Power Products
 Selection Guide

March 2007

Switching Converters 3-13

Core Power and Distributed Voltage Conversion \qquad

Supervisory, Protection and Auxiliary Power
Management ICs

Power Management for Industrial and Telecom
Applications

Power Management
for Portable
Applications

Product Highlights 24-31

Designer's Corner

Webench Online
Design Tools
14-16 . 17
32-35
\qquad

National
Semiconductor

New Products

Part Number	Description	Page Number
Switching Capacitor Step-Down DC/DC Converter		
LM2771	Low-Ripple 250 mA switched capacitor step-down DC-DC converter	4
LM2772	Low-Ripple 150 mA switched capacitor step-down DC-DC converter	4
Dual Switching Regulators - Internal Switch		
LM3370	Dual synchronous step-down DC-DC converter with dynamic voltage scaling function through $I^{2} \mathrm{C}$	4
LM26400	Dual 2A Syn buck regulator	4
Step-Down (Buck) Single Switching Regulators - Internal Switch		
LM2694	$30 \mathrm{~V}, 600 \mathrm{~mA}$ step-down switching regulator	6
LM2695	High voltage (30V, 1.25A) step down switching regulator	7
LM2696	3 A , Constant on time buck regulator	8
LM2830/31/32	1A/1.5A/2A Load, step-down DC-DC regulator	6,7
LM2853	3 A 500 KHz SIMPLE SWITCHER®	8
LM3100	SIMPLE SWITCHER® ${ }^{\text {® }}$ synchronous 1.5A, 1 MHz buck regulator	7
LM3676	2 MHz 600 mA Step-Down DC-DC With Mode Control	6
LM5009	$150 \mathrm{~mA}, 100 \mathrm{~V}$ step-down switching regulator	5
LM5574	75V, 0.5A step-down switching regulator, SIMPLE SWITCHER®	5
LM5575	75V, 1.5A step-down switching regulator, SIMPLE SWITCHER® ${ }^{\text {® }}$	7
LM5576	$75 \mathrm{~V}, 3 \mathrm{~A}$ step-down switching regulator, SIMPLE SWITCHER ${ }^{\text {® }}$	8
LM25005	High voltage, 2.5A buck regulator	7
LM25007	High voltage, 0.5A step-down switching regulator	5
LM25574	42V, 0.5A step-down switching regulator, SIMPLE SWITCHER® ${ }^{\text {® }}$	5
LM25575	42V, 1.5A step-down switching regulator, SIMPLE SWITCHER®	7
LM25576	42V, 3A step-down switching regulator, SIMPLE SWITCHER®	8
LM26001/B	1.5A switching regulator with low quiescent current	7
Step-Up Switching Regulator - Internal Switch		
LM5001	High voltage (75V) switch with internal low side N-channel MOSFET	9
LM5002	High voltage (75V) switch with internal low side N-channel MOSFET (0.5A)	9
LM27313	1.6 MHz Boost regulator with internal 30V internal MOSFET in SOT23 package	9
LM2735X/Y	$550 \mathrm{KHz} / 1.6 \mathrm{MHz}$ step-up DC/DC regulator	9
Step-Up Switching Controller - External Switch		
LM5022	60V, Low Side controller for Boost and SEPIC	12
LM3430	40V, Boost controller for LED backlighting	12
Switching Controllers for Step-Down Non-Isolated Topologies - External Switch		
LM1771	Low voltage SOT-23 synchronous buck controller with precision enable and no external compensation	10
LM3489	Hysteretic PFET buck sleep mode controller with enable pin	10
LM25115A	42V, Secoudary side post regulator/DC-DC converter with voltage tracking	10
LM5115A	75V, Secoudary side post regulator/DC-DC converter with voltage tracking	10

Abbreviations	Abbreviations for Temperature Range	Abbreviations for Features
$D=$ Die	Com $=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	PG $=$ Powergood
$\mathrm{W}=$ Wafer	Ext $=$ Extended commercial $\left(0^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \text { typ }\right)^{*}$	SS $=$ Soft-start
	Ind $=$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	SD $=$ Shutdown
	Mil $=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	Sync $\mathrm{R}=$ Synchronous Rectification

数

Part Number	Description	Page Number
Low Dropout Linear Regulators (LDOs) - Positive Output		
LP38851/4/7	0.8A Dual Rail LDO with soft start and enable	14
LP38852/5/8	1.5A Dual Rail LDO with soft start and enable	14
LP38853/6/9	3A Dual Rail LDO with soft start and enable	14
LP3991	300 mA linear regulator optimized for post regulation topology	14
LP3996	300 mA and 150 mA dual linear regulator with power on reset	14
LP5952	350 mA dual rail linear regulator optimized for post regulation topology	14
LP5996	300 mA and 150 mA dual linear regulator	14
Power Sequencers		
LM3880	3 outputs Power Sequencers	17
Voltage Reference		
LM4128	SOT-23 Precision Micropower Series Voltage Reference	17
LM4132	S0T-23 Precision Low Dropout Voltage Reference	17
Power-over-Ethernet (PoE) Solutions		
LM5072	Integrated PoE PD interface and DC-DC converter with aux input capability	19
LM5073	Power Over Ethernet PD Interface with Aux. Support	19
High Power LED Driver		
LM3402/HV	$6-75 \mathrm{~V}, 0.5 \mathrm{~A}$ constant current back regulator	19
LM3404/HV	$6-75 \mathrm{~V}, 1 \mathrm{~A}$ constant current back regulator	19
LM3405	$22 \mathrm{~V}, 550 \mathrm{KHz} / 1.0 \mathrm{MHz} 1 \mathrm{~A}$ constant current back regulator	19
Hot Swap Controller		
LM5069	Positive high voltage hot-swap controller with latched fault and auto-retry options	19
Integrated Power Management Units (PMUs)		
LP3906	Power management unit with ${ }^{12} \mathrm{C}$ interface for low power handheld applications	21
LP3910	Power management IC for hard driver based portable media players	21
LP3913	Power management IC for flash memory based portable media players	21
LP3917	CDMA Cellular phone power management unit	21
LP3955	CDMA Cellular phone power management system	21
LP3971	Power management unit for advanced application processors	21
LP3972	Power management unit with multi bit I2 ${ }^{\text {I }}$ interface for advanced application processor	21
LP5551	PowerWise technology compliant energy management unit	21
Lighting Management Units (LMUs)		
LP3958	Lighting management unit for controlling 4+2 white LEDs for main and sub display and 3 sets of white LEDs for keypad	21
LP5526	Lighting management unit with high voltage boost converter with up to 150 mA serial flash LED driver	21
LP5527	Lighting management unit for camera flash and 4 LEDs with $I^{2} \mathrm{C}$ programmability	21
White LED Driver - Inductorless		
LM27965	Dual display white led driver with I2C interface	22
LM27966	White led driver with $1^{2} \mathrm{C}$ interface	22
Step-Down Switching Regulators for RF Power Amplifiers		
LM3207	650 mA Miniature, Adjustable, Step-Down DC-DC Converter for RF Power Amplifiers with Integrated Vref LDO	23
LM3208	650 mA Miniature, Adjustable, Step-Down DC-DC Converter for RF Power Amplifiers with Rdson Management	23
LM3280	Adjustable Step-Down DC-DC Converter and 3 LDOs for RF Power Management	23

Switching Converters

Inductorless Switching Regulators

Part Number	$\mathrm{V}_{\text {IN }}$		$\mathrm{V}_{\text {OUt }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }} \\ & (\mathrm{mA}) \end{aligned}$	Typ Fsw (kHz)	$\begin{aligned} & \mathrm{Typ}_{\mathrm{I}} \mathrm{I}_{\mathrm{t}}^{(\mathrm{A})} \end{aligned}$	Temp Range (${ }^{\circ} \mathrm{C}$)	Other Features/Comments	Packaging
	Min	Max							
LM2750	2.7	5.6	5.0 \& Adj	120	1700	5000	-40 to 125	Excellent thermal properties	LLP-10, D, W
LM2751	2.8	5.5	4.5,5	150	725	1000	-40 to 85	LED Driver	LLP-10
LM2760	2.0	4.4	$3.3{ }^{2}$	20	750	10	-40 to 100	Short circuit and thermal protection	SOT23-5
LM2770	2.7	5.5	$\begin{aligned} & 1.2 / 1.5 \& \\ & 1.2 / 1.57 \end{aligned}$	250	700	55	-30 to 105	Soft-start, sleep-mode, pin-selectable voltage scaling	LLP-10
LM2771	2.7	5.5	1.5	250	1100	45	-30 to 110	High output accuracy, low output ripple	LLP-10
LM2772	2.5	5.5	1.2	150	1100	47	-30 to 110	High output accuracy, low output ripple	LLP-10
LM2787	2.7	5.5	Adjustable negative ${ }^{1}$	10	260	400	-40 to 110	Low noise, shutdown pin	micro SMD-8
LM2797	2.6	5.5	$1.8{ }^{2}$	120	500	35	-40 to 125	Fast turn-on time	MSOP-10
LM2798	2.6	5.5	1.5, 1.8, 2.02	120	500	35	-40 to 125	Output-OK and battery-OK flags	MSOP-10
LM3354	2.5	5.5	$\begin{aligned} & 1.8,3.3,4.1, \\ & 5.0^{2} \end{aligned}$	90	1000	375	-40 to 120	Step-up/step-down multi-gain architecture	MSOP-10

${ }^{1}$ Adjustable output voltage range: -1.5 V to -5.2 V
${ }^{2}$ Custom output voltages possible in 100 mV increments. Contact National for more information.

Dual Switching Regulators - Internal Switch

Part Number	Description	$\mathrm{V}_{\text {IN }}$		Channel 1 Output	Channel 2 Output	$\begin{aligned} & \mathrm{F}_{\text {sw }} \\ & (\mathrm{kHz}) \end{aligned}$	Internal MOSFET $\mathrm{R}_{\text {DSoN }}(\Omega)$	SS	Enable	Other Features/ Comments	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Packaging
		Min	Max									
LM2716	One buck and one boost regulator on a single IC	4	20	$\begin{aligned} & 3.3 \mathrm{~V} \text { at } 1.2 \mathrm{~A} \\ & \text { (buck) } \end{aligned}$	Adj (up to 20V) at 3.6 A switch (boost)	$\begin{gathered} 300 \text { to } \\ 600 \end{gathered}$	0.12 boost, 0.16 buck	\checkmark	\checkmark	Individual enable and soft-start pins for each channel; external compensation	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	TSSOP-24
LM2717	Dual buck	4	20	Fixed 3.3V and Adj at 1.6A	Adj at 1.8A	$\begin{gathered} 300 \text { to } \\ 600 \end{gathered}$	0.16	\checkmark	\checkmark	Two versions: Buck1 3.3V Fixed and Adj.	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	TSSOP-24
LM3370	Dual 600 mA buck ${ }^{12} \mathrm{C}$ programmable	2.7	5.5	1 V to 2 V at 600 mA	$\begin{aligned} & 1.8 \mathrm{~V} \text { to } 3.3 \mathrm{~V} \text { at } \\ & 600 \mathrm{~mA} \end{aligned}$	2000	PFET: 0.4; NFET: 0.25	\checkmark	\checkmark		$\begin{gathered} -30 \text { to } \\ 125 \end{gathered}$	LLP-16
LM26400	Dual buck	3	20	Adj at 2A	Adj at 2A	500	0.175	\checkmark	\checkmark	Individual enable \& soft start pins for each channel; internal compensation	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	$\begin{aligned} & \text { TSSOP-16, } \\ & \text { LLP-16 } \end{aligned}$

Automatic Step-Up/Step-Down Inductorless Switching Regulators

Part Number	$\mathrm{V}_{\text {IN }}$		$\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }} \\ & (\mathrm{mA}) \end{aligned}$	Typ Fsw (kHz)	Typ $\mathrm{Iq}_{4}(\mathrm{pA})$	$\begin{gathered} \text { Temp } \\ \text { Range }\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packaging
	Min	Max						
LM2760	2	4.4	3.3	20	750	10	-40 to 100	SOT23-5
LM3354	2.5	5.5	1.8, 3.3, 4.1, 5.0	90	1000	375	-40 to 120	MSOP-10

Step-Down (Buck) Single Switching Regulators ${ }^{1}$ - Internal Switch

[^0]
Switching Converters

Step-Down (Buck) Single Switching Regulators ${ }^{1}$ - Internal Switch (continued)

[^1]Step-Down (Buck) Single Switching Regulators ${ }^{1}$ - Internal Switch (continued)

