

Linear Motors

I-Force Ironless and RIPPED Ironcore Series

ENGINEERING YOUR SUCCESS.

I-Force and Ironcore Linear Motors

Parker Hannifin has been providing innovative automation solutions for decades. This spirit of innovation continues within the exploding market of linear motor technology.

In 2003, Parker acquired Trilogy Corporation, one of the most recognized brands in linear motors. The powerful combination of Parker's and Trilogy's patented linear motor solutions gives automation and robotics customers distinct performance enhancements and cost of ownership benefits over competing technologies.

With a full complement of linear motor components and fully engineered positioning systems, Parker has the right solution to increase productivity and to enhance the accuracy and dynamic performance of your machine. Parker has one of the broadest offerings in available linear motor technologies. From component or "kit" style motors, packaged positioning tables, to complete custom engineered systems, Parker can provide a solution for any linear motion requirement. This document focuses on Parker's two families of component-style motors. Typical applications for Parker linear motor products include:

- Semiconductor and electronics
- Flat panels, solar panels
- Medical and life sciences
- Machine tools
- Optics and photonics
- Large format printing, scanning and digital fabrication

Linear Motor Design Benefits

- High speeds
- High accelerations
- Fast response 100 times that of a mechanical system
- Stiffness spring rate better than a mechanical system
- Zero backlash direct drive technology
- Maintenance free operation mechanical simplicity due to reduced component count
- Long travels without
 performance loss
- Suitable for vacuum and extreme environments

Linear Motor Advantages

A linear motor operates in exactly the same way as a rotary motor that has been "unwrapped." The same electromagnetic effects that produce torque in a rotary motor now produce a direct force in a linear motor.

For many applications, linear motors offer distinct advantages over conventional rotary drive systems. For example, there is no need to couple the motor to the load by means of intermediate mechanical components such as gears, ballscrews, or belt drives. The load is directly connected to the motor. Therefore, there is no backlash or elasticity from the moving elements. Thus, the dynamic behavior of the servo control is improved and higher levels of accuracy are achieved.

The absence of a mechanical transmission component also results in a drive system with low inertia and noise. In addition, mechanical wear only occurs in the guidance system. Consequently, linear motors have better reliability and lower frictional losses than traditional rotary drive systems.

I-Force Ironless Motors

Page 4 - 29

- Four track sizes
- Forces to 3928 N (883 lbs)
- Unlimited lengths
- Ultra high performance
- Zero cogging

RIPPED Ironcore Motors

Page 30 - 38

- 3 track sizes
- Forces to 7433 N (1671 lbs)
- Unlimited lengths
- Highest power per package size

For information on Parker's extensive line of linear motor positioner products including industrial-grade, precisiongrade, multi-axis systems and custom capabilities, please visit our website at parker.com/emc

Design Engineering with Linear Motors

Component linear motors such as the I-Force and Ironcore consist of a motor coil and separate magnet track.

The coil assembly is known as the "forcer" or sometimes as the "primary" element. The forcer generally consists of the motor coil and an attachment plate or mounting bar which allows the coil to connect to the carriage. The motor cables typically exit from one side of the package.

The magnet track is sometimes referred to as the "secondary" element. Depending on the type of linear motor used, the magnet track can either be a single row of magnets or a double-sided configuration offering balanced attraction forces.

The ability to select linear motor components gives the user an economical solution and complete flexibility with respect to integration into the machine. However, this flexibility also requires an understanding of motor characteristics, linear feedback technology, cooling methods, and the performance of the servo amplifier and control system.

 Let Parker's extensive motion design experience, systematic project management process, and global infrastructure solve your most demanding motion problems

 Collaborative development cycle aligns customer goals and rigorous performance specifications with a complete engineered solution

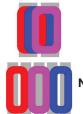
Please contact Parker application engineering if you need any assistance with your design.

I-Force Ironless Linear Motors

Parker's I-Force Ironless Linear Motors offer high forces and rapid accelerations in a compact package. With forces ranging from 24.5 N (5.5 lbf) to 878.6 N (197.5 lbf) continuous up to 108.5 N (24.5 lbf) to 3928 N (883 lbf) peak, the I-Force family offers a superior combination of performance and size.

The I-Force patented I-beam shape with its overlapping windings allows for a higher power density in a smaller motor, improved heat removal, and added structural stiffness.

In addition, the ironless (or air core) linear motor design has no attractive force toward the magnets. This allows for easy installation and zero cogging during motion.


Ultra high-flex cables come standard with I-Force motors. In addition, Parker offers modular magnet tracks for unrestricted travel length. Incredibly smooth motion, high precision and high force density make the I-Force linear motors an ideal solution for your demanding positioning requirements.

No attractive force toward the magnets

 Easier/Safer assembly and handling, smoother travel (no cogging)

Overlapping windings

- Increased force density
- Improved heat dissipation
- Lower temperature rise
- Smaller, less expensive motor

Overlapped windings

Non-overlapped windings

Uses thermally conductive epoxy together with the windings

 Patented ironless motors design (RE34674) provides better heat dissipation

Vacuum encapsulation process

- Allows motors to be used in high-vacuum environments
- Rated at 10⁻⁶ torr, currently used in 10⁻⁷ torr applications

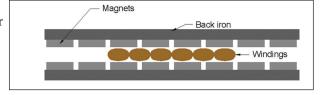
Modular magnet track

- Precision ground 3-piece track
- Unrestricted travel length
- Two lengths of modular magnet tracks allow unlimited length of travel

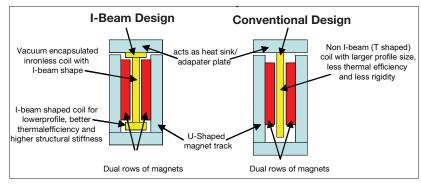
Embedded overtemp thermostat or optional thermistor

- Protects windings against overheating
- Prealigned imbedded digital Hall effect devices
- Internal thermal cutout switch protects coil

Ultra high-flex cables


Longer cable life, good for millions of cycles

Ironless Advantages


- No attractive force balanced dual magnet track, safe and easy to handle, no force to deal with during assembly
- No cogging ironless forcer for zero cogging and ultimate smoothness.
- Low weight forcer no iron means higher acceleration and deceleration rates, higher mechanical bandwidth.
- Air gap forgiving easy to align and install
- Disadvantages Compared to Ironcore
- Heat dissipation higher thermal resistance, patented Parker I-beam design helps mitigate this issue (see below)
- Lower RMS power when compared to ironcore designs.
- Uses twice as many magnets which increases unit cost

I-Force Patented I-Beam Design

Ironless motors consist of a forcer (windings), which rides between dual magnet rails.

