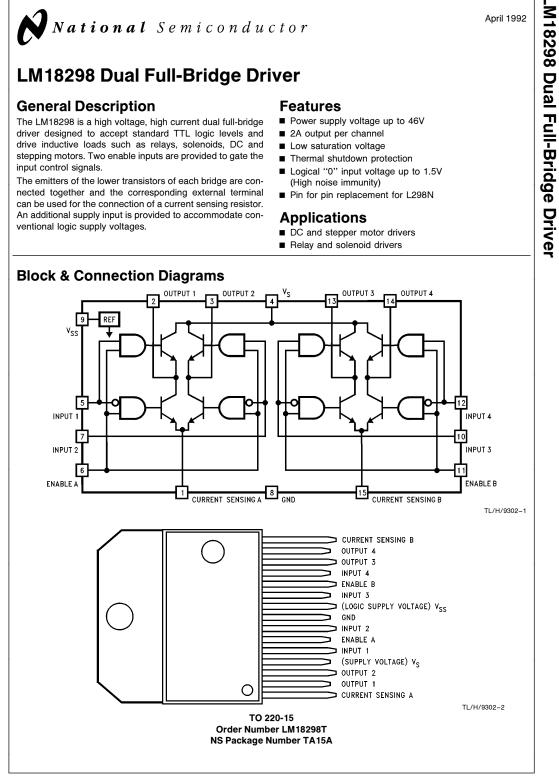


LM18298 Dual Full-Bridge Driver

General Description

The LM18298 is a high voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to gate the input control signals.


The emitters of the lower transistors of each bridge are connected together and the corresponding external terminal can be used for the connection of a current sensing resistor. An additional supply input is provided to accommodate conventional logic supply voltages.

Features

- Power supply voltage up to 46V
- 2A output per channel
- Low saturation voltage
- Thermal shutdown protection
- Logical "0" input voltage up to 1.5V (High noise immunity)
- Pin for pin replacement for L298N

Applications

- DC and stepper motor drivers
- Relay and solenoid drivers

© 1995 National Semiconductor Corporation TL/H/9302 RRD-B30M115/Printed in U. S. A.

April 1992

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Main Supply (Pin 4) 50V

Sense Voltage (Pins 1, 15)	-1 to +2.3V
Power Dissipation (Note 2)	25W
ESD Susceptibility (Note 3)	1 kV
Lead Temperature (Soldering, 10 secon	ds) 260°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Operating Ratings

Junction Temperature Range (T_J) -40° C to $+150^\circ$ C Main Supply (Pin 4)

46V

Electrical Characteristics

Non-Repetitive (t = 100 μ s) Repetitive (80% duty cycle, t_{ON} = 10 ms)

Logic Supply (Pin 9)

DC Operation

(Pins 5, 6, 7, 10, 11, 12)

Peak Output Current (Per Channel)

Logic Inputs

 V_S = 42V, $V_{SS}{=}$ 5V, I_O = 0A, T_J = 25°C, L = 0V, H = 5V, unless otherwise specified