	$\mathrm{V}_{\text {IN }}$		$V_{\text {out }}$ Options (Adj Range)	$\begin{gathered} \mathbf{F}_{\text {SW }} \\ (\mathrm{kHz}) \end{gathered}$	SD	SS	Sync R	PG	Clock Sync	WEBENCH Simulation	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Other Features/ Comments	Packaging
Number	Min	Max											
1.25A I ${ }_{\text {OUT }}$													
LM2695	8	30	Adj (down to 1.25)	1000	\checkmark	\checkmark	-	-	\checkmark	-	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	No compensation required, ultra-fast transient response, thermal shutdown, low standby current of $12 \mu \mathrm{~A}$	eTSSOP-14, LLP-10
$1.5 \mathrm{~A} \mathrm{I}_{\text {OUt }}$													
LM2831	3	5.5	Adj (0.6 to 4.5)	$\begin{gathered} 550,1600 \\ 3000 \end{gathered}$	\checkmark	Internal	-	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	Internal compensation	S0T23-5, LLP-6
LM3100	4.5	36	Adj (down to 0.8)	Adj (up to 1 MHz)	\checkmark	\checkmark	\checkmark	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	SIMPLE SWITCHER ${ }^{\text {® }}$ synchronous 1 MHz regulator	eTSSOP-20
LM5575	6	75	Adj (down to 1.225)	5 to 500	\checkmark	\checkmark	-	-	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	COT, SIMPLE SWITCHER ${ }^{\circledR}$ Regulator 1.5\% output voltage accuracy	eTSSOP-16
LM25575	6	42	Adj (down to 1.225)	5 to 1000	\checkmark	\checkmark	-	-	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	COT, SIMPLE SWITCHER ${ }^{\circledR}$ Regulator 1.5\% output voltage accuracy	eTSSOP-16
LM26001	4	38	Adj (down to 1.24)	$\begin{gathered} \text { Adj (150- } \\ 500) \end{gathered}$	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	$<40 \mu \mathrm{~A}$ Iq in sleep-mode, $10 \mu \mathrm{Alq}$ in shutdown mode, 3 V min input voltage	eTSSOP-16
LM26001B	4	18	Adj (down to 1.24)	150-500	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	$<40 \mu \mathrm{Alq}$ in sleep-mode, $10 \mu \mathrm{~A}$ in shutdown, 3 V min input voltage, 2% reference accuracy	eTSSOP-16
2A Iout													
LM2592HV	4.5	60	$\begin{aligned} & \text { 3.3, 5, } \operatorname{Adj} \text { (1.23 } \\ & \text { to 57) } \end{aligned}$	150	\checkmark	-	-	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	SIMPLE SWITCHER ${ }^{\circledR}$ regulator	$\begin{aligned} & \text { TO263-5, T0220-5, } \\ & \text { D, W } \end{aligned}$
LM2593HV	4.5	60	$\begin{aligned} & 3.3,5, \operatorname{Adj}(1.23 \\ & \text { to } 57) \end{aligned}$	150	\checkmark	\checkmark	-	\checkmark	-	-	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	Error output delay, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	$\begin{aligned} & \text { T0263-7, TO220-7, } \\ & \text { D, W } \end{aligned}$
LM2832	3	5.5	Adj (0.6 to 4.5V)	$\begin{aligned} & 550, \\ & 1600, \\ & 3000 \end{aligned}$	\checkmark	Internal	-	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	Internal compensation	LLP-6, eMSOP-8
LM2852	2.9	5.5	$\begin{aligned} & \text { 3.0, 3.3, 2.5, 1.8, } \\ & 1.5,1.2,1,0.8 \end{aligned}$	500, 1500	\checkmark	\checkmark	\checkmark	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	Thermal shutdown, internal compensation, low standby current, C_{L}, factory set	eTSSOP-14
2.5A Iout													
LM5005	7	75	Adj 1.225 to 63)	50 to 500	\checkmark	\checkmark	-	-	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	1.5\% Feedback voltage accuracy, emulated current mode, thermal protection	eTSSOP-20
	7	42	Adj 1.225 to 37)	50 to 500	\checkmark	\checkmark	-	-	\checkmark	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	1.5\% Feedback voltage accuracy, emulated current mode, thermal protection	eTSSOP-20

[^2]
Switching Converters

Step-Down (Buck) Single Switching Regulators ${ }^{1}$ - Internal Switch (continued)

Part Number		V_{IN}		$\begin{gathered} V_{\text {out }} \\ \text { Options } \\ \text { (Adj Range) } \end{gathered}$	$\begin{gathered} \mathrm{F}_{\text {sw }} \\ (\mathrm{kHz}) \end{gathered}$	SD	SS	$\begin{gathered} \text { Sync } \\ \mathbf{R} \end{gathered}$	PG	Clock Sync	WEBENCH Simulation	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Other Features/ Comments	Packaging
		Min	Max											
3A lout														
	LM2670	8	40	$\begin{aligned} & 3.3,5,12, \text { Adj } \\ & (1.21 \text { to } 37) \end{aligned}$	$\begin{array}{\|l\|l} 260 \text { to } \\ 400 \end{array}$	\checkmark	-	-	-	\checkmark	\checkmark	-40 to 125	2\% Output voltage accuracy, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	$\begin{aligned} & \text { TO263-7, TO220-7, } \\ & \text { แP-14, D, W } \end{aligned}$
	LM2673	8	40	$\begin{aligned} & 3.3,5,12, \operatorname{Adj} \\ & (1.21 \text { to } 37) \end{aligned}$	260	-	\checkmark	-	-	-	\checkmark	-40 to 125	Prog. current limit, 2\% output voltage accuracy, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	T0263-7, T0220-7, LLP-14
	LM2676	8	40	$\begin{aligned} & 3.3,5,12, \text { Adj } \\ & (1.21 \text { to } 37) \end{aligned}$	260	\checkmark	-	-	-	-	\checkmark	-40 to 125	2\% Output voltage accuracy, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	$\begin{aligned} & \text { TO263-7, T0220-7, } \\ & \text { แP-14, D, W } \end{aligned}$
	LM2696	4.5	24	$\begin{aligned} & \text { Adj (down to } \\ & \text { 1.25) } \end{aligned}$	$\begin{array}{\|l\|l} 100 \\ 500 \\ 500 \end{array}$	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-40 to 125	No compensation required, ultrafast transient response, thermal shutdown, low standby current of $12 \mu \mathrm{~A}$	eTSSOP-16
	LM2853	3	5.5	$\begin{aligned} & \text { 0.8, 1.0, 1.2, 1.5, } \\ & 1.8,2.5,3.0,3.3 \end{aligned}$	550	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-40 to 125	Voltage mode control with internal compensation, low standby current of $12 \mu \mathrm{~A}$	eTSSOP-14
	LM5576	6	75	Adj (from 1.225)	50 to 500	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-40 to 125	COT, SIMPLE SWITCHER ${ }^{\circledR}$ Regulator, 1.5% output voltage accuracy	eTSSOP-20
\%	LM25576	6	42	Adj (from 1.225)	$\begin{array}{\|l\|l} 50 \text { to } \\ 1000 \end{array}$	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-40 to 125	COT, SIMPLE SWITCHER® Regulator, 1.5% output voltage accuracy	eTSSOP-20
	5 A Iout													
	LM2677	8	40	$\begin{aligned} & 3.3,5,12, \text { Adj } \\ & (1.21 \text { to } 37) \end{aligned}$	$\begin{array}{\|l\|l} 260 \text { to } \\ 400 \end{array}$	\checkmark	-	-	-	\checkmark	\checkmark	-40 to 125	2\% Output voltage accuracy, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	$\begin{aligned} & \text { T0263-7, T0220-7, } \\ & \text { ЦР-14 } \end{aligned}$
	LM2678	8	40	$\begin{aligned} & 3.3,5,12, \text { Adj } \\ & (1.21 \text { to } 37) \end{aligned}$	260	\checkmark	-	-	-	-	\checkmark	-40 to 125	2\% Output voltage accuracy, SIMPLE SWITCHER ${ }^{\oplus}$ regulator	$\begin{aligned} & \text { TO263-7, T0220-7, } \\ & \text { LLP-14 } \end{aligned}$
	LM2679	8	40	$\begin{aligned} & 3.3,5,12, \text { Adj } \\ & (1.21 \text { to } 37) \end{aligned}$	260	-	\checkmark	-	-	-	\checkmark	-40 to 125	Prog. current limit, 2% output voltage accuracy, SIMPLE SWITCHER ${ }^{\circledR}$ regulator	T0263-7, T0220-7, LLP-14

[^3]Step-Up (Boost/Flyback/SEPIC) Switching Regulators - Internal Switch

Fixed-Gain Inductorless Switched Capacitor Converters - Charge Pumps

Part Number	Function	$\mathrm{V}_{\text {IN }}$		Typ $\mathbf{R}_{\text {out }}$ (Ω)	$\underset{(\mathrm{mA})}{\operatorname{Min} \mathrm{I}_{\text {out }}}$	Typ Fsw (kHz)	Temp Range$\text { (} \left.{ }^{\circ} \mathrm{C}\right)$	Other Features/ Comments	Packaging
		Min	Max						
Doublers and Inverters									
LM2780	Inverts input voltage, ultra-low voltage ripple	1.8	5.5	8	50 (typ)	12	-40 to 90	Two flying caps for low output ripple	micro SMD-8
LM2781	Inverts input voltage, ultra-low voltage ripple	1.8	5.5	8	50 (typ)	210	-40 to 90	Two flying caps for low output ripple, small solution	micro SMD-8

Switching Controllers for Step-Down Non-Isolated Topologies ${ }^{1}$ - External Switch

[^4]| Lossless ISENSE | Clock
 Sync | Total \# of Regulators | Temp Range (${ }^{\circ} \mathrm{C}$) | Other Features/Comments | Packaging |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | 1 | -40 to 125 | No compensation required | SOT23-5 |
| - | - | 1 | -40 to 125 | Precision enable, no compensation required | SOT23-5 |
| - | - | 1 | -40 to 125 | Hysteretic threshold at 36% or 12\% (A version) of programmed current limit; Vout OVP | MSOP-8 |
| \checkmark | - | 1 | -5 to 125 | Selectable pulse-skip mode for high light load efficiency | TSSOP-20 |
| \checkmark | - | 1 | -40 to 125 | 0.6V Internal voltage reference; UVLO, UVP | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | 0.6V Internal voltage reference | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | 4.2V UVLO, TRI-STATE ${ }^{\circledR}$ output during SD, 40 ns minimum on time | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | 2.7V UVLO, TRI-STATE output during SD, tracking, precision SD threshold | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | External $\mathrm{V}_{\text {REF }}$ version of LM2743 for ultra-high accuracy; tracking, sequencing. | TSSOP-14 |
| \checkmark | \checkmark | 1 | -40 to 125 | Start into pre-bias loads, 40 ns Min_ON time | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | Start into pre-bias loads, 40 ns Min_ON time and high accuracy VFB | TSSOP-14 |
| \checkmark | \checkmark | 1 | -40 to 125 | Start into pre-bias loads, 40 ns Min_ON time and high accuracy VFB, optional frequency synchronize range 250 kHz to 1 MHz | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | Start into pre-bias loads, 40 ns Min_ON time | TSSOP-14 |
| \checkmark | - | 1 | -40 to 125 | User-selectable FPWM and SKIP modes, positive and negative current limit, UVLO, OVP | TSSOP-20 |
| \checkmark | - | 1 | -40 to 125 | Fast transient response, high efficiency, wide $\mathrm{V}_{\mathbb{N}}$ range, and 100 duty cycle capable | SOT23-5 |
| \checkmark | - | 1 | -40 to 125 | No compensation required. Current limit; P-FET controller | MSOP-8 |
| \checkmark | - | 1 | -40 to 125 | No compensation required. Current limit; P-FET controller | MSOP-8 |
| \checkmark | \checkmark | 1 | -40 to 125 | Power supply tracking, pre-biased startup, skip mode at light load | TSSOP-16 |
| \checkmark | - | 1 | -40 to 125 | Power supply tracking, pre-biased startup | MSOP-10 |
| \checkmark | \checkmark | 1 | -40 to 125 | Voltage mode/current injection simpifies loop compensation | TSSOP-16, LLP-16 |
| \checkmark | \checkmark | 1 | -40 to 125 | Operates from ac or dc input, power-up \& power-down tracking | TSSOP-16 |
| \checkmark | \checkmark | 1 | -40 to 125 | 42V Version of LM5115 | TSSOP-16, LLP-16 |
| \checkmark | \checkmark | 1 | -40 to 125 | 42V Version of LM5115A | TSSOP-16 |
| | | | | | |
| \checkmark | - | 2 | -5 to 125 | PWM/SKIP and FPWM modes; soft shutdown, line feedforward, 180 out-of-phase | TSSOP-28, LLP-28 |
| \checkmark | - | 2 | -40 to 125 | Same as LM2647 with lower $\mathrm{V}_{\text {IN }}$ and auto-recover from faults | TSSOP-28 |
| \checkmark | \checkmark | 2 | -40 to 125 | 180 Out-of-phase channels; individual soft-start allows sequencing | TSSOP-28 |

[^5]
Switching Converters

Step-Up (Boost/Flyback/SEPIC) Switching Controllers - External Switch

Part Number	$\mathrm{V}_{\text {IN }}$		Output Voltage	Fsw (kHz)	SD	SS	Sync R	Clock Sync
	Min	Max						
-	6	40	Adj	100 to 2 MHz	-	\checkmark	\checkmark	\checkmark
LM3478	2.95	40	Adj	100 to 1000	\checkmark	\checkmark	-	-
LM3488	2.95	40	Adj	100 to 1000	\checkmark	\checkmark	-	\checkmark
LM5020	8	100	Adj	50 to 1000	\checkmark^{*}	\checkmark	-	\checkmark
LM5021	8	30	Adj	50 to 1000	\checkmark^{*}	\checkmark	-	\checkmark
- LM5022	6	60	Adj	100 to 2 MHz	-	\checkmark	-	\checkmark

*The controller will enter a low-power state if the SS pin is below the shutdown threshold of 0.45 V .