The forcer does not have any iron laminations in the coil – hence the name ironless. Instead, the copper windings are encapsulated and located in the air gap between the two rows of magnets. Because the motors are ironless, there are no attractive forces or cogging forces between the forcer and the magnet track.

Parker's patented I-beam shape provides very high forces in a compact package. In addition, the design is more thermally efficient than tradition ironless motor designs. The ironless forcers have lower mass than their ironcore counterparts resulting in extremely high accelerations and overall dynamic performance. The ironless design has zero cogging and the lack of attractive force allows for extended bearing life and, in some applications, the ability to use smaller bearings.

While the high dynamic performance and zero cogging motion make the ironless motors a powerful design, they are not as thermally efficient as their ironcore counterparts. A small contacting surface area and a long thermal path from the winding base to the cooling plate makes the full-load power of these motors low. In addition, the dual row of magnets increases the overall cost of these motors in relation to the generated force and stroke length.

I-Force Ironless Motor Selection				
Model	110	210	310	410
Page	6	12	18	24
Cross Section – H x W mm (in)	50 x 21 (2.05 x 0.82)	57.1 x 31.7 (2.25 x 1.25)	86.4 x 34.3 (3.40 x 1.35)	114.3 x 50.8 (4.50 x 2.00)
Continuous Force – N (lbs)	44 (10)	104.5 (24.8)	262 (58)	878 (197)
Peak Force - N (lbs)	200 (45)	494 (110)	1170 (263)	3928 (883)
Maximum Track Length – mm (in) Modular Single Piece	Unlimited 914 (36)	Unlimited 1219 (48)	Unlimited 1676 (66)	Unlimited 1829 (72)
Cooling ¹	-	Internal air cooling manifold available	manifold or liquid	Internal air cooling manifold or liquid cooling available
Digital Hall Effect Devices	None, Imbedded	None, Imbedded	None, Imbedded	None, Imbedded

¹ Consult factory for cooling performance

I-Force Ironless 110 Series

Performance

Model	Units	110-1	110-2
Peak Force ¹⁾	N (lb)	108.5 (24.4)	202.5 (45.5)
Continuous Force ²⁾	N (lb)	24.5 (5.5)	45.4 (10.2)
Peak Power	W	938	1641
Continuous Power	W	47	82

1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units	11	0-1		110-2	
Winding Series/Para	llel/Triple	S	Р	S	Р	т
Peak Current	A ^{pk sine} RMS	15.9 11.2	31.8 22.5	14.8 10.4	29.6 20.9	44.4 31.4
Continuous Current	A ^{pk sine} RMS	3.6 2.5	7.2 5.1	3.3 2.3	6.6 4.7	9.9 7.1
Force Constant 1	V/A peak b/A peak	6.8 1.5	3.4 0.8	13.7 3.1	6.8 1.5	4.6 1.0
Back EMF ²⁾	V/m/s V/in/s	7.9 0.20	3.9 0.10	15.7 0.40	7.9 0.20	5.2 0.13
Resistance @ 25°C (phase-to-phase)	³⁾ ohms	3.8	0.95	7.6	1.9	0.84
Inductance (phase-to-phase) ⁴⁾	mH	1.0	0.3	2.0	0.5	0.2
Electrical Time Constant 5)	ms	0.3	0.3	0.3	0.3	0.3
Motor Constant ⁶⁾	N/W lb/W	3.56 0.80	3.56 0.80	5.02 1.13	5.02 1.13	5.02 1.13
Terminal Voltage (max.) 7)	VDC	330	330	330	330	330

1) Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads.

Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply resistance by 1.295 (75 °C rise * 0.393%/°C).

Inductance measured using 1 Kz with the motor in the magnetic field.

5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

7) Consult factory for use with non-Parker amplifiers.

Thermal*

Model	Units	110-1	110-2
Thermal Resistance Wind-Amb	°C/W	1.59	0.92
Thermal Time Constant (min.) ¹⁾		3.2	3.2
Maximum Winding Temperature ²⁾	°C	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.

1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.

Mechanical

Model	Units	110-1	110-2
Coil Weight	kg (lb)	0.12 (0.27)	0.22 (0.48)
Coil Length	mm (in)	81.3 (3.20)	142.2 (5.60)
Attractive Force	N (lbf)	0	0
Electrical Cycle Length ¹⁾	mm (in)	60.96 (2.40)	60.96 (2.40)

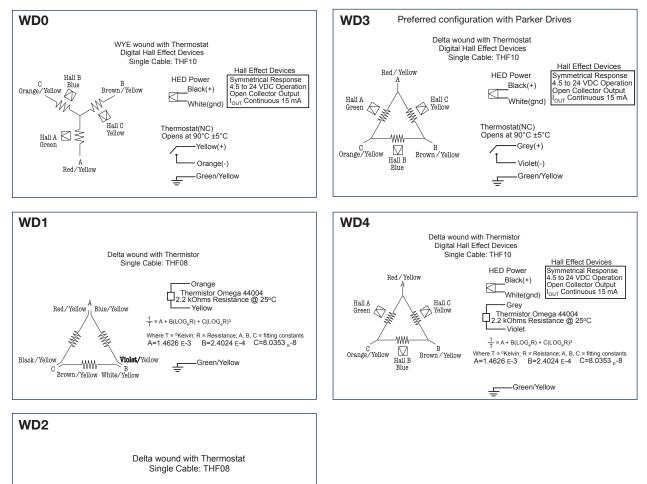
1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

Wiring Options

А

-WW

Brown/Yellow White/Yellow

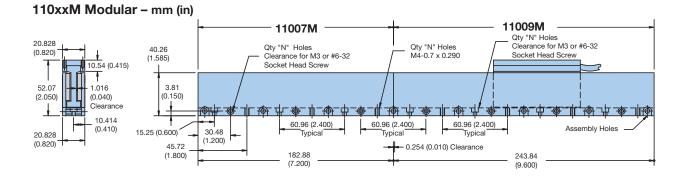

Blue/Yellow

Violet/Yellow

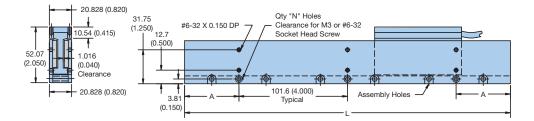
Red/Yellow

Black/Yellow

C



Thermostat(NC) Opens at 90°C ±5°C


> -Yellow(+) · Orange(-) · Green/Yellow

I-Force Ironless 110 Series

Magnet Track Specifications

110xxS Single Piece - mm (in)

