested Part Number |
| :---: | :---: | :---: |
| U 1 |  | National LM2679S-5.0 |
| CIN | $3 \times 15 \mu \mathrm{~F} / 50 \mathrm{~V}$ | Sprague 594D336X0035R2T |
| CINX | $0.47 \mu \mathrm{~F}$ | NOVACAP 1812B472101NT |
| CB | $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ | AVX CORPORATION 08055C103KAT |
| D1 | $8 \mathrm{~A} / 35 \mathrm{~V}$ Schottky $(500 \mathrm{mV}$ at |  |
| $5 \mathrm{~A})$ | Motorola MBRD835L |  |
| R3* $^{*}$ | $4.99 \mathrm{k} \Omega(7.19 \mathrm{~A}$ current limit) |  |
| L1 | $15 \mu \mathrm{H}(\mathrm{L50})$ | Pulse Engineering P0850 or <br> Coilcraft D05022P-153 |
| CSS | $4.7 \mathrm{nF} / 100 \mathrm{~V}(1.0 \mathrm{~ms}$ softstart $)$ | AVX 08051C272KAT |
| COUTX | $0.47 \mu \mathrm{~F}$ | NOVACAP 1812B472101NT |
| COUT | $2 \times 180 \mu \mathrm{~F} / 16 \mathrm{~V}$ | Sprague 594D187X0016R2T |

Figure 10 below shows the circuit for the $5 \mathrm{~V} / 5 \mathrm{~A}$ design. This solution is available as evaluation board LM2679S-5_EVAL.
Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15 show the output waveforms for output voltage with 500 mA load, output voltage with 2.5A load, output ripple with 2.5A
load, output voltage with 5A load, output ripple with 5A load, output response to 500 mA transient load, output response to 2.5A transient load and output response to 5A transient load respectively.


FIGURE 10. 5V/5A Design Circuit



A: OUTPUT RESPONSE; 1 V/DIV
B: TRANSIENT LOAD CURRENT: $500 \mathrm{~mA} / D I V$
Output Response to 0~0.5A Transient Load


A: OUTPUT RESPONSE; 1V/DIV
B: TRANSIENT LOAD CURRENT: 1A/DIV
Output Response to 0~2.5A Load Transient
FIGURE 14. Output Response To Load Transient


Time (500 $\mu \mathrm{s} / \mathrm{div}$ )
AN101145-22
A: OUTPUT RESPONSE: 1V/DIV
B: LOAD CURRENT: I LOAD $=1$ A/DIV
FIGURE 15. Output Response to 0~5A Transient Load

## OPERATING THE EVALUATION BOARDS

## Setup

The LM2673S-5_EVAL and LM2679S-5_EVAL evaluation boards come ready to be tested. The only setup needed is connecting the input voltage to the VIN and GND posts. The output can be taken from the VOUT post. The other signals of interest, switch output (SW out) and softstart (C_SS) posts, are clearly marked for use in checking the signal in tegrity. The softstart post has an ON/OFF input when this feature is being used.

## Operating Conditions

The input source for the LM267x family of regulators must be 8 V or greater for proper setup and operation. The input voltage range for LM2673S-5_EVAL evaluation board is from 8 V to 12 V and the range for LM2679S-5 EVAL is from 14 V to 28 V . The maximum voltage rating of the LM267x family of regulators is 40 V .
Load can be applied from 0 A to the maximum for the design. Higher current above the design current limit will result in activation of the design current limit circuit. It is advisable to have a minimal load of (at least 10 mA ) during startup when the input to output differential voltage is greater than 10 V to prevent output ramping beyond desired value.

## PCB Layout Optimization

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the printed circuit traces should be as wide and short as possible on the PCB. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.
If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and $\mathrm{C}_{\text {OUT }}$ wiring can cause problems.
When using the adjustable version, special care must be taken as to the location of the feedback resistors and associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.
Notes

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| National Semiconductor Corporation | National Semiconductor Europe | National Semiconductor Asia Pacific Customer | National Semiconductor Japan Ltd. |
| :---: | :---: | :---: | :---: |
| Americas | Fax: +49 (0) 1 80-530 8586 | Response Group | Tel: 81-3-5639-7560 |
| Tel: 1-800-272-9959 | Email: europe.support@nsc.com | Tel: 65-2544466 | Fax: 81-3-5639-7507 |
| Fax: 1-800-737-7018 | Deutsch Tel: +49 (0) 1 80-530 8585 | Fax: 65-2504466 |  |
| Email: support@nsc.com | English Tel: +49 (0) 180-532 7832 | Email: sea.support@nsc.com |  |
|  | Français Tel: +49 (0) 1 80-532 9358 |  |  |
| www.national.com | Italiano Tel: +49 (0) 1 80-534 1680 |  |  |