PWM Controllers for Isolated Topologies - Medium and High Power

High-Speed MOSFET Drivers

Part Number	$\begin{aligned} & \text { VIN }_{\text {Max }} \\ & \text { (MOSFET) } \end{aligned}$	$V_{D D}$ Range	Peak Gate Drive Sink/ Source Typ Current (A)	Input Type	Min Pulse Width (ns)	Rise/Fall Time Typ (ns)	Bottom/Top Driver Turn On or Off Propagation Delay Time (ns)
High-Voltage, Half-Bridge Gate Drivers for Synchronous Buck and Bridge Topologies (Low-Side and High-Side FET Drivers)							
LM5100A	100	9 to 14	3.0/3.0	Dual, independent	50	8	20/20
LM5100B	100	9 to 14	2.0/2.0	Dual, independent	50	8/8	20/20
LM5100C	100	9 to 14	1.0/1.0	Dual, independent	50	8/8	20/20
LM5101	100	7.5 to 14	1.8/1.6	Dual, independent	50	10/10 ${ }^{1}$	25/25
LM5101A	100	9 to 14	3.0/3.0	Dual, independent	50	8	25/25
LM5101B	100	9 to 14	2.0/2.0	Dual, independent	50	8/8	25/25
LM5101C	100	9 to 14	1.0/1.0	Dual, independent	50	8/8	25/25
LM5102	100	7.5 to 14	1.8/1.6	Dual, independent	50	10/10 ${ }^{1}$	35/35
LM5104	100	7.5 to 14	1.8/1.6	Single PWM	50	10/10 ${ }^{1}$	35/35
LM5105	100	7.5 to 14	1.8/1.6	Single PWM	50	15	25/25
LM5106	100	7.5 to 14	1.8/1.2	Single PWM	50	22/15	26/26
LM5107	100	7.5 to 14	1.4/1.3	Dual, independent	50	15	28/28
LM5109B	90	7.5 to 14	1.0/1.0	Dual, independent	50	20	30/30

Part Number	Type	IC Vcc Range	Peak Gate Drive Sink/ Source Typ Current (A)	Input Type	Output Gate Driver Type ${ }^{3}$	Rise/Fall Time Typ (ns) ${ }^{4}$	Turn On/Turn Off Typ Propagation Delay Time (ns)
High-Current, Low-Side Gate Drivers for Low-Side FET Topologies (Such as Forward, Push-Pull)							
LM5110-1	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5110-2	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5110-3	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5111-1	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5111-2	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5111-3	Dual	3.5 to 14	5.0/3.0	Dual, independent	Compound	14/12	25/25
LM5112	Single	3.5 to 14	7.0/3.0	Inverting, non-inverting	Compound	14/12	25/25

[^6][^7]| WEBENCH Simulation | Temp Range ('C) | Other Features/Comments | Packaging |
| :---: | :---: | :---: | :---: |
| | 40 to 125 | ,29\% duty cyle, slope compensation: Programmable UVLO, LEE backighting (companion with LM3332] | LlP.12 |
| | 40 to 125 | | MSOP-8 |
| \checkmark | -40 to 125 | | |
| - | -40 to 125 -401025 | | MSOP-10.LIP-10 |
| - | -40 to 125 | <90\% duty crice, Slope compensation, programmable UVLO | Msop-10 |

Gate Drivers (A)	$\mathrm{V}_{\text {cc }}$	$V_{\text {REF }}$	FB Ref	Temp Range (${ }^{\circ} \mathrm{C}$)	Other Features/Comments	Packaging
1	7.7	-	1.25V + 2\%	-40 to 125	80\% and 50\% duty cycle limit (LM5020-1 and LM5020-2 respectively)	MSOP-10, LLP-10
0.7	8.5	-	-	-40 to 125	Low start-up current; cycle skipping; hiccup current limit	MSOP-8, MDIP-8
3/1	7.6	5	-	-40 to 125	See datasheets for unique features of LM5025A, LM5025B	TSSOP-16, LLP-16
3/1	7.6	5	-	-40 to 125	High bandwidth opto interface; programmable maximum duty cycle	TSSOP-16, LLP-16
1.5	7.7	-	$1.25 \mathrm{~V}+2 \%$	-40 to 125	Slope compensation, direct opto-coupler interface	MSOP-10, LLP-10
2.5	7.7	-	-	-40 to 125	Controls dual or single interleaved converter	TSSOP-16, LLP-16
1.5	9.6	2.5	-	-40 to 125	Intermediate bus converter controller	MSOP-10, LLP-10
2.5/0.25	7.7	-	-	-40 to 125	Controls dual or single interleaved converter	TSSOP-20
2.0	7.7	5	-	-40 to 125	SyncFET driver, high bandwidth opto interface, thermal sensor/OVP comparator	TSSOP-20, LLP-24
1.5	9	5	0.75V + 2\%	-40 to 125	Programmable deadtime, overlap timing	TSSOP-16, LLP-16
2.5	7	-	$0.75 \mathrm{~V} \pm 1.7 \%$	-40 to 125	Operates from ac or dc input	TSSOP-16, LLP-16
2.5	7	-	$0.75 \mathrm{~V} \pm 1.7 \%$	-40 to 125	Operates from ac or dc input, power-up \& power-down tracking	TSSOP-16
2.5	7	-	$0.75 \mathrm{~V} \pm 1.7 \%$	-40 to 125	42V Version of LM5115	TSSOP-16, LLP-16
2.5	7	-	$0.75 \mathrm{~V} \pm 1.7 \%$	-40 to 125	42V Version of LM5115A	TSSOP-16

UVLO	Low Gate Enable Pin	Chip Enable Pin	Internal Bootstrap Diode	$\begin{gathered} \text { Temp } \\ \text { Range (} \left.{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Other Features/Comments	Packaging
\checkmark	-	-	\checkmark	-40 to 125	CMOS input threshold, HIP2100 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	CMOS input threshold, HIP2100 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	CMOS input threshold, HIP2100 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	TTL input thresholds inputs	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	TTL input threshold, HIP2101 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	TTL input threshold, HPP2101 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	TTL input threshold, HPP2101 compatible	SOIC-8, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	Independently programmable delay (rising edge)	MSOP-10, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	Adaptive deadtime with additional programmable delay	SOIC-8, LLP-10
\checkmark	-	\checkmark	\checkmark	-40 to 125	TTL input threshold, programmable dead time	LLP-10
\checkmark	-	\checkmark	-	-40 to 125	TTL input threshold, programmable dead time	MSOP-10, LLP-10
\checkmark	-	-	\checkmark	-40 to 125	TTL input threshold, ISL6700 compatible	SOIC-8, LLP-8
\checkmark	-	\checkmark	-	-40 to 125	TTL input threshold	SOIC-8, LLP-8
	Negative Drive Capability ${ }^{2}$					
UVLO		Enable Pin Ran			Other Features/Comments	Packaging
\checkmark	\checkmark		\checkmark	-40 to 125	Non-inverting outputs	SOIC-8, LLP-10
\checkmark	\checkmark		\checkmark	-40 to 125	Inverting outputs	SOIC-8, LLP-10
\checkmark	\checkmark		\checkmark	-40 to 125	One inverting, one non-inverting output	SOIC-8, LLP-10
\checkmark	-		-	-40 to 125	Non-inverting outputs	SOIC-8
\checkmark	-		-	-40 to 125	Inverting outputs	SOIC-8
\checkmark	-		-	-40 to 125	One inverting, one non-inverting output	SOIC-8
\checkmark	\checkmark		-	-40 to 125	Inverting and non-inverting input for the single driver	LLP-6

Core Power and Distributed Voltage Conversion

Low Dropout Linear Regulators (LDOs) - Positive Output

Output Current	Part Number	$\mathrm{V}_{\text {OUt }}$									Other Available Voltages ${ }^{9}$	$\mathrm{V}_{\text {IN }}$		$\begin{gathered} \mathbf{V D B O P O U T}^{6} \\ \text { (max) } \end{gathered}$	$V_{\text {OUT }}$ Tolerance ${ }^{8}$ (\%)
		1.2	1.5	1.8	2.5	2.8	3.0	3.3	5.0	Adj		Min	Max		
100 mA	LP5900	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	2, 2.2, 2.7	2.5	5.5	0.15	2
150 mA	LP3984	-	\checkmark	\checkmark	-	-	-	-	-	-	2.0, 2.9, 3.1	2.5	6	0.12 F	2 F
	LP3987	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	2.6, 2.85	2.7	6	0.17	3 F
	LP3988	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-	1.85, 2.6, 2.85	2.5	6	0.15F	3.5 F
	LP3990	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	0.8, 1.35	2.0	6	0.12 (typ)	4F
	LP3995	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	1.6, 1.9, 2.1	2.5	6	0.17	5F
	LP3999	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	1.6, 1.7, 1.875, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6	2.5	6	0.17	5 F
	LP5951	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	1.3, 2.0	1.8	5.5	0.2	3.5
	LM9076	-	-	-	-	-	-	\checkmark	\checkmark	-	3.3	2.1	52	0.4	2
250 mA	LP3997	-	-	-	-	-	-	\checkmark	-	-	-	2	6	0.4	3 F
	LP3991	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	1.3	1.65	3.6	300 mV	1
	LP3996	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	0.8, 1.5	2	6	210 mV	1.5
	LP5952	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	0.8, 1.5	-	-	-	1.5
	LP5996	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	$0.7,1.3,1.4,1.6,2.0$	0.7	4.5	130 mV	-
500 mA	LP38691	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.25 to 9		2.5	10	0.25	2
	LP38693	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.25 to 9		2.5	10	0.25	2
800 mA	LP3871	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	2.5	7	0.3	1.5
	LP3874	$\checkmark 1$	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.215 to 5	-	2.5	7	0.3	1.5
	LP3878	-	-	-	-	-	-	-	-	1.0 to 5.5	-	2.5	16	0.475	1
	LP3879	\checkmark	-	-	-	-	-	-	-	-	-	2.5	6	-	1.0 or 1.2
	LP3881	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$1.3{ }^{2}$	5.5	0.12	1.5
	LP3891	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$1.6{ }^{2}$	5.5	0.3	1.5
	LP38841	\checkmark	\checkmark	-	-	-	-	-	-	0.56 to 1.5	0.8 V	1.05	5.5	0.075	1.5

Low Dropout Linear Regulators (LDOs) - Positive Output (continued)

Output Current		Part Number	$\mathrm{V}_{\text {OUT }}$										Other Available Voltages ${ }^{9}$	V_{IN}		$\begin{gathered} \mathbf{V D в о р о и т ~}^{6} \\ \text { (Max) } \end{gathered}$	
		0.8	1.2	1.5	1.8	2.5	2.8	3.0	3.3	5.0	Adj	Min		Max			
800 mA	-		LP38851	-	-	-	-	-	-	-	-	-	0.8 to 1.8	-	3.0	5.5	0.24 (typ.)
	Naw	LP38854	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3.0	5.5	0.24 (typ.)	
	Now	LP38857	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3.0	5.5	0.24 (typ.)	
1A		LP38690	-	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.25 to 9	-	2.5	10	0.45	
		LP38692	-	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.25 to 9	-	2.5	10	0.45	
1.5A		LP3852	-	-	-	\checkmark	-	-	\checkmark	\checkmark		-	-	2.5	7	0.28	
		LP3855	-	\checkmark^{1}	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.215 to 5	-	2.5	7	0.28	
		LP3872	-	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	2.5	7	0.45	
		LP3875	-	\checkmark^{1}	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.215 to 5	-	2.5	7	0.45	
		LP3882	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$1.5{ }^{2}$	5.5	0.17	
		LP3892	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$1.7{ }^{2}$	5.5	0.32	
		LP38842	-	\checkmark	\checkmark	-	-	-	-	-	-	0.56 to 1.5 V	0.8	1.12	5.5	0.115	
	-	LP38852	-	-	-	-	-	-	-	-	-	0.8 to 1.8	-	3.0	5.5	0.18	
	Now	LP38855	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3.0	5.5	0.18	
	N00,	LP38858	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3.0	5.5	0.18	
3A		LP3853	-	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	2.5	7	0.45	
		LP3856	-	\checkmark^{1}	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.215 to 5	-	2.5	7	0.45	
		LP3873	-	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	2.5	7	1.0	
		LP3876	-	\checkmark^{1}	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	1.215 to 5	-	2.5	7	1.0	
		LP3883	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$1.6{ }^{2}$	5.5	0.27	
		LP3893	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	$2.2{ }^{2}$	5.5	0.65	
		LP38843	-	\checkmark	\checkmark	-	-	-	-	-	-	-	0.8	1.3	5.5	0.21	
		LP38853	-	-	-	-	-	-	-	-	-	0.8 to 1.8	-	3	5.5	0.45	
	- Neve	LP38856	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3	5.5	0.45	
	-	LP38859	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	3	5.5	0.45	

${ }^{4}$ Quasi LDO
${ }^{5}$ Those regulators not originally designed to be used with ceramic output caps can still be stable using ceramic capacitors if $C_{\text {out }}$ is connected in series with a small resistor to simulate the needed ESR

$\begin{gathered} \mathrm{I}_{\mathrm{q}} \mathrm{max}^{3} \\ (\mathrm{~mA}) \end{gathered}$	SS	Error Flag	P0R	Geramic Caps Stable ${ }^{5}$	Temp Range	Other Features/ Comments	Packaging
0.05	\checkmark	-	-	\checkmark	Ind	No bypass capacitor. $6.5 \mu \mathrm{~V}_{\text {RMS }}, 75 \mathrm{~dB}$ PSRR at $1 \mathrm{kHz}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {Out }}=0.47 \mu \mathrm{~F}$	micro SMD-4, LLP-6
0.125F	\checkmark	-	-	-	Ind	Low noise, tantalum output capacitor	micro SMD-4, SOT23-5, D, W
0.12F	\checkmark	-	-	\checkmark	Ind	Sleep mode control	micro SMD-5
0.12F	\checkmark	\checkmark	-	\checkmark	Ind	Power-good flag output	micro SMD-5, SOT23-5, D, W
0.08	\checkmark	-	-	\checkmark	Ind	Supports $1 \mu \mathrm{~F}$ Cout	micro SMD-4, SOT23-5, LLP-6
0.15F	\checkmark	-	-	\checkmark	Ind	Low noise, fast turn-on time, optimal for analog and RF loads	micro SMD-5, LLP-6
0.15F	\checkmark	-	-	\checkmark	Ind	Active shutdown; low noise, fast turn-on, optimal for A and RF	micro SMD-5
0.29	-	-	-	\checkmark	Ind	Micropower	SOT23-5
0.025	\checkmark	\checkmark	\checkmark	-	Ind	Reverse polarity protection of -15 V , transient protection of +60 V	TO263-5, MSOP-8
0.1 F	\checkmark	\checkmark	\checkmark	\checkmark	Ind	Delay pin to set POR delay time using a capacitor	MSOP-8
$120 \mu \mathrm{~A}$	-	-	-	\checkmark	-40 to 125	Low $\mathrm{V}_{\mathbb{N}}$	mirco SMD-4
$35 \mu \mathrm{~A}$	-	-	\checkmark	\checkmark	-40 to 125	Dual output	LLP-10
$35 \mu \mathrm{~A}$	-	-	-	\checkmark	-40 to 125	Dual output	LLP-10
$11 \mu \mathrm{~A}$	-	-	-	\checkmark	-40 to 125	Low V_{IN}	micro SMD-5
0.100 F	-	-	-	\checkmark	Ind	Stable with $1 \mu \mathrm{~F}$ ceramic capacitors, Low I_{q}	T0252-3, LLP-6
0.100F	\checkmark	-	-	\checkmark	Ind	Stable with 1μ F ceramic capacitors, Low I_{q}	SOT223-5, LLP-6
9	\checkmark	\checkmark	-	-	Ind		SOT223-5, TO263-5, T0220-5
9	\checkmark	-	-	-	Ind	Sense pin	SOT223-5, TO263-5, T0220-5
5.5	\checkmark	-	-	\checkmark	Ind	Low noise	PSOP-8, LLP-8
15	\checkmark	-	-	-	-40 to 85	Sub-bandgap	PSOP-8, LLP-8
7	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0263-5, T0220-5
7	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0220-5, T0263-5
30	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0263-5, T0220-5, PSOP-8