	110xxM Modular	110xxS Single Piece
Incremental Length – mm (in)	60.96 (2.4)	30.48 (1.2)
Minimum Length – mm (in)	121.92 (4.8)	213.4 (8.4)
Maximum Length – mm (in) (for single piece)	914.40 (36)	914.40 (36)
Flatness - mm (in) per 12" of magnet track	0.1016 (0.004)	0.1016 (0.004)
Weight – kg/m (lbs/ft)	3.89 (2.66)	3.89 (2.66)

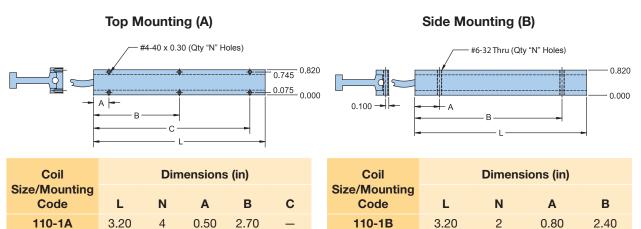
110xxM Modular

	L		
Part Number	mm	in	Ν
11004M	121.92	4.8	2
11007M	182.88	7.2	3
11009M	243.84	9.6	4
11012M	304.80	12.0	5
11014M	365.76	14.4	6
11016M	426.72	16.8	7
11019M	487.68	19.2	8
11021M	548.64	21.6	9
11024M	609.60	24.0	10
11026M	670.56	26.4	11
11028M	731.52	28.8	12
11031M	792.48	31.2	13
11033M	853.44	33.6	14
11036M	914.40	36.0	15

Modular Track Combinations With 11007M and 11009M Sections

Lengt	h (L) *	Quantity			
mm	in	11007M	11009M		
182.9	7.2	1	0		
243.8	9.6	0	1		
365.8	14.4	2	0		
426.7	16.8	1	1		
487.7	19.2	0	2		
548.6	21.6	3	0		
609.6	24.0	2	1		
670.6	26.4	1	2		
731.5	28.8	0	3		
792.5	31.2	3	1		
853.4	33.6	2	2		
914.4	36.0	1	3		
975.4	38.4	0	4		
1036.3	40.8	3	2		
1097.3	43.2	2	3		
1158.2	45.6	1	4		
1219.2	48.0	0	5		
1280.2	50.4	3	3		
1341.1	52.8	2	4		
1402.1	55.2	1	5		
1463.0	57.6	0	6		
1524.0	60.0	3	4		

110xxS Single Piece


	L		А		
	_				
Part Number	mm	in	mm	in	Ν
11008S	213.36	8.4	5.08	0.20	3
11009S	243.84	9.6	20.32	0.80	3
11010S	274.32	10.8	35.56	1.40	3
11012S	304.80	12.0	50.80	2.00	3
11013S	335.28	13.2	66.04	2.60	3
11014S	365.76	14.4	81.28	3.20	3
11015S	396.24	15.6	96.52	3.80	3
11016S	426.72	16.8	10.16	0.40	5
11018S	457.20	18.0	25.40	1.00	5
11019S	487.68	19.2	40.64	1.60	5
11020S	518.16	20.4	55.88	2.20	5
11021S	548.64	21.6	71.12	2.80	5
11022S	579.12	22.8	86.36	3.40	5
11024S	609.60	24.0	101.60	4.00	5
11025S	640.08	25.2	15.24	0.60	7
11026S	670.56	26.4	30.48	1.20	7
11027S	701.04	27.6	45.72	1.80	7
11028S	731.52	28.8	60.96	2.40	7
11030S	762.00	30.0	76.20	3.00	7
11031S	792.48	31.2	91.44	3.60	7
11032S	822.96	32.4	5.08	0.20	9
11033S	853.44	33.6	20.32	0.80	9
11034S	883.92	34.8	35.56	1.40	9
11036S	914.40	36.0	50.80	2.00	9

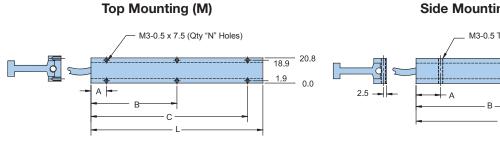
*Length is unlimited by combining modular track sections.

I-Force 110 Series

Coil Specifications

Imperial Mounting Options

110-2B


Metric Mounting Options

5.60

6

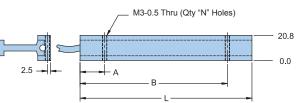
0.50

110-2A

2.80

5.10

	Coil	Dimensions (mm)						
:	Size/Mounting Code	L	N	А	В	с		
	110-1 M	81.3	4	12.7	68.6	-		
	110-2 M	142.2	6	0.50	71.1	129.5		


Side Mounting (N)

2

0.80

4.80

5.60

Coil		Dimensi	ions (mm)	
Size/Mounting Code	L	N	А	в
110-1N	81.3	2	20.3	60.9
110-2N	142.2	2	20.3	121.9

How to order

Fill in an order code from each of the numbered fields to create a complete Motor Coil and Magnet Track order number.

Magnet Track

Motor Coil

Order Example:								Or	Order Example:			
	1	2	3	4	(5)	6	$(\overline{)}$			1	(2
1	10 -	2	В -	NC -	WD2	Ρ	- 8			11024M	- 1	N
1	Serie 110	es						1	Series 11007M			ns (refer to Modular chart on page 9)
2	Coil 1								11009M			ns (refer to Modular ength chart on page 9)
	2		One pole Two pole						110xxM	4.8 to 36.0" (refer to par	' single pie	ece, 2.4" increments selection chart on
3	Mou A B M		Imperial t Imperial s Metric to	side mou					110xxS	(refer to par page 9)		iece, 1.2" increments selection chart on
	Ν		Metric sic	de moun [.]	t			2	Magnet N	Coating Nickel coati	na (standa	ard)
4	Cool NC	-	No coolir	ng					В	Black epoxy	0.	
5	Wirin WD0 WD1 WD2 WD3 WD4) <u>2</u> }	tions (Re	efer to pa	ge 7)							
6	Wind S P T	-	Series Parallel Triple (no	t availabl	e for 1-p	ole mot	tor)					
	Cab	le Ler	-									

xx Specify in feet (8 ft standard)