7V

ЗA

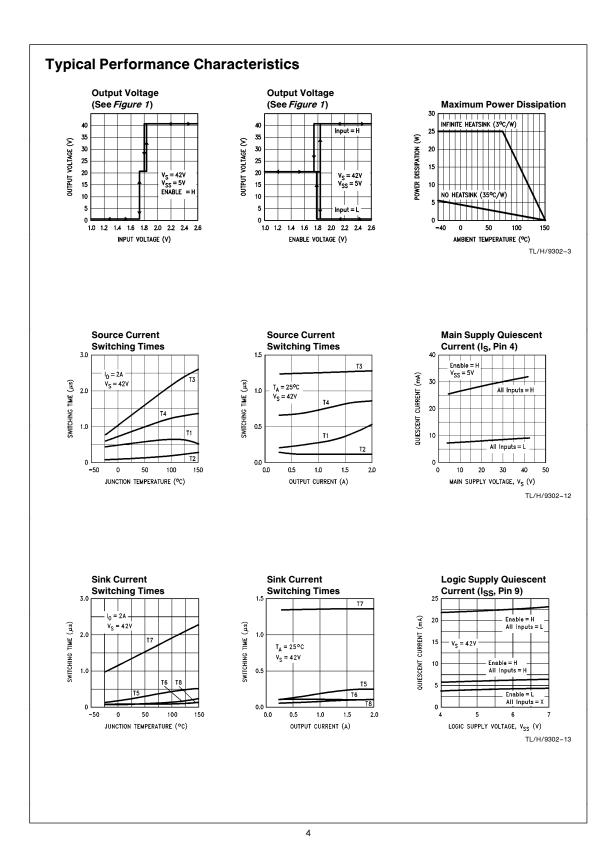
2A

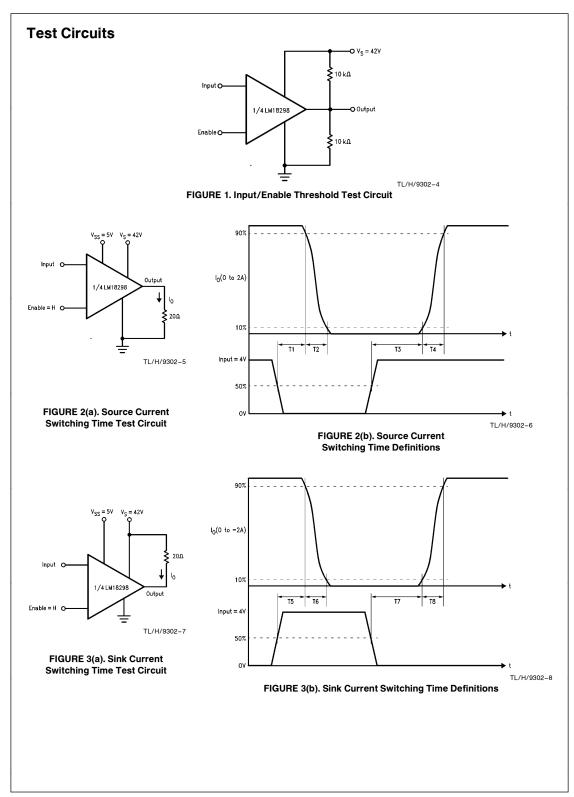
2.5A

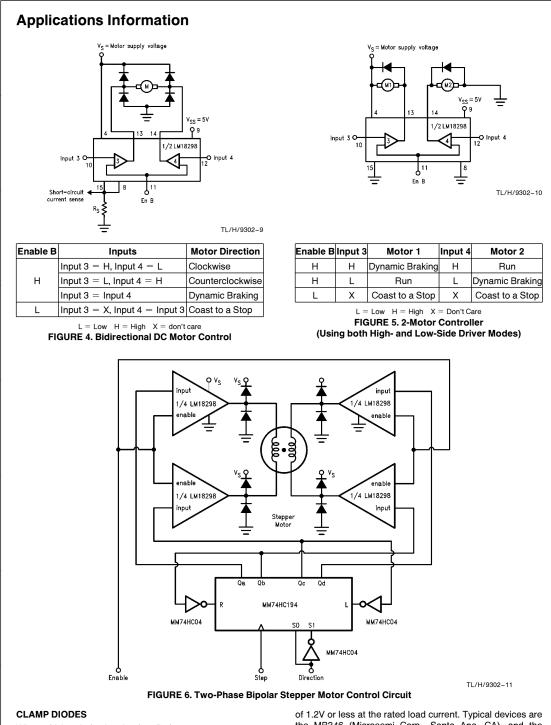
-0.3 to 7V

Symbol	Parameter	Conditions	Typical (Note 4)	Limit (Note 5)	Units (Limits)
V _S	Main Supply Voltage (Pin 4)			$V_{SS} + 2.5$	V (min)
				46	V (max)
V _{SS}	Logic Supply Voltage (Pin 9)			4.5	V (min)
				7	V (max)
IS	Main Supply Quiescent Current (Pin 4)	Enable = H, Input = L	9	22	mA (max)
		Enable = H, Input = H	32	70	
		Enable = L, Input = X		4	
I _{SS}	Logic Supply Quiescent Current (Pin 9)	Enable = H, Input = L	22	36	
		Enable = H, Input = H	6	12	mA (max)
		Enable = L, Input = X		6	
V _{IL}	Low Level Input Voltage (Pins 5, 7, 10, 12)			-0.3	V (min)
				1.5	V (max)
V _{IH}	High Level Input Voltage (Pins 5, 7, 10, 12)			2.3	V (min)
				V _{SS}	V (max)
IIL	Low Level Input Current (Pins 5, 7, 10, 12)	Input = L		-10	μA (max
IIH	High Level Input Current (Pins 5, 7, 10, 12)	Input = H	30	100	μA (max
V _{EN L}	Low Level Enable Voltage (Pins 6, 11)			-0.3	V (min)
				1.5	V (max)
V _{EN H}	High Level Enable Voltage (Pins 6, 11)			2.3	V (min)
				V _{SS}	V (max)
I _{EN L}	Low Level Enable Input Current (Pins 6, 11)	Enable = L		-10	μA (max
I _{EN H}	High Level Enable Input Current (Pins 6, 11)	Enable = H	30	100	μA (max