\qquad	$\begin{gathered} \mathrm{I}_{\mathrm{q}} \mathrm{max}^{3} \\ (\mathrm{~mA}) \end{gathered}$	SS	SD	Error Flag	POR	Ceramic Caps Stable ${ }^{5}$	Temp Range	Other Features/ Comments	Packaging
3	8 (typ.)	\checkmark	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0263-5, T0220-5, PSOP-8
3	8 (typ.)	-	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0263-5, T0220-5
3	8 (typ.)	\checkmark	-	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0263-5, T0220-5
2.50	0.100 F	-	-	-	-	\checkmark	Ind	Stable with $1 \mu \mathrm{~F}$ ceramic capacitors, Low I_{\square}	T0252-3, LLP-6
2.50	0.100F	-	\checkmark	-	-	\checkmark	Ind	Stable with $1 \mu \mathrm{~F}$ ceramic capacitors, Low I_{q}	SOT223-5, LLP-6
1.5	9	-	\checkmark	\checkmark	-	\checkmark	Ind		SOT223-5, TO263-5, TO220-5
1.5	9	-	\checkmark	-	-	\checkmark	Ind	Sense pin	SOT223-5, TO263-5, T0220-5
1.5	9	-	\checkmark	\checkmark	-	-	Ind		SOT223-5, T0263-5, T0220-5
1.5	9	-	\checkmark	-	-	-	Ind	Sense pin	SOT223-5, T0263-5, T0220-5
1.5	7	-	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0220-5, T0263-5
1.5	7	-	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0220-5, T0263-5
1.5	30	-	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\mathbb{N}}$ conversion	T0263-5, T0220-5, PSOP-8
3	14	\checkmark	\checkmark	-	-	\checkmark	Ind	Ideal for low $V^{\text {IN }}$ conversion	T0263-5, T0220-5, PSOP-8
3	14	-	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0263-5, T0220-5
3	14	\checkmark	-	-	-	\checkmark	Ind	Ideal for low $V_{\text {IN }}$ conversion	T0263-5, T0220-5
1.5	9	-	\checkmark	\checkmark	-	\checkmark	Ind		T0220-5, T0263-5
1.5	9	-	\checkmark	-	-	\checkmark	Ind	Sense pin	T0220-5, T0263-5
1.5	9	-	\checkmark	\checkmark	-	-	Ind		T0220-5, T0263-5
1.5	9	-	\checkmark	-	-	-	Ind	Sense pin	T0220-5, T0263-5
1.5	7	-	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0220-5, T0263-5
1.5	7	-	\checkmark	-	-	-	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0220-5, T0263-5
1.5	30	-	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion, shutdown current 30 nA	T0263-5, T0220-5
3	14	\checkmark	\checkmark	-	-	\checkmark	Ind	Ideal for low $V^{\text {IN }}$ conversion	T0263-5, T0220-5,PSOP-8
3	14	-	\checkmark	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0263-5, T0220-5
3	14	\checkmark	-	-	-	\checkmark	Ind	Ideal for low $\mathrm{V}_{\text {IN }}$ conversion	T0263-5, T0220-5

[^8]${ }^{8} \mathrm{~F}$ denotes value for full temp range
${ }^{9}$ Please contact National for additional voltage options

Core Power and Distributed Voltage Conversion

Dual and Multiple LDO Devices

Part Number	Type	$\begin{aligned} & \mathrm{I}_{\text {OUT }} \\ & (\mathrm{mA}) \end{aligned}$	$V_{\text {OUt }}$ Accuracy ${ }^{1}$	Available Voltages ${ }^{2}$	$\begin{gathered} \mathbf{V}_{\text {Dвороит }}{ }^{3} \\ \text { (Max) } \end{gathered}$	$\mathrm{V}_{\text {IN }}$		$\begin{gathered} \mathrm{I}_{\mathrm{q}} \\ \max ^{4} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	SD Control	Error Flag	P0R	Ceramic Caps Stable ${ }^{5}$	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Other Features/ Comments	Packaging
						Min	Max								
LP2966	Dual	$\begin{aligned} & 150, \\ & 150 \end{aligned}$	1\%	1.8/1.8, 1.8/3.0, 1.8/3.3, 2.5/2.5, 2.8/2.8, 2.8/3.0, 3.0/3.0, 3.3/2.5, 3.3/3.3, 3.3/3.6, 3.6/3.6, 5.0/5.0	0.19	2.7	7	0.45	\checkmark	\checkmark	-	-	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$		MSOP-8
LP2967	Dual	$\begin{aligned} & 150, \\ & 150 \end{aligned}$	1\%	$\begin{aligned} & \text { 1.8/2.5, 1.8/3.3, } \\ & 2.5 / 2.8,2.5 / 3.3, \\ & 2.6 / 2.6,2.8 / 2.8, \\ & 2.8 / 3.3 \end{aligned}$	0.22	2.1	16	0.34	\checkmark	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	Low noise	MSOP-8, micro SMD-8, D, W
LP3986	Dual	$\begin{aligned} & 150, \\ & 150 \end{aligned}$	3\%F	$\begin{aligned} & 1.8 / 2.5,1.8 / 2.8, \\ & 2.5 / 2.5,2.5 / 2.8, \\ & 2.6 / 2.6,2.8 / 2.8, \\ & 2.85 / 2.85 \\ & 2.9 / 2.9,3.0 / 2.8, \\ & 3.0 / 3.0,3.1 / 3.1, \\ & 3.1 / 3.3,3.3 / 3.3 \end{aligned}$	0.1 F	2.7	6	0.2 F	\checkmark	-	-	\checkmark	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$		micro SMD-8
$\begin{aligned} & \text { LM2984/ } \\ & \text { 84C } \end{aligned}$	Triple	$\begin{aligned} & 500, \\ & 100, \\ & 7.5 \end{aligned}$	3\%F	5.0 (3x)	0.8	-	26	50	\checkmark	\checkmark	\checkmark	-	$\begin{gathered} -40 \text { to } \\ 125 \end{gathered}$	$\mu \mathrm{P}$ Watchdog and supervisor. Reverse voltage and transient protection. Ideal for automotive use.	T0220-11

${ }^{1} \mathrm{~F}$ denotes value for full temp range
2 Please contact National for additional voltage options
${ }^{3}$ Dropout voltage is given for full load. F denotes value for full temperature range, and T denotes typical value otherwise values are maximum at $25^{\circ} \mathrm{C}$
${ }^{4} \mathrm{~F}$ denotes value for full temp range and T denotes typical value, otherwise values are maximum at $25^{\circ} \mathrm{C}$ (typically quiescent current is given for minimum load)
${ }_{5}$ Those regulators not originally designed to be used with ceramic output caps can still be stable using ceramic capacitors if COUT is connected in series with a small resistor to simulate the needed ESR

Supervisory, Protection and Auxiliary Power Management ICs

Voltage References ${ }^{1}$

Part Number	Type	Voltages (V)	Accuracy (\%)	TEMPCO (ppm/ ${ }^{\circ}$ C)	$\mathrm{V}_{\text {dropout }}$	$\mathrm{I}_{\mathrm{q}} / \mathrm{I}_{\text {OUT }}$ Current	Packaging
LM4120	Series	1.8, 2.048, 2.5, 3.0, 3.3, 4.096, 5	0.2, 0.5	50	210 mV at 5 mA	$250 \mu \mathrm{~A} / \pm 5 \mathrm{~mA}$	SOT23-5, D, W
LM4125	Series	2.0, 2.5, 4.1	0.2, 0.5	50	120 mV at 1 mA	$160 \mu \mathrm{~A} / 5 \mathrm{~mA}$	SOT23-5
LM4128	Series	1.8, 2.048, 2.5, 3.0, 3.3, 4.096	0.1, 0.2, 0.5, 1.0	75,100	400 mV at 10 mA	$100 \mu \mathrm{~A} / 10 \mathrm{~mA}$	SOT23-5
LM4132	Series	1.8, 2.048, 2.5, 3.0, 3.3, 4.096	$0.05,0.1,0.2,0.4,0.5$	10,20,30	400 mV at 10 mA	$100 \mu \mathrm{~A} / 20 \mathrm{~mA}$	SOT23-5
LM4140	Series	$\begin{aligned} & 0.5^{2}, 0.6^{2}, 0.7^{2}, 0.75^{2}, 0.8^{2}, 0.9^{2}, 1.0 \\ & 1.25,2.0,2.5,4.1,4.5^{2} \end{aligned}$	0.1	3,6,10	160 mV at 8 mA	$230 \mathrm{~A} / 8 \mathrm{~mA}$	SOIC-8

' For an extensive list of voltage reference parts, please visit our website at power.national.com
${ }^{2}$ These and other voltages available upon request. Contact your National sales office for more information.

Power Supply Supervisory ICs

Part Number	$\begin{gathered} \text { Reset timeout } \\ \text { Period } \\ \text { Customer-Specified } \end{gathered}$	Watchdog Timeout Period Customer-Specified	Separate Watchdog Output	Manual Reset	Power Fall Comparator		Output Type	Package
LM37001,2	Yes					\checkmark	Push Pull -L/H	micro SMD-9
LM37021,2	Yes			\checkmark		\checkmark	Push Pull -L/H	micro SMD-9
LM3706/071.2	Yes	Yes				\checkmark	Push Pull -L/H	micro SMD-9
LM3708/991.2	Yes	Yes		\checkmark		\checkmark	Push Pull -L/H	micro SMD-9
LM3710/111,2	Yes	Yes		\checkmark	\checkmark	\checkmark	Push Pull -L/H	micro SMD-9, MSOP-10
LM3712/131.2	Yes	Yes	\checkmark	\checkmark	\checkmark	\checkmark	Push Pull -L/H	micro SMD-9
LM3722 ${ }^{1,3}$	No			\checkmark	\checkmark		Push Pull -L	SOT23-5
LM37231.3	No			\checkmark	\checkmark		Push Pull -H	SOT23-5
LM3724 ${ }^{1,3}$	No			\checkmark	\checkmark		Open Drain	SOT23-5

a. Reset Assertion Down to 1 V Vcc
b. Customer Reset Threshold Voltages: For Other Voltages Between 2.2 V and 5.0 V in 10 mV Increments, Contact

National Semiconductor Corporation
a. $\pm 0.5 \%$ Reset Accuracy
b. Standard Reset Threshold Voltage: 3.08 V
${ }^{3}$ Standard Reset Threshold Voltage: 4.63V, 3.08V and 2.32V
${ }^{4}$ Standard Reset Threshold Voltage: 2.83/2.93-3.08/4.0/4.38/4.63V
${ }^{5}$ PCI Local Bus Power Supervisor (5V and 3.3V)
${ }^{6}$ Standard Reset Threshold Voltage: Factory Programmable 2.4 V to 5 V

Sequencers

| Product ID | Timing
 Options (ms) | \# of Regulators
 Able to
 Sequence | Input Min
 Voltage | Input Max
 Voltage | Power-
 Up | Power-
 Down | Enable | Other Features/Comments | Package |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM3880 | $10,30,60,120$ | 3 | 2.7 | 5.5 | Y | Y | Yes | Custom timing options available along with
 customer power-down sequences | SOT23-5 |

Power Management for Industrial and Telecom Applications

High-Voltage Power IC Family

Load Share Controllers

Part Number	$\begin{gathered} \mathbf{V}_{\text {cc }} \\ \text { Range } \end{gathered}$	Share Methods				Temp Range (${ }^{\circ} \mathrm{C}$)	Packaging
		Remote Sense -	Remote Sense +	Trim	Feedback		
LM5080	3 to 14	\checkmark	\checkmark	\checkmark	\checkmark	-40 to 125	MSOP-8

Hot-Swap Solutions

Telecom Hot-Swap Controllers

Part Number	$\begin{gathered} \mathbf{V}_{\mathrm{IN}} \\ \text { Range } \end{gathered}$	Fault Latch/ Retry	PG	Current Limit Methods			UV	OV	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Packaging
				In-Rush Current	Active Limiting	Fast Comparator				
LM5068-1	-10 to -90	Latch-off	Active high	Active/SS	\checkmark	\checkmark	\checkmark	\checkmark	-40 to 105	MSOP-8
LM5068-2	-10 to -90	Auto-retry	Active high	Active/SS	\checkmark	\checkmark	\checkmark	\checkmark	-40 to 105	MSOP-8
LM5068-3	-10 to -90	Latch-off	Active low	Active/SS	\checkmark	\checkmark	\checkmark	\checkmark	-40 to 105	MSOP-8
LM5068-4	-10 to -90	Auto-retry	Active low	Active/SS	\checkmark	\checkmark	\checkmark	\checkmark	-40 to 105	MSOP-8