I-Force Ironless 210 Series

Performance

Model	Units	210-1	210-2	210-3	210-4
Peak Force ¹⁾	N (lb)	137.0 (30.8)	255.8 (57.5)	375.0 (84.3)	494.2 (111.1)
Continuous Force 2)	N (lb)	30.7 (6.9)	57.4 (12.9)	84.1 (18.9)	110.3 (24.8)
Peak Power	W	905	1583	2261	2940
Continuous Power	W	45	79	113	147

1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units		210-1			210-2	2		210-3	;		210-4	
Winding	Series/Parallel/Triple	S	Ρ	т	S	Ρ	т	S	Ρ	т	S	Ρ	Т
Peak Current	A ^{pk sine} RMS		25.2 17.8									22.6 16.0	
Continuous Current	A ^{pk sine} RMS	2.8 1.9	5.6 3.9	8.4 5.9	2.6 1.8	5.2 3.7	7.8 5.5	2.6 1.8	5.2 3.7	7.8 5.5	2.5 1.8	5.0 3.5	7.5 5.3
Force Constant ¹⁾	N/A peak Ib/A peak				21.8 4.9					10.9 2.5			14.5 3.3
Back EMF ²⁾	V/m/s V/in/s												
Resistance @ 25°C (pha	ase-to-phase) 3 ohms	5.9	1.5	0.7	11.8	3.0	1.3	17.7	4.4	2.0	23.6	5.9	2.6
Inductance (phase-to-	phase) ⁴⁾ mH	2.4	0.6	0.3	4.8	1.2	0.5	7.2	1.8	0.8	9.6	2.4	1.1
Electrical Time Consta	ant ⁵⁾ ms	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Motor Constant ⁶⁾	N/W Ib/W		4.54 1.02							7.87 1.77			
Terminal Voltage (max	,		330								330	330	330

1) Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads.

Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply resistance by 1.295 (75 °C rise * 0.393%/°C).

4) Inductance measured using 1 Kz with the motor in the magnetic field.

5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

7) Consult factory for use with non-Parker amplifiers.

Thermal*

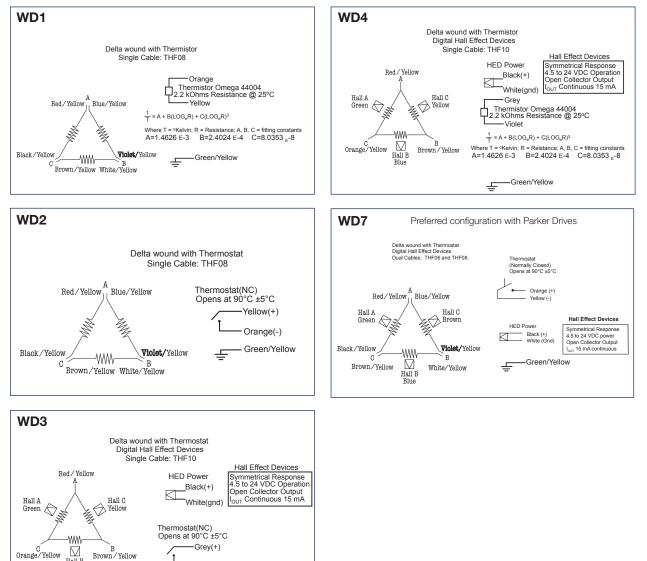
Model	Units	210-1	210-2	210-3	210-4
Thermal Resistance Wind-Amb	°C/W	1.67	0.94	0.66	0.51
Thermal Time Constant (min.) ¹⁾		4.3	4.3	4.3	4.3
Maximum Winding Temperature ²⁾	°C	100	100	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.

1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.

Mechanical

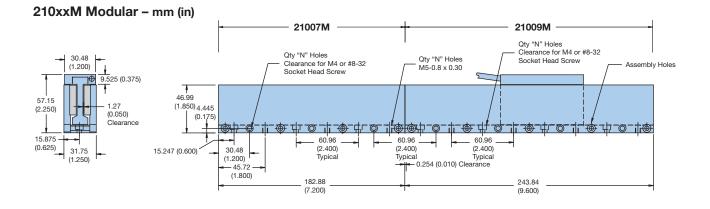

Model	Units	210-1	210-2	210-3	210-4
Coil Weight	kg (lb)	0.16 (0.35)	0.27 (0.60)	0.39 (0.86)	0.51 (1.12)
Coil Length	mm (in)	81.3 (3.20)	142.2 (5.60)	203.2 (8.00)	264.2 (10.4)
Attractive Force	N (lbf)	0	0	0	0
Electrical Cycle Length ¹⁾	mm (in)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)

1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

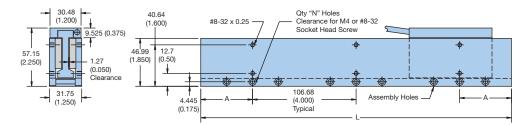
Wiring Options

Hall B

Blue


Violet(-)

느


Green/Yellow

I-Force Ironless 210 Series

Magnet Track Specifications

210xxS Single Piece - mm (in)

	210xxM Modular	210xxS Single Piece
Incremental Length – mm (in)	60.96 (2.4)	30.48 (1.2)
Minimum Length – mm (in)	121.92 (4.8)	213.4 (8.4)
Maximum Length – mm (in) (for single piece)	1219.2 (48)	1219.2 (48)
Flatness - mm (in) per 12" of magnet track	0.1016 (0.004)	0.1016 (0.004)
Weight – kg/m (lbs/ft)	8.22 (5.50)	8.22 (5.50)

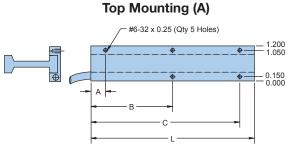
210xxM Modular

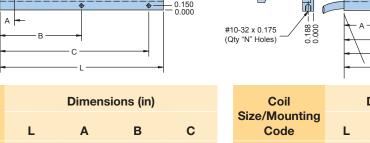
	L		
Part Number	mm	in	Ν
21004M	121.92	4.8	2
21007M	182.88	7.2	3
21009M	243.84	9.6	4
21012M	304.80	12.0	5
21014M	365.76	14.4	6
21016M	426.72	16.8	7
21019M	487.68	19.2	8
21021M	548.64	21.6	9
21024M	609.60	24.0	10
21026M	670.56	26.4	11
21028M	731.52	28.8	12
21031M	792.48	31.2	13
21033M	853.44	33.6	14
21036M	914.40	36.0	15
21038M	975.36	38.4	16
21040M	1036.32	40.8	17
21043M	1097.28	43.2	18
21045M	1158.24	45.6	19
21048M	1219.20	48.0	20

