

STPS80L60CY

POWER SCHOTTKY RECTIFIER

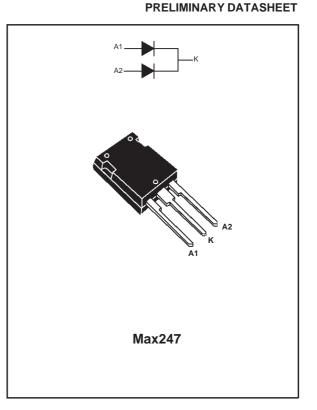
MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	2 x 40 A
V _{RRM}	60 V
Tj (max)	150 °C
V _F (max)	0.56 V

FEATURES AND BENEFITS

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW FORWARD VOLTAGE DROP
- LOW THERMAL RESISTANCE

DESCRIPTION


Dual center tap Schottky rectifier suited for CAD computers and servers.

Packaged in Max247, this device is intended for use in low voltage, high frequency switching power supplies, free wheeling and polarity protection applications.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Paramete	Value	Unit		
Vrrm	Repetitive peak reverse voltage			60	V
I _{F(RMS)}	RMS forward current			50	А
I _{F(AV)}	Average forward current	Tc = 130° CPer diode $\delta = 0.5$ Per device		40 80	A
IFSM	Surge non repetitive forward current	tp = 10 ms s	inusoidal	400	А
I _{RRM}	Repetitive peak reverse current	tp = 2 μs squ	are F = 1kHz	2	А
T _{stg}	Storage temperature range			- 65 to + 150	°C
Tj	Maximum operating junction temperature *			150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/µs

* : $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

1/3

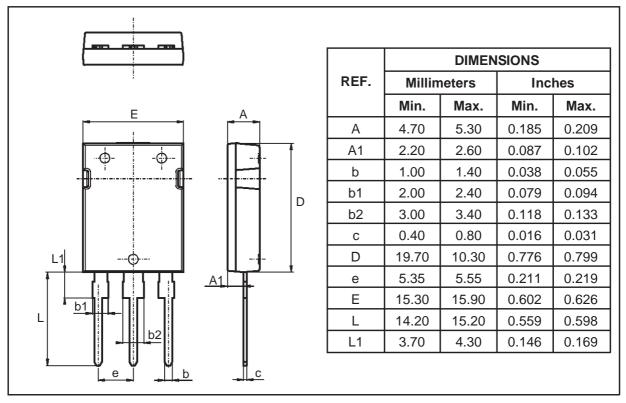
STPS80L60CY

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-c)	Junction to case	Per diode	0.70	°C/W
		Total	0.50	
R _{th (c)}		Coupling	0.3	

When the diodes 1 and 2 are used simultaneously: Δ Tj(diode 1) = P(diode1) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)}

STATIC ELECTRICAL CHARACTERISTICS (per diode)


Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	Tj = 25°C	V _R = V _{RRM}			1.8	mA
		Tj = 125°C			0.4	0.9	А
V _F *	Forward voltage drop	Tj = 25°C	$I_F = 40 A$			0.57	V
		Tj = 125°C	$I_F = 40 A$		0.50	0.56	
		Tj = 25°C	I _F = 80 A			0.78	
		Tj = 125°C	I _F = 80 A		0.69	0.77	

Pulse test : $tp = 380 \,\mu s, \, \delta < 2\%$

To evaluate the maximum conduction losses use the following equation : $P = 0.36 \text{ x } I_{F(AV)} + 0.005 \text{ x } I_{F}^{2}(RMS)$

<u>/رک</u>

PACKAGE MECHANICAL DATA Max247

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS80L60CY	STPS80L60CY	Max247	4.4g	30	Tube

Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia

Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.