High Power LED Drivers

*Preliminary information

Power-over-Ethernet (PoE) Solutions

Part Number	Description	$\begin{gathered} \mathbf{V}_{\mathrm{IN}} \\ \text { Range } \\ \hline \end{gathered}$	$\mathrm{F}_{\text {sw }}$	Typ Current Draw w/AUX Winding ($\mu \mathrm{A}$)	Reference Accuracy (\%)	Reference Designs and Eval Boards	Other Features/Comments	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Packaging
LM5070	Integrated PoE single-chip solution: PD interface and DC-DC converter	$\begin{aligned} & 1.5 \text { to } \\ & 75^{*} \end{aligned}$	50 kHz to 1 MHz	700	± 2.0	Two available: highest efficiency and simplest implementation	Includes all LM5020 features plus an $80 \mathrm{~V}, 400 \mathrm{~mA}$ line connection switch and associated control and sequencing for a fully IEEE 802.3af compliant PD interface	-40 to 125	$\begin{aligned} & \text { TSSOP-16, } \\ & \text { LLP-16 } \end{aligned}$
LM5071	Integrated PoE single-chip solution: PD interface and DC-DC converter	$\begin{aligned} & 1.5 \text { to } \\ & 75^{*} \end{aligned}$	50 kHz to 1 MHz	700	± 2.0	Two available: single and dual outputs	All features of the LM5070 plus auxiliary power interface	-40 to 125	TSSOP-16
LM5072	Integrated PoE single-chip solution: PD interface and DC-DC converter	1.5 to 70	50 kHz to 1 MHz	700	± 2.0	One available: single	All features of the LM5071 but $2 x$ power level of 802.3af compliant PD device	-40 to 125	eTSSOP-16
LM5073	Power Over Ethernet PD Interface with Aux Support	1.5 to 70	-	-	-	One available	Line Over Voltage Protection 100V, 0.6 ohm Hot Swap MOSFET Complementary Open Drain Outputs for controlling a DC/DC converter	-40 to 125	eTSSOP-14

* 1.5 V to $12 \mathrm{~V}=$ the part is in signature mode

Industrial and Telecom High-Voltage (80V/100V) Solutions

Power Management for Portable Applications

DDR Memory Solutions - Memory Supply Plus Memory Termination
Memory Supply ($\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDO}}$) Regulators

Part Number	V_{IN} Range ($\mathrm{P}_{\mathrm{viN}}$)	$\mathrm{I}_{\text {OUT }}(\mathrm{A})$	$V_{\text {OUT }}$ (Min)	$\mathrm{F}_{\text {sw }}$	IC V ${ }_{\text {cc }}$	SD	Lossless SENSE	PG	Temp Range (${ }^{\circ} \mathrm{C}$)	Other Features/ Comments	Packaging
LM2727	2.2 to 16	0.5 to 20 cont.	0.6	50 kHz to 2 MHz	4.5 to 5.5	\checkmark	\checkmark	\checkmark	-40 to 125	Suspend to disk shutdown; UVP and OVP latch-off	TSSOP-14
LM2737	2.2 to 16	0.5 to 20 cont.	0.6	50 kHz to 2 MHz	4.5 to 5.5	\checkmark	\checkmark	\checkmark	-40 to 125	Suspend to disk shutdown	TSSOP-14
LM2745	1 to 14	0.5 to 20 cont.	0.6	50 kHz to 1 MHz	3.0 to 6.0	\checkmark	\checkmark	\checkmark	-40 to 125	Monotonic start-up, synchronization	TSSOP-14
LM27241	5.5 to 28	0.5 to 20 cont.	0.6	200 kHz to 500 kHz	4.5 to 5.5	\checkmark	\checkmark	\checkmark	-5 to 125	Pulse-skip mode for high light load efficiency	TSSOP-20

Memory Termination ($\mathbf{V}_{\pi T}$) and Reference ($\mathbf{V}_{\text {REF }}$) Regulators

Part Number	V_{IN} Range (Pvin)	Sink/Source (A)	Standards	$\mathrm{F}_{\text {sw }}$	External Components	Split Rails*	SD	$\begin{aligned} & V_{\text {REF }} \\ & \text { Out } \end{aligned}$	Thermal Protection	Temp Range ($\left.{ }^{\circ} \mathrm{C}\right)$	Other Features/ Comments	Packaging
Linear												
LP2995	2.2 to 5.5	3 peak, 1.5 cont.	DDR	-	3	-	-	\checkmark	-	0 to 125		SOIC-8, LLP-16, PSOP-8
LP2996	1.5 to 5.5	3 peak, 1.5 cont.	DDR and DDR-II	-	3	\checkmark	\checkmark	\checkmark	\checkmark	0 to 125	Suspend to RAM shutdown	SOIC-8, LLP-16, PSOP-8
LP2997	1.5 to 5.5	1.5 peak, 0.5 cont.	DDR-II	-	3	\checkmark	\checkmark	\checkmark	\checkmark	0 to 125	Suspend to RAM shutdown	SOIC-8, PSOP-8
Switching												
LM2744	1 to 16	0.5 to 25 cont.	DDR and DDR-II	50 kHz to 2 MHz	\checkmark	\checkmark	\checkmark	-	-	-40 to 125	Suspend to RAM shutdown, low 4 mV offset	TSSOP-14

[^9]
Integrated Power Management Units (PMUs)

Lighting Management Unit (LMUs)

Part Number	Description		Drive Gurrent for All	Current for Flash Mode	Current Matching	Key Functions	Package
LM4970	Audio Synchronized Color LED Driver	2.7-5.5	42 mA	NA	NA	Audio Synchronized	LLP-14
LP3931	LMU for Controlling 2 Sets of RGB LED Drivers	2.65-2.9	NA	6 Outputs, Each Up to 120 mA	NA	A Flash Function for Photo Taken in Camera-enabled Cell Phone	LP-24
LP3933	LMU for Controlling $4+2 \times$ White LEDs and $2 \times$ RGB Fun-light LEDs	2.65-2.9	Max. White-LED Current - 25 mA Per LED Output	6 RGB-outputs, Each up to 75 mA	White LED 2\%, RGB with External Ballast	Boost Switching Regulator, 6x White LEDs, $2 x$ RGB, SPI Interface	CSP-32
LP3936	LMU for Control ling 4+2 \times White LEDs and 1x RGB Fun-light LEDs	3-6	Max. White-LED Current - 25 mA Per LED Output	3 RGB-outputs, Each Up to 75 mA	White LED 2\%, RGB with External Ballast	Boost Switching Regulator, 6 x White LEDs, 1x RGB, Ambient Light Sensor with Averaging, 1^{12} C/Microwire/SPI Interface	CSP-32
LP3950	LMU with Audio Synchronization for 2 Sets of RBG Drivers	2.7-2.9	300 mA	300 mA	NA	Synchronize to Audio Inputs with Programmable Pattern to Drive RGB	CSP-32
LP3954	Advanced LMU for Main and Subdisplay, Funlighting, Flashlighting and Audio Synchronization	3-5.5	700 mA	300 mA	NA	Advanced LMU for Dual Display Portable Electronics	micro SMD-36 (3 mm x 3 mm x 0.6 mm)
LP3958	LMU with High Voltage Boost Converter for Serial Main \& Subdisplay Backlight and Keypad LEDs	3.3-5.0	70 mA	NA	NA	All-in-one for Dual Display Devices with Keypads	$\begin{array}{\|l} \text { micro SMD- } 25 \\ (2.54 \mathrm{~mm} \times 2.54 \mathrm{~mm} \\ \times 0.6 \mathrm{~mm}) \end{array}$
LP5526	LMU with High Voltage Boost Converter and Serial Flash LED Driver (Up to 150 mA)	3.3-5.0	150 mA	150 mA	NA	Dedicated Flash Function	$\begin{aligned} & \text { micro SMD-25 } \\ & (2.54 \mathrm{~mm} \times 2.54 \mathrm{~mm} \\ & \times 0.6 \mathrm{~mm}) \end{aligned}$
LP5527	LMU for camera flash and 4 LEDs with ${ }^{12}$ C programmability	3.0-5.5	Up to 1A	400 mA	1\%	LED connectivity test, audio synchronization	micro SMD-30

Power Management for Portable Applications

White-LED Drivers - Inductive

Part Number	$V_{\text {IN }}$ Range	Number of LEDs	$\begin{aligned} & \text { V out }^{\text {(Max) }} \end{aligned}$	$\begin{aligned} & \text { Sw Peak } \\ & \text { Current (Typ) } \end{aligned}$	Fsw	Ambient Temp Range (${ }^{\circ} \mathrm{C}$)	Comments	Packaging
LM2731	2.7 to 14	More than 10	Adj (up to 20)	1.5A	$600 \mathrm{kHz} / 1.6 \mathrm{MHz}$	-40 to 125 ${ }^{1}$		SOT23-5
LM2733	2.7 to 14	More than 10	Adj (up to 40)	1A	$600 \mathrm{kHz} / 1.6 \mathrm{MHz}$	-40 to 125^{1}		SOT23-5
LM3224	2.7 to 7.0	1	20	2.45A	$615 \mathrm{kHz} / 1.25 \mathrm{MHz}$	-40 to 125^{1}	Flat panel display power, high current LED driver	MSOP-8
LM3500	2.7 to 7.0	Up to 5	16, 21	400, 670 mA	1 MHz	-40 to 85		micro SMD-8
LM3501	2.7 to 7.0	Up to 5	16, 21	400, 670 mA	1 MHz	-40 to 85	Analog input dimming	micro SMD-8
LM3502	2.5 to 5.5	Up to 10	16, 25, 35, 44	400, 600, 750 mA	1 MHz	-40 to 85	Dual display control	micro SMD-10, LLP-16
LM3503	2.5 to 5.5	Up to 10	16, 25, 35, 44	400, 600, 750 mA	1 MHz	-40 to 85	Dual display control, analog dimming	micro SMD-10, LLP-16
LM3519	2.7 to 5.5	Up to 4	18.9	750 mA	2 MHz to 8 MHz	-40 to 85	Up to 30 kHz PWM dimming control	SOT23-6
LM3520	2.7 to 5.5	1 String and 1 OLED	22.2	700 mA	1 MHz	-40 to 85	4 to 5 LEDs plus OLED subdisplay	LLP-14
LM3551	2.7 to 5.5	1 to 4	11	2.1A	1.25 MHz	-40 to 85	Flash LED driver, timeout protection, active low enable	LLP-14
LM3552	2.7 to 5.5	1 to 4	11	2.1A	1.25 MHz	-40 to 85	Flash LED driver, timeout protection, active high enable	LLP-14
LM3557	2.7 to 7.5	Up to 5	22	0.8A	1.25 MHz	-40 to 85	5-LED string	LLP-8

Junction temperature

White-LED Drivers - Inductorless

Part Number	$\mathrm{V}_{\text {IN }}$		Number of Individual Outputs	$\begin{aligned} & \text { Typ } \\ & \mathrm{I}_{\text {Led }} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} \text { Typ } \\ \text { F }_{\text {sw }} \\ (\mathrm{kHz}) \end{gathered}$	$\begin{aligned} & \text { EN } \\ & \text { Pin } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {LED }} \\ & \mathrm{Adj} \end{aligned}$	PWM Brightness Control	Analog Brightness Control	Ambient Temp Range	Other Features/ Comments	Packaging
	Min	Max										
LM2750	2.7	5.6	1	120	1700	\checkmark	-	\checkmark^{1}	-	-40 to 85	Constant voltage source for multi-LEDs in parallel; low noise	LLP-10, D, W
LM2751	2.8	5.5	1 Voltage regulated	80, 150	$\begin{gathered} 9.5,37 \\ 300,725 \end{gathered}$	\checkmark	-	-	\checkmark	-40 to 85	$1.5 \times$ and $\times 2$ gains	LLP-10
LM2753	3.0	5.5	1 Voltage regulated	250	725	\checkmark	\checkmark	-	\checkmark	-40 to 85	Flash LED driver, 250 mA continuous load, 400 mA pulsed load	LLP-10
LM27951	3.0	5.5	4 Current regulated	30	750	\checkmark	\checkmark	-	-	-40 to 85	Common cathode current source topology, 0.2\% LED current matching	LLP-14
LM27952	3.0	5.5	4 Current regulated	30	750	\checkmark	\checkmark	-	\checkmark	-40 to 85	Common anode current sink topology, 0.2\% LED current matching	LLP-14
LM27965	2.7	5.5	9	20	1270	-	\checkmark	No But ${ }^{12} \mathrm{C}$	-	-30 to 85	Dual display whit LED Driver with $12 C$ compatible interface	LLP-24
LM27966	2.7	5.5	6	20	20	-	\checkmark	No But ${ }^{2} \mathrm{C}$	-	-30 to 85	White LED driver with 12 C compatible interface	LLP-24
LM3570	2.7	5.5	4	20	500	\checkmark	\checkmark	\checkmark	-	-40 to 85	3 constant current outputs plus regulated constant voltage output (4.35V) for driving additional LEDs	LLP-14
LM3590	6.0	12.6	12	20	-	\checkmark	\checkmark	\checkmark	-	-40 to 85		SOT23-5
LM3595	3.0	5.5	4	25	-	\checkmark	\checkmark	-	\checkmark	-40 to 85		LLP-10

[^10]TFT-LCD Power Solutions for Notebook PCs, Monitors and Television

Part Number	$V_{\text {IN }}$ Range	$V_{\text {OUT }}$ (Max)	Boost Switch Peak Current (A)	$\mathrm{F}_{\text {sw }}$	SS	Integrated Features	$\begin{gathered} \text { Temp } \\ \text { Range }\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packaging
LM2622	2.0 to 12	17.5	1.65	$600 \mathrm{kHz}, 1.3 \mathrm{MHz}$	-	-	-40 to 125	MSOP-8
LM2700	2.2 to 12	17.5	3.6	$600 \mathrm{kHz}, 1.25 \mathrm{MHz}$	-	-	-40 to 125	TSSOP-14, LLP-14
LM2716	4.0 to 20	3.3, 20	Fixed buck: 1.2A, Adj boost: 3.6A	300 to 600 kHz	\checkmark	3.3V Output fixed buck and adjustable boost	-40 to 125	TSSOP-24
LM2717	4.0 to 20	3.3, 20	Buck 1: 1.6A Buck 2: 1.8A	300 to 600 kHz	\checkmark	Buck 1: 3.3V and Adj Buck 2: Adj	-40 to 125	TSSOP-24
LM3224	2.7 to 7.0	20	2.45	$615 \mathrm{kHz}, 1.25 \mathrm{MHz}$	\checkmark	-	-40 to 125	MSOP-8
LM3310	2.5 to 7.0	20	2.6	$660 \mathrm{kHz}, 1.28 \mathrm{MHz}$	\checkmark	1 Op amp, 1 GPM	-40 to 125	LLP-24
LM3311	2.5 to 7.0	20	2.6, LDO $=350 \mathrm{~mA}$	$660 \mathrm{kHz}, 1.28 \mathrm{MHz}$	\checkmark	LDO, 1 Op amp, 1 GPM	-40 to 125	LLP-24