Modular Track Combinations With 21007M and 21009M Sections

Length (L)*		Quantity				
mm	in	21007M	21009M			
182.9	7.2	1	0			
243.8	9.6	0	1			
365.8	14.4	2	0			
426.7	16.8	1	1			
487.7	19.2	0	2			
548.6	21.6	3	0			
609.6	24.0	2	1			
670.6	26.4	1	2			
731.5	28.8	0	3			
792.5	31.2	3	1			
853.4	33.6	2	2			
914.4	36.0	1	3			
975.4	38.4	0	4			
1036.3	40.8	3	2			
1097.3	43.2	2	3			
1158.2	45.6	1	4			
1219.2	48.0	0	5			

210xxS Single Piece


	L		A		
Part Number	mm	in	mm	in	Ν
21008S	213.36	8.4	5.08	0.20	3
21009S	243.84	9.6	20.32	0.80	3
21010S	274.32	10.8	35.56	1.40	3
21012S	304.80	12.0	50.80	2.00	3
21013S	335.28	13.2	66.04	2.60	3
21014S	365.76	14.4	81.28	3.20	3
21015S	396.24	15.6	96.52	3.80	3
21016S	426.72	16.8	10.16	0.40	5
21018S	457.20	18.0	25.40	1.00	5
21019S	487.68	19.2	40.64	1.60	5
21020S	518.16	20.4	55.88	2.20	5
21021S	548.64	21.6	71.12	2.80	5
21022S	579.12	22.8	86.36	3.40	5
21024S	609.60	24.0	101.60	4.00	5
21025S	640.08	25.2	15.24	0.60	7
21026S	670.56	26.4	30.48	1.20	7
21027S	701.04	27.6	45.72	1.80	7
21028S	731.52	28.8	60.96	2.40	7
21030S	762.00	30.0	76.20	3.00	7
21031S	792.48	31.2	91.44	3.60	7
21032S	822.96	32.4	5.08	0.20	9
21033S	853.44	33.6	20.32	0.80	9
21034S	883.92	34.8	35.56	1.40	9
21036S	914.40	36.0	50.80	2.00	9
21037S	944.88	37.2	66.04	2.60	9
21038S	975.36	38.4	81.28	3.20	9
21039S	1005.84	39.6	96.52	3.80	9
21040S	1036.32	40.8	10.16	0.40	11
21042S	1066.80	42.0	25.40	1.00	11
21043S 21044S	1097.28	43.2 44.4	40.64	1.60	11 11
21044S 21045S	1127.76 1158.24	44.4 45.6	55.88	2.20	11
210455 21046S			71.12	2.80	
	1188.72	46.8	86.36	3.40	11
21048S	1219.20	48.0	101.60	4.00	11


*Length is unlimited by combining modular track sections.

I-Force Ironless 210 Series

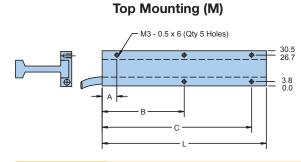
Coil Specifications

Imperial Mounting Options

Code	L	Α	В	С
210-1A	3.20	0.50	1.60	2.70
210-2A	5.60	0.50	2.80	5.10
210-3A	8.00	0.50	4.00	7.50
210-4A	10.40	0.50	5.20	9.90

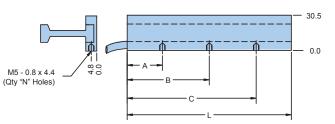
			L	-1	
Coil	D)imen	sions (in))	
Size/Mounting Code	1	N	А	в	с
210-1B	3.20	2	1.950	2.950	_
210-2B	5.60	2	1.625	3.975	_
210-3B	8.00	3	2.438	4.000	5.562
210-4B	10.40	3	2.600	5.200	7.800

Side Mounting (B)


₼

- 1.200

0.000


Metric Mounting Options

Coil Size/Mounting

Coil	Dimensions (mm)						
Size/Mounting Code	L	А	В	С			
210-1M	81.3	12.7	40.6	68.6			
210-2M	142.2	12.7	71.1	129.5			
210-3M	203.2	12.7	101.6	190.5			
210-4M	264.2	12.7	132.1	251.5			

Side Mounting (N)

Coil		(mm)			
Size/Mounting Code	L	N	А	в	с
210-1N	81.3	2	49.5	74.9	—
210-2N	142.2	2	41.3	101.0	—
210-3N	203.2	3	61.9	101.6	141.3
210-4N	264.2	3	66.0	132.1	198.1

Parker Hannifin Corporation • Electronic Motion and Controls Division • 800-358-9070 • parker.com/emc

How to order

Fill in an order code from each of the numbered fields to create a complete Motor Coil and Magnet Track order number.

Magnet Track

Motor Coil

Orc	Order Example:					Order Example:									
	1	2	3	4	(5)	6				1	2				
2	10 -	2	В	NC -	WD2	Ρ	- 8			21024M	- N				
1	Serie 210	es						1	Series 21007M		ular sections (refe				
2	Coil								21009M	9.60" modi	ular sections (refe	er to Modular			
	1 2 3		One pole Two pole Three po	S					210xxM	(refer to part number selection chart on					
3	4 Mou		our pole						210xxS		0" single piece, 1 rt number select				
3	A B M N		mperial s Vetric to	op mour side mou p mount de mount	nt			٢	Magnet N B	Coating	ing (standard) Y				
4	Cool NC AC		No coolir Air coolin	-											
5	Wirin WD1 WD2 WD3 WD4 WD7		t ions (Re	efer to pa	ge 13)										
6	Wind S P T		Series ^D arallel Triple (no	t availabl	e for 1-p	ole mo	tor)								
1	Cabl	e Len	gth												

xx Specify in feet (8 ft standard)

