LED Drivers for General Illumination

Presenter:

- Chris Richardson
- Systems Applications Engineer, Lighting
- Europe

Agenda

- What is "General Illumination"?
- 3 Pieces of the Puzzle
- Challenges in General Illumination
- Arraying your LEDs
 - All in series
 - Series-parallel
- AC to CC (Constant Current)
- DC Bus with Multiple DC-DC LED Drivers
 - Buck is Best
 - Boost for Long Strings
 - Buck-boost: when all else fails!

What General Illumination is:

Non-portable lighting, usually running from line power (AC mains)

Streetlighting

Interior Lighting

Exterior Lighting

High Power Wide Area

Emergency, Downlight

Accent

Three Pieces of the Puzzle

•Thermal is critical. Good designs integrate heat-sinking into the structure of the lamp

A REAL PROPERTY OF THE REAL PR

•Optical – also critical, must be integrated into the mechanical design of

the lamp

•Electrical Drive: often an afterthought (like most power supplies)

Why use a Driver?

• Why not a resistor?

BLUE = LM3405 LED Driver PURPLE = Series Resistor

Challenges of General Illumination with LEDs

Many Opportunities, Few Standards

- LED lighting is too new and too varied for packaged "black box" drivers
- 10 different applications will use 10 different types of LEDs and/or 10 different configurations of LEDs
- 10 different LED driver designs are needed (at least!)

How Many Paths from AC to CC?

- Direct non-isolated from AC to LED
 - Some 'black box' solutions, but range of V_o and I_F is limited
 - Safety and code/legal issues without isolation
- Multiple-stage AC to LED with isolation, PFC
 - Also some 'brick' type solutions. Still not very flexible
- Intermediate DC bus voltage and DC-DC LED drivers
 - Most flexible but most expensive: DC bus voltage determines topology of LED driver

Once the LEDs Have Been Selected

- Lighting designers know how many lumens they want
- They know the color temperature or the wavelength needed
- Ex. City streetlight, uses total 64 LEDs
 - Input is 110VAC: output is up to 200W depending on LED current
 - Needs high efficiency and high power factor
 - Replacement for metal halide or high-pressure sodium

1W (350 mA)

x 4

2W (700 mA)

3W (1000 mA)

Arraying your LEDs

- Today's typical 1W LED gives 50 lm/W at 25° C
- Then drops with rising T_J

- Today's best 1W LED approaches 100 lm/W at 25° C
- Then drops with rising T_J

Most applications need more than one LED!

All In Series

Pros:

- Guaranteed current matching
 - Continues to operate if LEDs fail short circuit*

• Cons:

- Highest output voltage
 - Component selection thins as voltages go up
 - Safety standards get more strict
- No more light if an LED fails open circuit

Short Circuit LED Failures in Series

- LED do fail short circuit (not as often)
- Voltage across short is usually near-zero
- Total output voltage decreases
- How many LEDs can fail before the lamp is considered 'dead'?

Open Circuit LED Failures in Series

- Anti-parallel zener protection keeps the lamp lit when one LED fails open circuit
- Zener breakdown V_z must be higher than V_{F-MAX}
- Zener must be fairly high power
- Again, how many LEDs can fail before the lamp is considered 'dead'?

Series-Parallel

- Pros:
 - Lower V_o
 - Staying within safety limits
 - Continues to operate if LEDs fail short circuit*

• Cons:

- No current matching
 - V_F varies from LEDs, even LEDs from same wafer
 - V_F drops with T_J , potential positive feedback loop

Pitfall of Series-Parallel #1

- Ballast resistors work well with a voltage source and a low current LED
- The old way:

$$I_F = \frac{V_O - n \times V_F}{R_{BALLAST}}$$

The tolerance of I_F improves:

-As I_F decreases

-As $R_{BALLAST}$ increases

-As V_{BALLAST} increases

Pitfall of Series-Parallel #2

- LED current accuracy drops at high current
- Dissipation in R_{BALLAST} goes up quickly

Pitfall of Series-Parallel #3

- Ballast resistors make a current source no better than a voltage source
- Ratio of dynamic resistance, r_D to R_{BALLAST} determines the improvement in I_F matching

Poor Fault Response with Series-Parallel

Open Circuit

• Short Circuit

• This assumes that the LED driver is a pure current source

Multiple Regulators

V_o can stay low for safety

- Best performance when an LED fails:
 - Open circuit: (1 x) / x LEDs still operating
 - Short circuit: n * x -1 LEDs still operating*

Determine the Total Output Current

- Linear Regulators are generally cost effective up to ~150 mA
- Switching Regulators (internal power switches) are generally cost effective up to 3A
- Switching Controllers (external power switches) are used above 3A

21

Control I_F, but know full V_o Range

LED Types by Chemistry and V_F

- InGaN used in deep green, blue, and WHITE
- Forward voltage, V_F of 3V to
 Typical V_F is 2V to 3V 4V (typical)

- AllnGaP used in red, orange, amber

Dynamic Resistance as a Load

- Dynamic Resistance, r_D, is the inverse of the I_F vs. V_F curve
- r_D is typically 5x to 10x lower than the result of simply dividing V_{F-TYP} by I_{F-TYP}
- The control loop sees r_D, so the load impedance Z_L = r_D + R_{SNS}
- Comparator-based regulators like hysteretic and constant on-time still use r_D to select the output filter capacitance

Input Voltage Can be Almost Anything

DC Rails have a tolerance

- Ex. 24V ±2%, 5%, 10%....