Battery Charging Solutions

| Part
 Number | Input
 Description | Funge (V) | Features |
| :--- | :--- | :---: | :--- | :--- | :---: | :---: |

Step-Down Switching Regulators for RF Power Amplifiers

Part Number	Description	V_{IN}		$\mathrm{V}_{\text {OUt }}$	$\begin{aligned} & \mathrm{I}_{\text {out }} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\text {sw }} \\ (\mathrm{kHz}) \end{gathered}$	Bypass Modes	SD	SS	$\underset{\mathbf{R}}{\text { Sync }}$	Eval Board	Temp Grade	Packaging
		Min	Max										
LM3200	Dynamically adjustable output voltages, $2.2 \mu \mathrm{H}$ inductor, low $\mathrm{V}_{\text {out }}$ ripple, low noise and excellent PSRR	2.7	5.5	$\begin{aligned} & \text { Adj (0.8 } \\ & \text { to } 3.6 \mathrm{~V}) \end{aligned}$	500	2000	Forced and automatic	\checkmark	-	\checkmark	\checkmark	$\begin{gathered} -25 \text { to } \\ 125 \end{gathered}$	micro SMD-10
LM3202	Miniature, adjustable, step-down DC-DC converter with bypass mode for RF power amplifiers	2.7	5.5	$\begin{aligned} & \text { Adj (1.3 } \\ & \text { to } 3.16) \end{aligned}$	650	2000	None	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & -30 \text { to } \\ & 125 \end{aligned}$	micro SMD-8
LM3203	Miniature, adjustable, step-down DC-DC converter with bypass mode for RF power amplifiers	2.7	5.5	$\begin{aligned} & \text { Adj (0.8 } \\ & \text { to } 3.6) \end{aligned}$	500	2000	Forced	\checkmark	$\begin{aligned} & 50 \text { us } \\ & \text { enable } \end{aligned}$	\checkmark	\checkmark	$\begin{gathered} -30 \text { to } \\ 125 \end{gathered}$	micro SMD-10
LM3204	Miniature, adjustable, step-down DC-DC converter with bypass mode for RF power amplifiers	2.7	5.5	$\begin{aligned} & \text { Adj (0.8 } \\ & \text { to } 3.6) \end{aligned}$	300/500	2000	Forced and automatic	\checkmark	$50 \mu \mathrm{~s}$ enable	\checkmark	\checkmark	$\begin{gathered} -30 \text { to } \\ 125 \end{gathered}$	micro SMD-10
LM3207	650 mA Miniature, Adjustable, Step-Down DC-DC Converter for RF Power Amplifiers with Integrated Vref LDO	2.7	5.5	$\begin{aligned} & \text { Adj } \begin{array}{c} (0.8 \\ \text { to } 3.6) \end{array} . \end{aligned}$	650	2000	-	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & -30 \text { to } \\ & 122 \end{aligned}$	micro SMD-9
LM3208	650 mA Miniature, Adjustable, Step-Down DC-DC Converter for RF Power Amplifiers with Rdson management	2.7	5.5	$\begin{gathered} \text { Adj }(0.8 \\ \text { to } 3.6) \end{gathered}$	650	2000	-	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & -30 \text { to } \\ & 125 \end{aligned}$	micro SMD-8
LM3280	Adjustable Step-Down DC-DC Converter and 3 LDOs for RF Power Management	2.7	5.5	$\begin{gathered} \text { Adj }(0.8 \\ \text { to } 3.6) \end{gathered}$	300 in PWM mode, 500 in bypass mode	2000	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & -30 \text { to } \\ & 125 \end{aligned}$	micro SMD-16

Product Highlights

LM3207/8

650 mA Miniature, Adjustable, Step-Down DC-DC Converter for RF Power Amplifiers

Features

- 2 MHz (typ.) PWM Switching Frequency
- Operates from a single Li-lon cell (2.7V to 5.5 V)
- Variable Output Voltage (0.8V to 3.6 V)
- 650 mA Maximum load capability
- Fast Output Voltage Transient (0.8V to 3.4 V in $25 \mu \mathrm{~s}$ typ.) (LM3208)
- High Efficiency (95% Typ at $3.9 \mathrm{~V}_{\mathbb{N}}, 3.4 \mathrm{~V}_{\text {out }}$ at 400 mA) from internal synchronous rectification (LM3207)
- High Efficiency (95\% Typ at $3.9 \mathrm{~V}_{\mathbf{I N}} 3.4 \mathrm{~V}_{\text {out }}$ at 400 mA) (LM3208)
- Integrated 2.875V Vref LDO (LM3207)
- Regulated LDO Output up to 10 mA max (LM3207)
- Fast 3 uS Vref LDO On/Off Time (LM3207)
- 9-pin micro SMD Package (LM3207)
- 8-pin micro SMD Package (LM3208)
- Current Overload Protection
- Thermal Overload Protection

Applications

- Cellular Phones
- Hand-Held Radios
- RF PC Cards
- Battery Powered RF Devices

LM3280
Adjustable Step-Down DC-DC Converter and 3 LDOs for RF Power Management

Features

- 2 MHz (typ.) PWM Switching Frequency
- Operates from a single Li-lon cell (2.7V to 5.5 V)
- Adjustable Output Voltage (0.8 V to 3.6 V) DC-DC
- High-efficiency synchronous buck converter
- 300 mA Maximum load capability (PWM mode)
- 500 mA Maximum load capability (Bypass mode)
- PWM, Forced and Automatic Bypass Mode
- 3 Low-dropout and fast transient response LDOs
- 16-pin micro SMD Package
- Current Overload Protection
- Thermal Overload Protection

Applications

- Cellular Phones
- Hand-Held Radios
- Battery Powered RF Devices

LM3404/04HV

1.0A Constant Current Buck Regulator for Driving High Power LEDs

Features

- Integrated 1.0A MOSFET
- $V_{\text {IN }}$ Range 6V to 42V (LM3404)
- $\mathrm{V}_{\text {IN }}$ Range 6V to 75V (LM3404HV)
- 1.2A Output Current Over Temperature
- Cycle-by-Cycle Current Limit
- No Control Loop Compensation Required
- Separate PWM Dimming and Low Power Shutdown
- Supports All-ceramic Output Capacitors and Capacitor-less Outputs
- Thermal Shutdown Protection
- S0-8 Package

Applications

- LED Driver
- Constant Current Source
- Automotive Lighting
- General Illumination
- Industrial Lighting

LM3676

2 MHz, 600 mA Step-Down DC-DC Converter with Mode Control

Features

- $16 \mu \mathrm{~A}$ typical quiescent current
- 600 mA maximum load capability
- 2 MHz PWM fixed switching frequency (typ)
- Automatic PFM/PWM mode switching or Forced PWM mode
- Available in fixed output voltages and adjustable version
- 8-Lead non-pullback LLP package
- Internal synchronous rectification for high efficiency
- Internal soft start
- $0.01 \mu \mathrm{~A}$ typical shutdown current
- Operates from a single Li-lon cell battery
- Only three tiny surface-mount external components required (one inductor, two ceramic capacitors)
- Current overload and Thermal shutdown protection

Applications

- Mobile Phones
- Portable Instruments
- PDAs
- Digital Still Cameras
- MP3 Players
- W-LAN

Application Example: an Outdoor General Lighting Application

Product Highlights

LM3743

N-Channel FET Synchronous Buck Controller for Low Output Voltages

Features

- Input Voltage from 3.0V to 5.5 V
- Output Voltage Adjustable Down to 0.8 V
- Reference Accuracy: $\pm 1.75 \%$, Over Full Temperature and Input Voltage Range

- Low-side Sensing Programmable Current Limit
- Fixed High-side Sensing for Supplemental Short-circuit Protection
- Undervoltage Protection
- Hiccup Mode Protection Eliminates Thermal Runaway During Fault Conditions
- Externally Programmable Soft-start with Tracking Capability
- Switching Frequency Options of 1 MHz or 300 kHz
- Pre-bias Start-up Capability
- MSOP-10 Package

Applications

- ASIC/FPGA/DSP Core Power
- Broadband Communications
- Multi-media Set Top Boxes
- Networking Equipment
- Printers/Scanners
- Servers
- Low Voltage Distributed Power

LM5022

60V Low Side Controller for Boost and SEPIC

Features

- Internal 60V Startup Regulator
- 1A Peak MOSFET Gate Driver
- $\mathrm{V}_{\text {w }}$ Range 6 V to 60 V
- Duty Cycle Limit of 90%
- Programmable UVLO with Hysteresis
- Cycle-by-Cycle Current Limit
- External Synchronizable (AC-coupled)
- Single Resistor Oscillator Frequency Set
- Slope Compensation
- Adjustable Soft-start
- MSOP-10 Package

Applications

- Boost Converter
- SEPIC Converter

LM5576

75V, 3A Step-Down Switching Regulator

Features

- Integrated 75V, $170 \mathrm{~m} \Omega \mathrm{~N}$-channel MOSFET
- Ultra-wide Input Voltage Range from 6V to 75 V
- Internal Bias Regulator
- Adjustable Output Voltage from 1.225V
- 1.5\% Feedback Reference Accuracy
- Current Mode Control with Emulated Inductor Current Ramp
- Single Resistor Oscillator Frequency Setting
- Oscillator Synchronization Input
- Programmable Soft-start
- Shutdown/Standby Input
- Wide Bandwidth Error Amplifier
- Thermal Shutdown

Product Highlights

LP3906

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I^{2} C Compatible Interface

96\% Efficient LP3906 Provides Flexibility with Digital Programmability

Features

- Compatible with advanced applications processors and FPGAs
- 2 LDOs for powering Internal processor functions and I/Os
- High speed serial interface for independent control of device functions and settings
- Precision internal reference
- Thermal overload protection
- Current overload protection
- 24 -lead $5 \times 4 \times 0.8 \mathrm{~mm}$ LLP package
- Software Programmable Regulators

Applications

- FPGA, DSP Core Power
- Applications Processors
- Peripheral I/O Power

LP3910/13

Power Management IC for Hard Drive Based Portable Media Players

Features

- 2 low-dropout regulators - LD01 is used for general purpose applications, LDO2 is used for low-noise analog applications. Both LDOs have programmable output voltages
- Green and Red LED charger status drivers
- 4-channel 8-bit dual slope a/d converter
- Wide load range Buck-Boost DC/DC converter (LP3910)
- 2 High-efficiency DVS Buck converters (LP3910)
- 3 High-efficiency DVS Buck converters (LP3913)
- $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$ compatible interface
- Linear constant-current/constant-voltage charger for single cell lithium-ion batteries
- USB and Adapter charging
- System power supply management
- $6 \times 6 \times 0.8 \mathrm{~mm} 48$ LLP package
- Voltage and thermal supervisory circuits
- Continuous battery voltage monitoring
- Interrupt Request output with 8 sources
- LP3913 is pin for pin and software compatible with the LP3910 Hard Drive based PMIC

Applications

- Portable Gaming Devices
- Portable Navigation Systems
- Hard Drive-based MP3 Players (LP3910)
- Flash-based Portable Media Players (LP3913)

LP3958

Lighting Management Unit with High Voltage Boost Converter

Features

- High efficiency boost converter with programmable output voltage
- 2 individual drivers for serial display backlight LEDs
- 3 drivers for serial keypad LEDs
- Automatic dimming controller
- Stand alone serial keypad LEDs controller
- 3 general purpose IO pins
- 25 -bump micro SMD Package: ($2.54 \times 2.54 \times 0.6 \mathrm{~mm}$)

Applications

- Cellular Phones and PDAs
- MP3 Players
- Digital Cameras

LP3971/72

Power Management Unit for Advanced Applications Processors

Features

- Compatible with advanced applications processors requiring DVM (Dynamic Voltage Management)
- Three buck regulators for powering high current processor functions or I/O's
- 6 LDO's for powering RTC, peripherals, and I/O's
- Backup battery charger with automatic switch for lithiummanganese coin cell batteries and Super capacitors
- ${ }^{22} \mathrm{C}$ compatible high speed serial interface
- Software control of regulator functions and settings
- Precision internal reference
- Thermal overload protection
- Current overload protection
- Tiny 40 -pin $5 \times 5 \mathrm{~mm}$ LLP package

Applications

- PDA Phones
- Smart Phones
- Personal Media Players
- Digital Cameras
- Application Processors

- Intel Xscale
- Freescale
- Samsung

Product Highlights

LP3991

300 mA Linear Voltage Regulator for Digital Applications

Features

- Operation from 1.65V to 3.6V Input
- 1% accuracy at room temperature
- Output Voltage from 1.2 V to 2.8 V
- 125 mV Dropout at 300 mA load
- $50 \mu \mathrm{~A}$ Quiescent Current at 1 mA Load
- Inrush Current controlled to 600 mA
- PSRR 65 dB at 1 kHz
- $100 \mu \mathrm{~s}$ Start-Up time for 1.5 V Vout
- Stable with Ceramic Capacitors as small as 0402
- Thermal-Overload and Short-Circuit Protection
- 4 pin micro SMD ($0.963 \times 1.446 \mathrm{~mm}$)

Applications

- Post DC/DC Regulator
- Battery Operated Devices
- Hand-Held Information Appliances

LP5526

Lighting Management Unit with High Voltage Boost Converter with up to 150 mA Serial FLASH LED Driver

Features

- High efficiency boost converter with programmable output voltage up to 20 V
- 2 individual drivers for serial display backlight LEDs
- Automatic dimming controller
- Stand alone RGB controller
- Dedicated flash function
- Safety function to avoid prolonged flash
- 3 general purpose 10 pins
- 25 -bump micro SMD Package: ($2.54 \times 2.54 \times 0.6 \mathrm{~mm}$)