I-Force Ironless 310 Series

Performance

Model	Units	310-1	310-2	310-3	310-4	310-5	310-6
Peak Force ¹⁾	N (lb)	218.9 (49.2)	409.3 (92.0)	600.0 (135.1)	790.0 (177.2)	980.0 (220.3)	1170.0 (263.2)
Continuous Force 2)	N (lb)	49.0 (11.0)	91.6 (20.6)	133.9 (30.1)	176.2 (39.6)	219.3 (49.3)	262.0 (58.9)
Peak Power	W	1077	1885	2693	3500	4308	5116
Continuous Power	W	54	94	135	179	215	256

1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units	31	D-1	3	310-2	2	3	310-3	3	3	810-4	4	3	310-	5	3	810-6	ò
Winding	Series/Parallel/Triple	S	Ρ	S	Ρ	Т	S	Ρ	Т	S	Ρ	Т	S	Ρ	Т	S	Ρ	Т
Peak Current	A ^{pk sine} RMS						14.7 10.4											
Continuous Current	A ^{pk sine} RMS						3.3 2.5											
Force Constant ¹⁾	N/A peak Ib/A peak																	
Back EMF ²⁾	V/m/s V/in/s																	
Resistance @ 25°C (pha	ase-to-phase) ³⁾ ohms	4.0	1.0	8.1	2	0.87	12.1	3	1.3	16.1	3.87	1.74	20.2	4.84	2.17	24.2	5.8	2.6
Inductance (phase-to	o-phase) ⁴⁾ mH	3.0	0.8	6.0	1.5	0.7	9.0	2.3	1.0	12.0	3.0	1.3	15.0	3.8	1.7	18.0	4.5	2.0
Electrical Time Cons	tant ⁵⁾ ms	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Motor Constant ⁶⁾	N/W Ib/W	0.0.	6.67 1.50				11.57 2.60											
Terminal Voltage (ma															330	330	330	330

1) Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads.

Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).

2) Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.

3) Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply

resistance by 1.295 (75 °C rise * 0.393%/°C).

4) Inductance measured using 1 Kz with the motor in the magnetic field.

5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

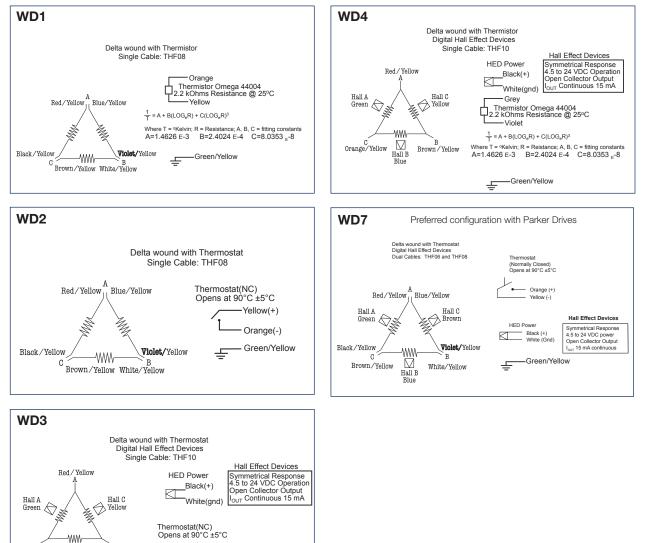
7) Consult factory for use with non-Parker amplifiers.

Thermal*

Model	Units	310-1	310-2	310-3	310-4	310-5	310-6
Thermal Resistance Wind-Amb	°C/W	1.39	0.79	0.56	0.43	0.35	0.29
Thermal Time Constant (min.) ¹⁾		7.5	7.5	7.5	7.5	7.5	7.5
Maximum Winding Temperature ²⁾	°C	100	100	100	100	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.

1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.


2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.

Mechanical

Model	Units	310-1	310-2	310-3	310-4	310-5	310-6
Coil Weight	kg (lb)	0.31 (0.69)	0.55 (1.22)	0.80 (1.75)	1.03 (2.27)	1.27 (2.80)	1.53 (3.36)
Coil Length	mm (in)	81.3 (3.20)	142.2 (5.60)	203.2 (8.00)	264.2 (10.4)	325.1 (12.8)	386.1 (15.2)
Attractive Force	N (lbf)	0	0	0	0	0	0
Electrical Cycle Length ¹⁾	mm (in)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)	60.96 (2.40)

1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

Wiring Options

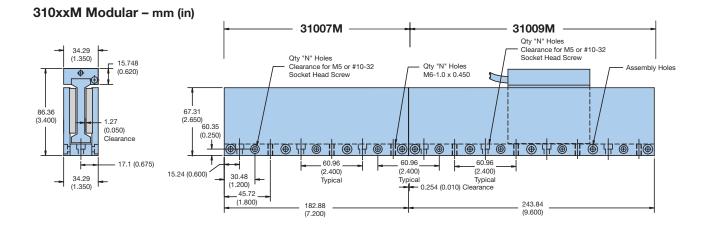
Grey(+)

Violet(-)

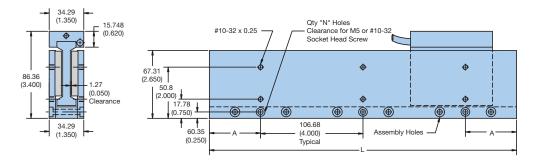
-

Green/Yellow

B Brown / Yellow


C Orange/Yellow

Hall B


Blue

I-Force Ironless 310 Series

Magnet Track Specifications

310xxS Single Piece - mm (in)

	310xxM Modular	310xxS Single Piece
Incremental Length – mm (in)	60.96 (2.4)	30.48 (1.2)
Minimum Length – mm (in)	121.92 (4.8)	213.4 (8.4)
Maximum Length – mm (in) (for single piece)	1584.96 (62.4)	1615.4 (63.6)
Flatness - mm (in) per 12" of magnet track	0.1016 (0.004)	0.1016 (0.004)
Weight – kg/m (lbs/ft)	12.7 (8.50)	12.7 (8.50)

310xxM Modular

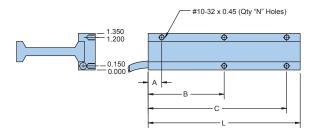
	L		
Part Number	mm	in	Ν
31004M	121.92	4.8	2
31007M	182.88	7.2	3
31009M	243.84	9.6	4
31012M	304.80	12.0	5
31014M	365.76	14.4	6
31016M	426.72	16.8	7
31019M	487.68	19.2	8
31021M	548.64	21.6	9
31024 M	609.60	24.0	10
31026M	670.56	26.4	11
31028M	731.52	28.8	12
31031M	792.48	31.2	13
31033M	853.44	33.6	14
31036M	914.40	36.0	15
31038M	975.36	38.4	16
31040M	1036.32	40.8	17
31043M	1097.28	43.2	18
31045 M	1158.24	45.6	19
31048M	1219.20	48.0	20
31050M	1280.16	50.4	21
31052M	1341.12	52.8	22
31055M	1402.08	55.2	23
31057 M	1463.04	57.6	24
31060M	1524.00	60.0	25
31062M	1584.96	62.4	26

