

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Main Supply (Pin 4)
50 V
Logic Supply (Pin 9)
Logic Inputs
(Pins 5, 6, 7, 10, 11, 12)

$$
-0.3 \text { to } 7 \mathrm{~V}
$$

Peak Output Current (Per Channel)
Non-Repetitive ($\mathrm{t}=100 \mu \mathrm{~s}$)
Repetitive $(80 \%$ duty cycle, $\mathrm{t} \mathbf{0 N}=10 \mathrm{~ms}) \quad 2.5 \mathrm{~A}$
DC Operation
2.5 A
2 A

Sense Voltage (Pins 1, 15)	-1 to +2.3 V
Power Dissipation (Note 2)	25 W
ESD Susceptibility (Note 3)	1 kV
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ratings	
Junction Temperature Range (TJ)	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Main Supply (Pin 4)	46 V

Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0 \mathrm{~V}, \mathrm{H}=5 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	Typical (Note 4)	Limit (Note 5)	Units (Limits)
$\mathrm{V}_{\text {S }}$	Main Supply Voltage (Pin 4)			$\mathrm{V}_{\text {SS }}+2.5$	V (min)
				46	V (max)
$\mathrm{V}_{\text {SS }}$	Logic Supply Voltage (Pin 9)			4.5	V (min)
				7	V (max)
Is	Main Supply Quiescent Current (Pin 4)	Enable $=\mathrm{H}$, Input $=\mathrm{L}$	9	22	mA (max)
		Enable $=\mathrm{H}$, Input $=\mathrm{H}$	32	70	
		Enable $=\mathrm{L}$, Input $=\mathrm{X}$		4	
Iss	Logic Supply Quiescent Current (Pin 9)	Enable $=\mathrm{H}$, Input $=\mathrm{L}$	22	36	mA (max)
		Enable $=\mathrm{H}$, Input $=\mathrm{H}$	6	12	
		Enable $=\mathrm{L}$, Input $=\mathrm{X}$		6	
V_{IL}	Low Level Input Voltage (Pins 5, 7, 10, 12)			-0.3	V (min)
				1.5	V (max)
V_{IH}	High Level Input Voltage (Pins 5, 7, 10, 12)			2.3	V (min)
				$\mathrm{V}_{S S}$	V (max)
IIL	Low Level Input Current (Pins 5, 7, 10, 12)	Input $=$ L		-10	$\mu \mathrm{A}$ (max)
$\mathrm{IIH}^{\text {H }}$	High Level Input Current (Pins 5, 7, 10, 12)	Input $=\mathrm{H}$	30	100	$\mu \mathrm{A}$ (max)
$\mathrm{V}_{\text {EN L }}$	Low Level Enable Voltage (Pins 6, 11)			-0.3	$V(\min)$
				1.5	V (max)
VENH	High Level Enable Voltage (Pins 6, 11)			2.3	V (min)
				$\mathrm{V}_{\text {SS }}$	V (max)
IENL	Low Level Enable Input Current (Pins 6, 11)	Enable $=$ L		-10	$\mu \mathrm{A}$ (max)
IENH	High Level Enable Input Current (Pins 6, 11)	Enable $=\mathrm{H}$	30	100	$\mu \mathrm{A}$ (max)

Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{S}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Typical (Note 4)	Limit (Note 5)	Units (Limits)
$\mathrm{V}_{\text {CE sat (}}(\mathrm{H})$	Source Saturation Voltage (Pins 2, 3, 13, 14)	$\mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$	1.35	1.7	$V(\max)$
		$\mathrm{I}_{0}=2 \mathrm{~A}$	2.0	2.7	
$\mathrm{V}_{\text {CE sat (}}$ ()	Sink Saturation Voltage (Pins 2, 3, 13, 14)	$\mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$	1.2	1.6	V (max)
		$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}$	1.7	2.3	
$\mathrm{V}_{\text {CE sat }}$	Total Drop$V_{\text {CE sat }(H)}+V_{\text {CE sat }}(\mathrm{L})$	$\mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$		3.2	V (max)
		$\mathrm{l}_{\mathrm{O}}=2 \mathrm{~A}$		4.9	
$\mathrm{V}_{\text {sense }}$	Sensing Voltage (Pins 1, 15)	$\mathrm{t} \leq 50 \mu \mathrm{~s}$		-1	$V(\min)$
		Continuous		-0.5	
		Continuous		2	V (max)
T_{1}	Source Current Turn-Off Delay	0.5 Input to $0.9 \mathrm{I}_{0}$ (Figure 2)	0.5		$\mu \mathrm{s}$
T_{2}	Source Current Fall Time	$0.9 \mathrm{l} \mathrm{I}^{\text {to }} 0.1 \mathrm{lo}$ (Figure 2)	0.15		$\mu \mathrm{s}$
T_{3}	Source Current Turn-On Delay	0.5 Input to 0.1 lo (Figure 2)	1.3		$\mu \mathrm{s}$
T_{4}	Source Current Rise Time	$0.1 \mathrm{I}_{\mathrm{O}}$ to 0.9 l (${ }^{\text {(Figure 2) }}$	0.85		$\mu \mathrm{S}$
T_{5}	Sink Current Turn-Off Delay	0.5 Input to $0.9 \mathrm{I}_{\mathrm{O}}$ (Figure 3)	0.25		$\mu \mathrm{s}$
T_{6}	Sink Current Fall Time	0.9 lo to 0.1 lo (Figure 3)	0.1		$\mu \mathrm{s}$
T_{7}	Sink Current Turn-On Delay	0.5 Input to 0.1 lo (Figure 3)	1.3		$\mu \mathrm{s}$
T_{8}	Sink Current Rise Time	$0.1 \mathrm{l} \mathrm{O}^{\text {to }} 0.9 \mathrm{l}$ O (Figure 3)	0.1		$\mu \mathrm{s}$
f_{C}	Commutation Frequency	$\mathrm{l}_{0}=2 \mathrm{~A}$	25		kHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified Operating Ratings.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is a function of $T_{J} \max , \theta_{\mathrm{JC}}$, and T_{C}. The maximum allowable power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}} \max =\left(\mathrm{T}_{\mathrm{J} \max }-\mathrm{T}_{\mathrm{C}}\right) / \theta_{\mathrm{JC}}$ or the number given in the Absolute Maximum Ratings, whichever is lower. The typical junction-tocase thermal resistance (θ_{JC}) of the LM18298 is $3^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 4: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 5: Limits are guaranteed and 100\% tested.

Typical Performance Characteristics

TL/H/9302-13

Test Circuits

FIGURE 1. Input/Enable Threshold Test Circuit

FIGURE 2(a). Source Current Switching Time Test Circuit

FIGURE 3(a). Sink Current Switching Time Test Circuit

FIGURE 3(b). Sink Current Switching Time Definitions

Applications Information

TL/H/9302-10

Enable B	Inputs	Motor Direction
H	Input 3 $\mathrm{H}, \mathrm{Input} 4=\mathrm{L}$	Clockwise
	Input 3 $=\mathrm{L}$, Input 4 $=\mathrm{H}$	Counterclockwise
	Input 3 $=$ Input 4	Dynamic Braking
L	Input 3 $=\mathrm{X}$, Input 4 $=$ Input 3	Coast to a Stop

$L=$ Low $\quad H=$ High $\quad X=$ don't care
FIGURE 4. Bidirectional DC Motor Control

Enable B	Input 3	Motor 1	Input 4	Motor 2
H	H	Dynamic Braking	H	Run
H	L	Run	L	Dynamic Braking
L	X	Coast to a Stop	X	Coast to a Stop

L = Low $H=$ High $X=$ Don't Care FIGURE 5. 2-Motor Controller
(Using both High- and Low-Side Driver Modes)

FIGURE 6. Two-Phase Bipolar Stepper Motor Control Circuit

CLAMP DIODES

When driving inductive loads, diodes are necessary to clamp spikes at the LM18298 outputs. Clamp diodes must have a recovery time of 200 ns or better and a forward drop
of 1.2 V or less at the rated load current. Typical devices are the MB346 (Microsemi Corp., Santa Ana, CA), and the V331X (Varo Semiconductor Inc., Garland, TX).

LM18298 Dual Full-Bridge Driver

Physical Dimensions inches (millimeters)

Order Number LM18298T See NS Package Number TA15A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