Applications

- Cellular Phones and PDAs
- MP3 Players
- Digital Cameras

LP5527

Tiny LED Driver for Camera Flash and 4 LEDs with IIC Programmability, Connectivity Test and Audio Synchronization

Features

- High current boost DC-DC converter (up to 1 A output current)
- Programmable boost output voltage
- 400 mA flash LED constant current driver with low tolerance and a safety circuit
- Synchronization pin for the flash timing
- Two single-ended audio inputs with gain control
- Four constant current 15 mA LED drivers with 8 -bit programmable brightness control
- Audio synchronization feature
- $1^{2} \mathrm{C}$ compatible control interface
- Built-in LED connectivity test to maximize manufacturing yield
- Small micro SMD-30 package ($2.5 \times 3.0 \times 0.6 \mathrm{~mm}$)

Applications

- Camera FLASH
- Funlight and backlight driving in battery powered devices

LP5952

350 mA Dual Rail Linear Regulator

Features

- Excellent load transient response: $\pm 15 \mathrm{mV}$ typical
- Excellent line transient response: $\pm 1 \mathrm{mV}$ typical
- $0.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 4.5 \mathrm{~V}$
- $2.5 \mathrm{~V} \leq \mathrm{V}_{\text {BATT }} \leq 5.5 \mathrm{~V}$
- $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.0 \mathrm{~V}$
- For I Load $=350 \mathrm{~mA}$:
$V_{\text {BATT }} \geq \mathrm{V}_{\text {OUT(NOM) }}+1.5 \mathrm{~V}$ or 2.5 V whichever is higher
- For $\mathrm{I}_{\text {LoAd }}=150 \mathrm{~mA}$:
$V_{\text {bat }} \geq \mathrm{V}_{\text {оut(nom) }}+1.3 \mathrm{~V}$ or 2.5 V whichever is higher
- $50 \mu \mathrm{~A}$ typical quiescent current from $\mathrm{V}_{\text {BATt }}$

FIGURE 1: Typical Application Circuit with DC-DC Converter as Pre-Regulator for $\mathrm{V}_{\text {IN }}$

- $10 \mu \mathrm{~A}$ typical quiescent current from $\mathrm{V}_{\mathbb{N}}$
- $0.1 \mu \mathrm{~A}$ typical quiescent current in shutdown
- Guaranteed 350 mA output current
- Noise voltage $=100 \mu \mathrm{~V}_{\text {RMS }}$ typical
- Operates from a single Li-lon cell or 3 cell NiMH/NiCd batteries
- Only one or two tiny surface-mount external components required depending on application
- Small 5 bump micro SMD package, lead free
- Thermal-overload and short-circuit protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range

Applications

- Mobile Phones
- Hand-Held Radios
- Personal Digital Assistants
- Palm-Top PCs
- Portable Instruments
- Battery Powered Devices

Optimizing RF Power Amplifier System Efficiency Using DC-DC Converters

- By Mathew Jacob, Applications Engineering Manager

Old Method

Standard PA

- Output power controlled by RF $_{\text {IN }}$
- $V_{\text {Cc }}$ directly connected to battery

New Method
PA with Supply Regulator

- Output power controlled by RF $_{\text {IN }}$
- $V_{\text {cc }}$ connected to DC-DC converter
- $V_{\text {Out }}$ is optimized for given $P_{\text {out }}$

RF power amplifiers used in CDMA/WCDMA cellular standards have been traditionally powered directly from the battery. This makes system implementation easy but the requirement for linear power amplifiers in such standards have intrinsic inefficiencies throughout the transmit power spectrum.

Cellular standards have been evolving with transmission speeds that started from 14.4 kbps in CDMA-1 to 2 Mbps in CDMA2000/WCDMA. Apart from this, cellular providers have increased the services bundled with the 3G phones in order to increase the average revenue per subscriber. At the same time, the talk time and battery life is expected to be improved with the same or slightly higher capacity batteries. This makes system design challenging. System designers have to be very cautious and perform a power survey of each and every component on the phone board. The RF Power Amplifier (RF PA) powered directly from the battery is a major concern from the power budget perspective.

The modulation schemes used in CDMA and WCDMA result in an amplitude-modulated signal that exhibits a non-constant amplitude envelope. In order to preserve signal integrity and further spectral
re-growth, a linear power amplifier is necessary. However, power efficiency is traded off because power amplifiers operate efficiently when operated in gain compression. To meet the required linearity, the operating transmit power is backed off from the power amplifier's compression point that causes an overall reduction in efficiency. When the handset is operating in transmit mode, the RF power section consumes up to 65% of the overall power budget as a result of the PA's intrinsic inefficiencies.

For this reason, linear PAs are ideal candidates to be powered with a magnetic buck converter which will dramatically increase efficiency of the system.

Power-Added Efficiency (PAE) is a key performance metric of a power amplifier.

PAE (\%) $=\left(\mathrm{P}_{\text {out }}-\mathrm{P}_{\text {IN }}\right) / \mathrm{Pdc}$

The key in using a DC-DC converter (PA supply regulator) is to reduce the Pdc factor in the denominator. When the PA is connected directly to the battery, Pdc = Vbatt*|batt and, whenit is powered
by a PA supply regulator, $\mathrm{Pdc}=\mathrm{V}_{0}{ }^{*} \mathrm{lo}$. Now itcan be seen that for increasing the PAE we have to have a low Vo and lo compared to Vbatt and Ibatt. This is achieved by lowering the output voltage of the PA supply regulator at lower transmitted RF power levels. This in turn reduces lo (current drawn by the PA) and results in a much lower input current drawn from the battery due to the inherent high efficiency of the DC-DC converter.

Figure 2. PA transmits low power levels for a high percentage of time in a typical cellular phone which reinforces the savings possible with a PA supply regulator

It is important to consider the power probability profile (see Figure 2) for the modulation methods to really understand the impact of savings in powering a PA with a supply regulator. The profiles are different for urban and rural regions.

As shown in Figure 3, the output voltage of the DC-DC converter has to be varied as the transmitted power levels are changed to maintain the Adjacent Channel Power/leakage Ratio (ACPR/ACLR) specifications. The savings in battery current can be as high as 50 mA in the 0 dBm to 20 dBm power levels. Figure 2 shows that the PA is operating in this band of power levels for a majority of its time.

Figure 3. Savings in battery current when the DC-DC converter is used for powering the PA

So why do we have to change the voltage of the DC-DC converter as the transmitted power level is increased? The answer is that this change is needed to maintain the ACPR ratios. ACPR/ACLR is used to characterize the distortion of power amplifiers and other subsystems for their tendency to cause interference with neighboring radio channels or systems.

It is specified as the ratio of the Power-Spectral Density (PSD) of the main channel to the PSD measured at several offset frequencies.

In Figure 5 it can be seen that if the supply voltage to the PA is not increased as Pout is increased, the ACLR specifications cannot be met. The system-level specification (3GPP) for WCDMA is -34 dBc and, in order to preserve sufficient margin caused by temperature and device variances, the ACLR value of -38 dBc is used.

Key Requirements of Buck Converters for Powering RF Power Amplifiers

Buck converters that power RF PAs have specialized functions and are quite different from buck converters that power digital core processors. These differences arise in operating characteristics and parameters such as switching FET ON-resistances, current limit, transient response, modes of operation such as PFM/PWM, startup time, quiescent current, and dropout behavior. The following examples illustrate these differences:

- High efficiency over wide output voltage and load range

Example: LM 3205 has efficiency of 96% at $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}, \mathrm{~V} 0=3.4 \mathrm{~V}$, $10=400 \mathrm{~mA}$ (high RF power) and 87% at $\mathrm{V}_{\mathbb{N}}=3.9 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$, $10=100 \mathrm{~mA}$ (low RF power).

Designer's Corner

Technology @ A Glance

Figure 5. How ACLR is affected with respect to supply voltage to the PA and $\mathbf{P}_{\text {our }}$

- Dynamic output voltage adjustment

Example: In LM3205 the output voltage can be adjusted between 0.8 V to 3.6 V using a Vcon pin. The voltage gain from Vcon to V o is 2.5.

- $30 \mu \mathrm{~s}$ Output slew rate and settling ($50 \mu \mathrm{~s}$ window in beginning of every 667μ s transmit cycle in which the Vcon adjustments must be completed) In WCDMA architecture, transmit power is adjusted by $\pm 1 \mathrm{~dB}$ in every $667 \mu \mathrm{~s}$ as requested by the basestation.
- Low dropout and low ripple near 100% duty cycle

Example: Low R Roson PFET $140 \mathrm{~m} \Omega$ (LM3205) or BypassFET
(LM3204) gives low dropout voltage and pulse-skipping schemes gives low ripple near 100\% duty cycle.

- Low duty cycle operation for low output voltages

Example: Minimum on time, 50 ns facilitates 10% duty cycle operation for output voltages of 0.8 V and lower depending on the $V_{\text {IN }}$ range.

- High switching frequency

Example: 2 MHz switching frequency helps the use of smaller sized external components and meet spectral emission requirements.

- Fast turn on time to meet time mask for transmit ON/OFF

Example: LM3203 has turn-on time of $50 \mu \mathrm{~s}$ for $\mathrm{V} 0=3.4 \mathrm{~V}$ from $\mathrm{EN}=$ low to high.

100\% Duty Cycle vs Bypass Mode

When the buck converter is operating at 100% duty cycle the dropout voltage is

Dropout Voltage $=\left(R_{\text {ov, }, ~}+R_{L}\right) \cdot I 0$,
where $R_{\text {on, }}$ is the $R_{\text {oson }}$ of the PFET and R_{L} is the inductor DCR. For a PA supply regulator that has a bypass FET the dropout voltage in bypass mode is,

Dropout Voltage $=\left(\mathrm{R}_{\text {ом, вуч }}\right) \cdot \mathrm{lo}$,
where $\mathrm{R}_{\text {on,Bpp }}$ is the $\mathrm{R}_{\text {oson }}$ of the bypass FET. The bypass FET can be turned on automatically or manually. As shown, the key advantage in having a bypass mode is lower dropout voltages; which translates to longer talk times and lowering the low battery shutdown point for the phone. The alternative is to use low DCR inductors and a low $\mathrm{R}_{\text {osow }}$ PFET.

Example Application Circuits

In this example, the baseband will have a lookup table scheme where it sets the output voltage depending on the output power levels required. In this case, the power detector is part of a closed loop and sets the output voltage.

Conclusion

DC-DC converters enhance the RF PA system efficiency in portable communication devices and support the addition of more features or functions by improving battery life.

Figure 6. Baseband Controls Vo Directly

Figure 7. Using a Power Detector to Set Vo

Power Design Tools

WEBENCH ${ }^{\circledR}$ Online Design Tools

Our design and prototyping environment simplifies and expedites the entire design process.

1. Choose a part
2. Create a design
3. Analyze a power supply design

- Perform electrical simulation
- Simulate thermal behavior

4. Build it

- Receive your custom prototype kit very soon
webench.national.com

Application Solutions

Access the best solutions for end-user applications in DSL, automotive, communications, displays, industrial,medical systems, consumer electronics, and power and wireless systems.
solutions.national.com

For our complete power product portfolio, visit us at
power.national.com

National Semiconductor

Asia Pacific Authorized Distributors

AUSTRALIA
Arrow Electronics Australia wnw.arrowasia.com T: 08-8333-2122 F: 08-8333-2322 ian.wallis@arrowasia.com

Brisbane

T: 07-3623-9000 F: 07-3216-5750 russell.oakes@arrowasia.com

Melbourne (Head Office) T: 03-9574-9300 F: 03-9574-977

 ted.clinton@arrowasia.comPerth
T: 08-9472-3855 F: 08-9470-3273 troy.collins@arrowasia.com

Sydney

NSW Office and CMS Division T: 02-9868-9900 F: 02-9868-9901 arrowanzsales@arrowasia.com

Avnet Electronics Marketing www.avnet.com
T: 08-8363-2255 F: 08-8363-631 ron.roberts@avnet.com

T: 07-3269-3166 F: 07-3269-3177 ron.roberts@avnet.com

Perth
T: 08-9301-1500 F: 08-9301-1518 ron.roberts@avnet.com

Sydney

T: 02-9878-1299 F: 02-9878-1266 ron.roberts@avnet.com

Melbourne

T: 03-9760-4250 F: 03-9760-425 on.roberts@avnet.com

Future Electronics

ww.future.c
delaide
08-8280-7440 F: 08-8280-740 matt. wild@futureelectronics.com

Brisbane
07-3832-8044 F: 07-3832-8011 matt.wild@utureelectronics.com
:03-9558-6312 F: 03-9558-6317 matt.wild@futureelectronics.com
f:61-2-8824-4722 F: 61-2-8833-2070 matt.wild@futureelectronics.com

NDIA
Arrow Electronics India
Private Limited
unw.arrowasia.com
Bangalore
B: 080-5135-3800 F: 080-5112-7784 muralidharan.g@arrowasia.com