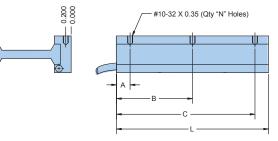
Modular Track Combinations With 31007M and 31009M Sections

Lengt	h (L)*	Quantity					
mm	in	31007M	31009M				
182.9	7.2	1	0				
243.8	9.6	0	1				
365.8	14.4	2	0				
426.7	16.8	1	1				
487.7	19.2	0	2				
548.6	21.6	3	0				
609.6	24.0	2	1				
670.6	26.4	1	2				
731.5	28.8	0	3				
792.5	31.2	3	1				
853.4	33.6	2	2				
914.4	36.0	1	3				
975.4	38.4	0	4				
1036.3	40.8	3	2				
1097.3	43.2	2	3				
1158.2	45.6	1	4				
1219.2	48.0	0	5				

310xxS Single Piece

	L		A		
Part Number	mm	in	mm	in	Ν
31008S	213.36	8.4	5.08	0.20	3
31009S	243.84	9.6	20.32	0.80	3
31010S	274.32	10.8	35.56	1.40	3
31012S	304.80	12.0	50.80	2.00	3
31013S	335.28	13.2	66.04	2.60	3
31014S	365.76	14.4	81.28	3.20	3
31015S	396.24	15.6	96.52	3.80	3
31016S	426.72	16.8	10.16	0.40	5
31018S	457.20	18.0	25.40	1.00	5
31019S	487.68	19.2	40.64	1.60	5
31020S	518.16	20.4	55.88	2.20	5
31021S	548.64	21.6	71.12	2.80	5
31022S	579.12	22.8	86.36	3.40	5
31024S	609.60	24.0	101.60	4.00	5
31025S	640.08	25.2	15.24	0.60	7
31026S	670.56	26.4	30.48	1.20	7
31027S	701.04	27.6	45.72	1.80	7
31028S	731.52	28.8	60.96	2.40	7
31030S	762.00	30.0	76.20	3.00	7
31031S	792.48	31.2	91.44	3.60	7
31032S	822.96	32.4	5.08	0.20	9
31033S	853.44	33.6	20.32	0.80	9
31034S	883.92	34.8	35.56	1.40	9
31036S	914.40	36.0	50.80	2.00	9
31037S	944.88	37.2	66.04	2.60	9
31038S	975.36	38.4	81.28	3.20	9
31039S	1005.84	39.6	96.52	3.80	9
31040S	1036.32	40.8	10.16 25.40	0.40	11
31042S 31043S	1066.80 1097.28	42.0 43.2	25.40 40.64	1.00 1.60	11 11
310433 31044S	1127.76	43.2	40.04 55.88	2.20	11
310445S	1158.24	44.4	71.12	2.20	11
31046S	1188.72	46.8	86.36	3.40	11
31048S	1219.20	48.0	101.60	4.00	11
310495	1249.68	49.2	15.24	0.60	13
31050S	1280.16	50.4	30.48	1.20	13
31051S	1310.64	51.6	45.72	1.80	13
31052S	1341.12	52.8	60.96	2.40	13
31054S	1371.60	54.0	76.20	3.00	13
31055S	1402.08	55.2	91.44	3.60	13
31056S	1432.56	56.4	5.08	0.20	15
31057S	1463.04	57.6	20.32	0.80	15
31058S	1493.52	58.8	35.56	1.40	15
31060S	1524.00	60.0	50.80	2.00	15
31061S	1554.48	61.2	66.04	2.60	15
31062S	1584.96	62.4	81.28	3.20	15
31063S	1615.44	63.6	96.52	3.80	15

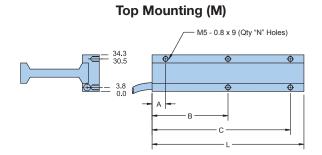

*Length is unlimited by combining modular track sections.


I-Force Ironless 310 Series

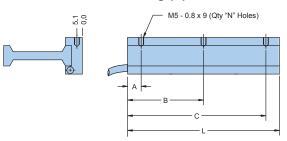
Coil Specifications

Imperial Mounting Options

Top Mounting (A)



Coil	Dimensions (in)							
Size/Mounting Code	L	N	А	в	с			
310-1A	3.20	4	0.50	1.60	2.70			
310-2A	5.60	5	0.50	2.80	5.10			
310-3A	8.00	5	0.50	4.00	7.50			
310-4A	10.40	5	0.50	5.20	9.90			
310-5A	12.80	5	0.50	6.40	12.30			
310-6A	15.20	5	1.70	7.60	13.50			


Dimensions (in) Coil Size/Mounting Code L Ν Α В С 310-1B 3.20 2 0.50 1.60 2.70 310-2B 5.60 2 0.50 2.80 5.10 310-3B 8.00 3 0.50 4.00 7.50 310-4B 10.40 3 0.50 5.20 9.90 0.50 310-5B 12.80 3 6.40 12.30 310-6B 15.20 3 1.70 7.60 13.50

Metric Mounting Options

Coil	Dimensions (mm)								
Size/Mounting Code	L	N	А	в	С				
310-1M	81.3	4	12.7	40.6	68.6				
310-2M	142.2	5	12.7	71.1	129.5				
310-3M	203.2	5	12.7	101.6	190.5				
310-4M	264.2	5	12.7	132.1	251.5				
310-5M	325.1	5	12.7	162.6	312.4				
310-6M	386.1	5	43.2	193.0	342.9				

Side Mounting (N)

Coil	Dimensions (mm)								
Size/Mounting Code	L	N	А	в	с				
310-1N	81.3	2	12.7	40.6	68.6				
310-2N	142.2	2	12.7	71.1	129.5				
310-3N	203.2	3	12.7	101.6	190.5				
310-4N	264.2	3	12.7	132.1	251.5				
310-5N	325.1	3	12.7	162.6	312.4				
310-6N	386.1	3	43.2	193.0	342.9				

How to order

Fill in an order code from each of the numbered fields to create a complete Motor Coil and Magnet Track order number.