Rectified AC has a tolerance

LED Driver Design Outline

- **1.** Determine I_F and V_F range for each LED
- 2. Fix the arrangement of all LEDs
- **3.** Identify total output current, voltage, power
- 4. Determine regulator type based on P_{OUT} and relative V_{IN} and V_{O}
- 5. Design power supply taking into account LEDs as a load
- 6. Use a dedicated LED driver IC whenever possible

LED Driving from AC Mains

LM3445: Constant Off-Time Controller with Triac DIM Decoder for AC Inputs up to 277VAC

- V_{IN} range: 7V-14V
- Q1: High voltage FET
- Integrated 300 Ω bleeder resistor for proper TRIAC operation
- Simplified Constant Off Time control scheme keeps ripple current constant
- Angle detector/decoder translates TRIAC chopped waveform to analog or digital DIM signal
- Over-current protection with 10 μ s fixed off-time
- DIM is I/O which allows masterslave control in multi-chip solutions.

Target Applications: Triac dimmer retro-fit

Triac or PWM Dimming

Triac Characteristics

- Triac requires a resistive load to fire
 - Drip current of 10-15mA
 - Once Triac fires, drip current can be removed to increase efficiency
- Output is a sampled segment of the offline AC waveform
 - Based on the firing angle set by the Triac dimmer

Forward phased Triac-dimmed waveform

LED Driving from DC Inputs

DC to CC

Select Topology of LED Driver: Buck

Buck is best – use whenever possible

I_F slew rate is limited only by L, V_{IN}, V_F

LM3401: PFET Controller, Buck Current Source for High Power LEDs

External Power FET

- Controls output currents up to 4A
- 100% Duty Cycle Capable
 - Best for circuits that run close to dropout
- Tiny MSOP-8 Package
 - Similar size, comparable thermal performance to PSOP-8
- Adjustable Safety Current Limit
- Hysteretic Control with Adjustable Window
 - User sets LED ripple current

LM3406/06HV: 1.5A Buck Current Source Driver for High Power LEDs

Has All Features of LM3402 and LM3404 Plus:

- Dedicated Error Amplifier
 - Provides True Average LED Current Control
- Senses V_o and Adjusts ontime
 - Keeps $\rm f_{SW}$ constant over $\rm V_{IN}$ AND $\rm V_O$
- eTSSOP-14 Package
 - Similar size, comparable thermal performance to PSOP-8
- Adds Input Comparator for "Two-Wire Dimming"
 - Eliminates one wire from harness

V_{IN} still 6V to 42V (LM3406)

 V_{IN} still 6V to 75V (LM3406HV)

LM3409/09HV: High-Side PFET Buck Controller for LEDs

Key Features:

- V_{IN} 6V to 42V (LM3409)
- V_{IN} 6V to 75V (LM3409HV)
- External power PFET
 - 100% Duty Cycle Capable
 - Output Currents up to 4A
- Differential, high-side current sense
 - Simplifies system wiring
- PWM dimming and analog dimming at 1000:1
 - Similar size, comparable thermal performance to PSOP-8
- No control-loop compensation

Select Topology of LED Driver: Boost

Necessary when Vo > Vin

LM3421/23/29: Low Side Controllers for Constant Current LED Drivers

Key Features

- V_{IN} Range: 4.5V to 75V
 - To Accommodate Cold Crank and Load Dump Conditions
- Fast (50 kHz) PWM dimming input, Programmable frequency
 - For greater design flexibility
- Dimming MOSFET gate driver
 - High-side dimming
- Zero current shutdown, LED ready flag, fault timer pin, Input UVLO, High side current sensing
 - For greater system reliability
- Drives 1W, 3W, and higher powered LEDs

Boost, Buck, Buck-Boost, SEPIC

LM342x Family Options

LM3423

LM3421

IS

 V_{CC}

GATE

PGND

Buck-boost: Last Resort

- May invert the polarity of V_o (single inductor buckboost, Cuk)
- May regulate V_o with respect to V_{IN}
- May require two inductors (SEPIC, Cuk)
- May require a transformer (Flyback)
- May require up to four switches
- Are always less efficient than buck or boost
- High voltage and current stress in power switch

$$V_{SW} = V_{IN} + V_{C}$$

$$V_{SW} = I_{IN} + I_{O}$$
POWERWISE

LM3421/23 Controls the "Vin-referenced" Buck-Boost

LM3421/23 SEPIC with Fast Dimming

National's Online Tools Allows Easy Design and Analysis

2. Create a Design

WEBENCH

LED WEBENCH ® Online

Enter Specifications

Design Requirements	• Recom	• MYDesigns		
Design Specifications	Output	#1		
VinMin=25.0V	Vout=	3.0V		
VinMax=42.0V	Iout=	0.35A		
tion Selector found 6 solut	ions.			
		Recommende	d Devices	
		Switching Regulator		
		High efficiency	regulator	
		LM34	02	
		Start Your	Design	
		C:	1.4	
		Topology	BUCK	
		Max Current	0.5 A	
		Typical Efficiency	91%	
		On/Off Pin	Y	
		Error Pin	N	
		Price	\$1.10	

Optimize for Footprint and Efficiency

Efficiency 69 %

Generate Schematic/ Electrical Analysis

Order Evaluation Board

Select Part

National Offers a Large Portfolio of Lighting Reference Designs!

LED REFERENCE DESIGN LIBRARY

URL: http://www.national.com/webench/ledrefdesigns.do

PowerWise[®] Initiative

PowerWise Devices

- Products selected by strict power-to-performance efficiency metrics in 25 product categories
- PowerWise Subsystems
 - Complementary devices act as a unit provide optimal mix of low power consumption and heat

PowerWise Architectures

 Novel implementations of technology (digital and analog) that dramatically lowers systemlevel energy consumption