Symbol	Parameter	Conditions	Typical (Note 4)	Limit (Note 5)	Units (Limits)
V _{CE sat (H)}	Source Saturation Voltage (Pins 2, 3, 13, 14)	I _O = 1A	1.35	1.7	- V (max)
		$I_0 = 2A$	2.0	2.7	
V _{CE sat (L)}	Sink Saturation Voltage (Pins 2, 3, 13, 14)	$I_0 = 1A$	1.2	1.6	V (max)
		$I_{O} = 2A$	1.7	2.3	
V _{CE sat}	Total Drop V _{CE sat (H)} + V _{CE sat (L)}	$I_0 = 1A$		3.2	V (max)
		$I_{O} = 2A$		4.9	
V _{sense}	Sensing Voltage (Pins 1, 15)	$t \le 50 \ \mu s$		-1	V (min)
		Continuous		-0.5	• ()
		Continuous		2	V (max)
T ₁	Source Current Turn-Off Delay	0.5 Input to 0.9 I _O (<i>Figure 2</i>)	0.5		μs
T ₂	Source Current Fall Time	0.9 I _O to 0.1 I _O (<i>Figure 2</i>)	0.15		μs
T ₃	Source Current Turn-On Delay	0.5 Input to 0.1 I _O (Figure 2)	1.3		μs
T ₄	Source Current Rise Time	0.1 I _O to 0.9 I _O (<i>Figure 2</i>)	0.85		μs
T ₅	Sink Current Turn-Off Delay	0.5 Input to 0.9 I _O (Figure 3)	0.25		μs
Т ₆	Sink Current Fall Time	0.9 I _O to 0.1 I _O (<i>Figure 3</i>)	0.1		μs
T ₇	Sink Current Turn-On Delay	0.5 Input to 0.1 I _O (Figure 3)	1.3		μs
Т ₈	Sink Current Rise Time	0.1 I _O to 0.9 I _O (<i>Figure 3</i>)	0.1		μs
f _C	Commutation Frequency	$I_{O} = 2A$	25		kHz

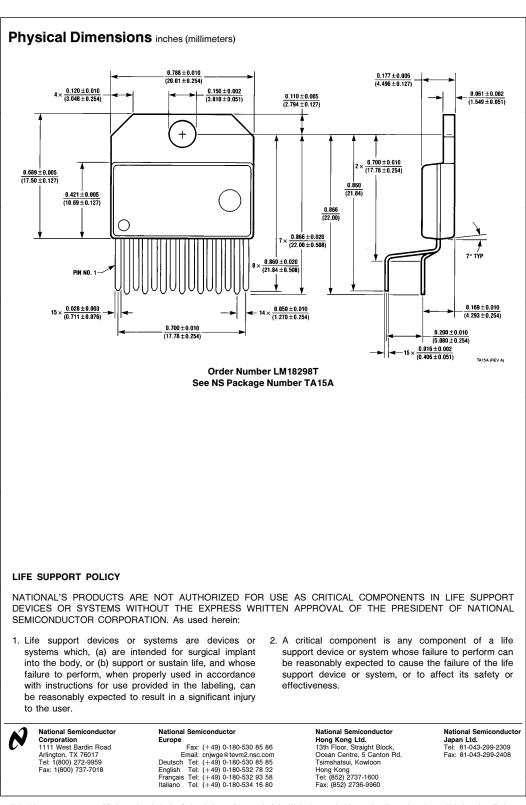

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified Operating Ratings.


Note 2: The maximum power dissipation must be derated at elevated temperatures and is a function of T_{J} max. θ_{JC_i} and T_C . The maximum allowable power dissipation at any temperature is P_{D} max = $(T_{J}$ max $- T_C)/\theta_{JC}$ or the number given in the **Absolute Maximum Ratings**, whichever is lower. The typical junction-to-case thermal resistance (θ_{JC}) of the LM18298 is 3°C/W.


Note 3: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Note 4: Typicals are at 25°C and represent the most likely parametric norm.

Note 5: Limits are guaranteed and 100% tested.



When driving inductive loads, diodes are necessary to clamp spikes at the LM18298 outputs. Clamp diodes must have a recovery time of 200 ns or better and a forward drop of 1.2V or less at the rated load current. Typical devices are the MB346 (Microsemi Corp., Santa Ana, CA), and the V331X (Varo Semiconductor Inc., Garland, TX).

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.