Hyderabad
T. 040-5577-4146 F: 040-5577-4138

Future Electronics	Nanjing
www.future.ca	T: 025-8454-7458 F: 025-8440-9035 richard.zheng@arrowasia.com
Kuala Lumpur	
T: 03-7803-7133 F: 03-7806-3873	
yibien.tham@futureelectronics.com	Ningbo
	T: 0574-8764-1931 F: 0574-8764-1933
Penang	
T: 04-227-7213 F: 04-227-7263	Qingdao
tze-jin.ng@futureelectronics.com	T: 0532-8502-6916 F: 0532-8502-6646 irene.shan@arrowasia.com
NEW ZEALAND	
Arrow Components (NZ) Limited	Shanghai
www.arrowasia.com	T: 021-2893-2000 F: 021-2893-2333
Auckland	michael.zhang@arrowasia.com
T: 09-622-0101 F: 09-272-2310	
martin.tompkins@arrowasia.com	Shenyang
	T: 024-2396-3399 F: 024-2396-2299
Christchurch (Head Office)	robert.wang@arrowasia.com
T: $03-366-2000 \mathrm{~F}: 03-366-2111$	
gary.compbel\|@arrowasia.com	Shenzhen
	T: 0755-8359-2920
Wellington T: 04-570-2260 F: 04-566-2111 john.hardie@arrowasia.com	F: 0755-8359-2377
	mark.xu@arrowasia.com
	Suzhou
Avnet Electronics Marketing	T: 0512-761-1929 F: 0512-761-7651
	kelland.kuai@arrowasia.co
Auckland	
T: 09-914-7900 F: 09-914-7929	Tianjin
ron.robert@@avnet.com	T: 022-8319-1526 F: 022-8319-1525 ivan_2hao@arrowasia.com
Christchurch	
T: 03-962-0580 F: 03-962-0600	Wuhan
ron.roberts@avnet.com	T: 027-5980-5281 F: 027-5980-5283 tony.song@arrowasia.com
Future Electronics	
www.future.ca	Xiamen
T: 03-982-3256 F: 03-982-3258 peter.bee@futureelectronics.com	T: 0592-239-4567 F: 0592-239-4000
	Xian
PHILIPPINES	T: 029-8765-1125 F: 029-8765-1123
Arrow Electronics Asia (S)	jimmy.gao@arrowasia.com
Pte. Ltd.	
www.arrowasia.com	Zhuhai
T: 02-772-3053 F: 02-772-3054 mario.rivero@arrowasia.com	T: 0756-337-3352 F: 0756-337-3351
	Asian Information
Avnet Philippines Pty Ltd Inc. www.avnet.com T: 02-7060-931 F: 02-7060-930 rommel.delcruz@avnet.com	Technology Inc.
	www.aitinc.com.tw
	Beijing
	T: 010-6515-6205 F: 010-6515-5720 paul.zhang@aitgroup.com.cn
CiNERGi Technology \& Devices	
(PHILS), Inc	Hong Kong
www.avnet.com	T: 2402-9032 F: 2402-9805
T: 02-842-6567 F: 02-842-0185	amy.leung@aitgroup.com.cn
nsc.asia@avnet.com	
	Shanghai
Future Electronics	T: 021-5298-9845 F: 021-5298-9849
www.future.ca	kent.sun@aitgroup.com.cn
T: 02-850-2107 F: 02-842-1174	
ofelia. santos@futureelectronics.com	Shenzhen
	T: 0755-8831-3199 F: 0755-8831-2399
PRC/HONG KONG	may.he@aitgroup.com.cn
Arrow Asia Pacific Ltd.	
www.arrowasia.com	Suzhou
Hong Kong	T: 0512-6841-1476 F: 0512-6841-1477
T: 2484-2112 F: 2484-2122 eddy.li@arrowasia.com	jeff.zeng@aitgroup.com.cn
	Xiamen
Arrow Electronics China Ltd. www.arrowasia.com	T: 0592-3116-124 F: 0592-3116-127 may.he@aitgroup.com.cn
Beijing	
T: 010-8528-2030 F: 010-8525-2698donna.pan@arrowasia.com	Avnet Sunrise Ltd.
	www.sunrise.avnet.com
	Beijing
Chengdu T: 028-8620-3226 F: 028-8620-3223 weiping.liao@arrowasia.com	T: 010-8206-2488 F: 010-8206-2427
	avnetsunrise@avnet.com
	Changsha
Fuzhou T: 0591-8784-5282 F: 0591-8784-5280 miles.liu@arrowasia.com	T: 0731-441-1732 F: 0731-441-2732
	sandy.pang@avnet.com
	Chengdu
Guangzhou T: 020-3887-1735 F: 020-3887-1736	T: 028-8652-8191 F: 028-8652-8300 sandy.pang@avnet.com
Hangzhou T: 0571-8763-1324 F: 0571-8763-2452 fred.duan@arrowasia.com	Chongqing
	T: 023-6879-1501 F: 023-6879-1502 sandy.pang@avnet.com
	Dalian

Guangzhou
T: 020-2283-8300 F: 020-2283-8309

Fuzhou
T: 0591
S91-773-7851 F: 0591-773-7194
Hangzhou
T: 0571-8580-0906 F: 0571-8580-0919 sandy.pang@avnet.com
Hong Kong
T: 2176-5388 F: 2790-2182
carmen.liu@avnet.com
Nanjing
:025-8689-0220 F: 025-8689-0280 sandy.pang@avnet.com

Ningbo
:0574-8771-4702 F: 0574-8771-4712 sandy.pang@avnet.com
aingdao
:0532-8575-7675 F: 0532-8571-0557 sandy.pang@avnet.com
:021-5206-2288 F: 021-5206-2299 sandy.pang@avnet.com

Shenzhen
: 0755-8378-1886 F: 0755-8378-3656 nowfer.jiang@avnet.com

Suzhou
T: 0512-6522-2535 F: 0512-6522-2536
Tianjin 022 -2361-2796 F.022-2361-5217
sandy.pang@avnet.com
Wuhan
-027-8732-2548 F: 027-8732-2651 snowfer.jiang@avnet.com

Xiamen
I: 0592-516-3621 F: 0592-516-3620 sandy.pang@avnet.com Xian
ス: 029-8831-0052 F:029-8831-0390
sandy.pang@avnet.com
Zhengzhou
T: 0371-6677-0029 F: 0371-6677-0106 sandy.pang@avnet.com
Zhuhai
I: 0756-8125-011 F: 0756-8125-013
China Electronic Appliance
Shenzhen Co., Ltd.
mw.ceacsz.com.cn
Beijing
T: $010-68$
: 010-6827-4230 F: 010-6823-3875 joffice@ceacsz.com.cn

Chengdu
.028-8525-2279 F: 028-8525-2319 cdoffice@ceacsz.com.cn

Hong Kong
T: 2302-4018 F: 2375-8378
koffice@ceacsz.com.cn
: 021-6249-7036 F: 021-6249-6092
shoffice@ceacsz.com.cn
Shenzhen
T: 0755-8361-6195 F: 0755-8335-0876
szoffice@ceacsz.com.cn
Wuhan
T: 027-8769-0007 F:027-8769-0006
whoffice@ceacsz.com.cn
Xiamen
I: 0592-516-7066 F: 0592-516-7065
moffice@ceacsz.com.cn

Xian T: 029-8827-6283 F: 029-8827-6152 xaoffice@ceacsz.com.cn	RSL Electronics Co. Ltd.
	www.rsigroup.com.cn
	Hong Kong
	T: 2333-0099 F: 2773 -9900
Future Electronics	andyngan@rslgroup.com.hk
www.future.ca	
Beijing	Aeco Technology Co. Ltd.
T: 010-6418-2335 F: 010-6418-2290	www.aecotech.com.tw
jian.fang@futureelectronics.com	Beijing
	T: 010-6642-2960 F: 010-6642-2963
	johnson_huang@aecotech.com.cn
T: 028-8545-4789 F: 028-8543-2616 charles.qi@futureelectronics.com	
	Chengdu
	T: 028-8667-3414 F: 028-8667-3419
Guangzhou T: 020-8364-9939 F: 020-8364-9329 jim.cai@futureelectronics.com	johnson_huang@aecotech.com.cn
	Hong Kong
	T: 2304-4023 F: 2304-0065
Hong Kong	lilian_lai@aecotech.com.hk
T: 2420 -6238 F: 2423-0767	
jonathan@futureelectronics.com	Sha
	T: 021-6235-0331 F: 021-6235-0348
Nanjing	will iam_qu@aecotech.com.cn
T: 025-8471-0047 F:025-8471-7972	
kevin.xu@futureelectronics.com	Shenzhen
	T: 0755-2518-1524 F: 0755-2518-1517
Qingdao	joey_chen@aecotech.com.tw
T: 0532-502-6235 F: 0532-502-6015	
	T: 0512-6515-9771 F: 0512-6515-9488
Shanghai	cindy_j@aecotech.com.cn
T: :021-6341-0077 F: 021-6341-0170 charlie.zhu@utureelectronics.com	
	Xian
	T: 029-8831-1214 F: 029-8831-1215
Shenzhen T: 0755-8366-9286 F: 0755-8366-9280 jack.wan@futureelectronics.com	johnson_huang@aecotech.com.cn
	SINGAPORE
	Arrow Electronics (S) Pte. Ltd.
Tianjin	www.arrowasia.com
T: 022-5819-5650 F: 022-5819-5750 li-min.ma@futureelectronics.com	T: 6559-8388 F: 6559-8288
	rayson.ho@arrowasia.com
Xiamen T: 0592-239-8230 F: 0592-239-8236 hong-en.zhang@futureelectronics.com	Avnet Asia Pte. Ltd.
	www.avnet.com
	T: $6580-6000 \quad$ F: 6580-6200
Kei Kong Electronics Ltd.	
www.keikong.com	Future Electronics
Beijing ${ }^{\text {T }}$ / $010-8837-7016$ F. 010-6835-8255	www.future.ca
	T: 6479-1300 F: 6479-3151
kkbj@keikongbj.com	seong-huat.Ioke@tutureelectronics.com
Guangzhou	TAIWAN
T: 020-2222-1773 F: 020-2222-1783 yuliang@keikong.com	Arrow Electronics Taiwan Ltd. www.arrowasia.com
	T: 02-2698-2888 F: 02-2698-2900
Hong Kong	chris.lee@arrowasia.com
T: 2715-0738 F: 2715-1337	
gigi@keikong.com	Asian Information Technology Inc. www.aitinc.com.tw
Nanjing T: 025-8470-2292 F: 025-8471-8031 laura@keikongnj.com	T: 02-8797-6866 F: 02-8797-6877
	stephen.sun@aitinc.com.tw
	Avnet Asia Pte. Ltd.
Shanghai	www.avnet.com
T: 021-6354-1141 F: 021-6353-6038 bill.ye@kkongsh.com	T: 02-2655-8688 F: 02-2655-8666
	cy.ee@avnet.com
Shenzhen	Techmosa International Inc.
T: 0755-8328-1338 F: 0755-8328-1001 yen@keikong.com	www.techmosa.com.tw
	T: 02-8226-7698 F: 02-2225-8960
	tony_tung@techmosa.com.tw
Xiamen	
T: 0592-3806-901 F: 0592-3806-909	Aeco Technology Co. Ltd.
	www.aecotech.com.tw
RSL Microelectronics Co. Ltd.	T: 02-2555-9676 F: 02-2559-5939
www.rsigroup.com.cn	peter_chen@aecotech.com.tw
Beijing	
T: 010-6435-1203 F: 010-6435-8904	THAILAND
enquiry@rslgroup.com.hk	Arrow Electronics (Thailand) Ltd. www.arrowasia.com
Shanghai	T: 02-694-2332 F: 02-694-2331
T: 021-6440-0083 F: 021-6440-0084 wu.bing@rd.com.hk	colin.chin@arrowasia.com
	Avnet Technology (Thailand) Co. Ltd.
Shenzhen	www.avnet.com
T: 0755-8826-2633 F: 0755-8826-2655 candy@rdl.com.hk	T: 02-645-3678 F: 02-645-3681 natee.pinkaew@avnet.com
Xiamen	Future Electronics
T: 0592-296-1601 F: 0592-296-1605	www.future.ca
jiang.wei@rd.com.hk	T: 02-361-8400 F: 02-361-8433 nitipon.tingpalpong@futureelectronics.com

ormplete produc information and technical assistance, please visit our website at www.national.com or email:
ap.support@nsc.com

[^0]: ${ }^{1}$ Most of these regulators can be used in additional topologies, such as inverting, buck-boost, or zeta.
 ${ }^{2}$ Part can be shutdown if R_{ON} pin is pulled to ground.

[^1]: See page 5 for footnotes.

[^2]: See page 5 for footnotes.

[^3]: See page 5 for footnotes.

[^4]: Many of these controllers can be used to drive additional topologies, such as inverting buck-boost, zeta, or synchronous flyback.
 ${ }^{2}$ IC $\mathrm{V}_{\text {CC }}$ range $=$ application $\mathrm{V}_{\text {IN }}$ range unless otherwise noted.
 ${ }^{3}$ Achievable output current using these switching controllers depends on different factors, such as the external transistors (MOSFETs) used, airflow, package, etc. Typically, achievable output currents with good system efficiency can range from less than 1 A to the values shown under "I Iout" in the table above. These calculations are made using standard SMT and no airflow. Larger currents, many times
 150% to 200% of the table above "lour" values can be achieved if having air flow and/or other adequate heat dissipation techniques.
 Part can be shut down if FB pin is pulled above 1.3 V .
 5 Unique FB architecture composed of a voltage-follower amplifier and a comparator with both inverting and non-inverting inputs available to the user.

[^5]: ${ }^{6}$ IC $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V at 2 mA
 ${ }^{7}$ Application input voltage dependent upon the MOSFET driver ICs used. 4. $x x V$ to $5 . x x V$ is only the IC's $V_{c c}$ range.
 ${ }^{8}$ Through the external MOSFET drivers used.
 ${ }^{9}$ IC $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 6.0 V at 2 mA
 ${ }^{10}$ Dependant upon the external voltage reference utilized.
 ${ }^{11}$ Per channel. Twice this current may be obtained for dual controllers when the channels are paralleled.
 ${ }^{12} \mathrm{IC} \mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}$ to 30 V

[^6]: At 1 nF load.
 The ability to hold MOSFET gates off with a negative VGS voltage reduces losses when driving low threshold voltage MOSFETs.

[^7]: ${ }^{3}$ Compound output driver stages include MOS and bipolar transistors operating in parallel, leveraging the unique advantages of both, while reducing drive current variation with
 voltage and temperature
 ${ }^{4}$ At 2 nF load.

[^8]: ${ }^{6}$ Dropout voltage is given for full load. F denotes value for full temperature range, and T denotes typical value; otherwise values are maximum at $25^{\circ} \mathrm{C}$
 ${ }^{7}$ Denotes products with fixed output voltages that also provide adjustment control of the output voltage

[^9]: *Independent power and analog rails

[^10]: Through the EN pin
 2 Supports up to 3 white LEDs connected in series