Magnet Track

Motor Coil

Orc	der Exa	ampl	e:					Or	der Examp	ole:		
	1	2	3	4	(5)	6	$(\overline{)}$			1		٢
з	- 10	2	В -	NC -	WD2	Р	- 8			31024M	-	Ν
 (1) (2) 	Serie 310 Coil S							1	Series 31007M 31009M	Track Com	oination	ions (refer to Modular s chart on page 21) ions (refer to Modular
U	1 2 3	Size	One pole Two poles Three pol	s es					310xxM	Track Comb 4.8 to 62.4 (refer to par page 21)	inations " single t numb	length chart on page 21) piece, 2.4" increments er selection chart on
	4 5 6		Four pole Five poles Six poles	3					310xxS	(refer to par page 21)		piece, 1.2" increments er selection chart on
3	Moui A B M N	nting	Imperial to Imperial s Metric top Metric sic	ide mo o moun	unt t			2	Magnet (N B	Coating Nickel coat Black epox		ndard)
4	Cooli NC AC LC	ing	No coolin Air coolin Liquid co	g								
5	Wirin WD1 WD2 WD3 WD4 WD7		otions (Re	fer to p	age 19)							
6	Wind S P T	ling	Series Parallel Triple (not	t availat	ble for 1-p	ole mot	or)					
1	Cable xx	e Ler	ngth Specify ir	n feet (8	ft standa	rd)						

I-Force Ironless 410 Series

Performance

Model	Units	410-2	410-3	410-4	410-6	410-8
Peak Force ¹⁾	N (lb)	1041.4 (234.1)	1523.6 (342.5)	2006.3 (451.0)	2967.2 (667.0)	3928.1 (883.0)
Continuous Force ²⁾	N (lb)	233.1 (52.4)	340.8 (76.6)	448.9 (100.9)	663.7 (149.2)	878.6 (197.5)
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units		410-2	2	4	410-3	3		410-4	1	4	410-6	6	4	410-8	3
Winding	Series/Parallel/Triple	S	Ρ	Т	S	Ρ	Т	S	Ρ	Т	S	Ρ	Т	S	Ρ	т
Peak Current	A ^{pk sine} RMS	19.1 13.5									18.1 12.8					
Continuous Current	A ^{pk sine} RMS	4.3 3.0	8.6 6.1	12.9 9.1	4.2 3.0	8.4 5.9	12.6 8.9	4.1 2.9	8.2 5.8	12.3 8.7	4.1 2.9	8.2 5.8	12.3 8.7	4.0 2.8	0.0	12.0 8.5
Force Constant ¹⁾	N/A peak Ib/A peak				81.8 18.4						163.7 36.8					
Back EMF ²⁾	V/m/s V/in/s															
Resistance @ 25°C (ph	ase-to-phase) 3) ohms	8.0	2.0	0.9	12.0	3.0	1.3	16.0	4.0	1.8	24.0	6.0	2.7	32.0	8.0	3.6
Inductance (phase-to	o-phase) ⁴⁾ mH	10.0	2.5	1.1	15.0	3.8	1.7	20.0	5.0	2.2	30.0	7.5	3.3	40.0	10.0	4.4
Electrical Time Cons	stant ⁵⁾ ms	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Motor Constant ⁶⁾	N/W Ib/W										33.90 7.62					
Terminal Voltage (ma		330	330	330	330	330		330	330	330	330	330	330	330	330	330

1) Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads.

Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply

resistance by 1.295 (75 °C rise * 0.393%/°C). 4) Inductance measured using 1 Kz with the motor in the magnetic field.

5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

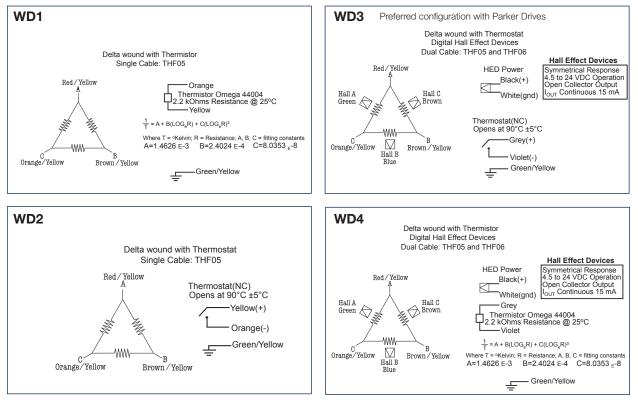
7) Consult factory for use with non-Parker amplifiers.

Thermal*

Model	Units	410-2	410-3	410-4	410-6	410-8
Thermal Resistance Wind-Amb	°C/W	0.53	0.37	0.26	0.19	0.15
Thermal Time Constant (min.) ¹⁾		15.1	15.1	15.1	15.1	15.1
Maximum Winding Temperature ²⁾	°C	100	100	100	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.

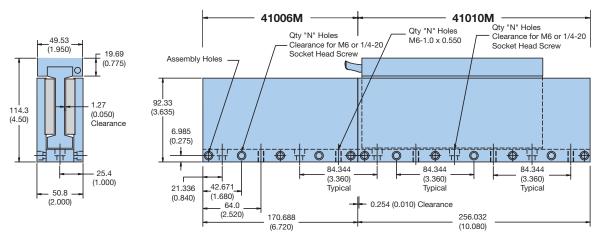
1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

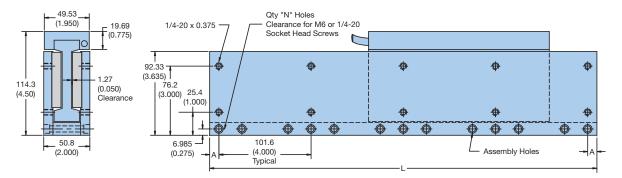

2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.

Mechanical

Model	Units	410-2	410-3	410-4	410-6	410-8
Coil Weight	kg (lb)	1.59 (3.5)	2.27 (5.0)	2.95 (6.5)	4.32 (9.5)	5.68 (12.5)
Coil Length	mm (in)	199.1 (7.84)	284.5 (11.20)	369.8 (14.56)	540.5 (21.28)	711.2 (28.00)
Attractive Force	N (lbf)	0	0	0	0	0
Electrical Cycle Length ¹⁾	mm (in)	85.34 (3.36)	85.34 (3.36)	85.34 (3.36)	85.34 (3.36)	85.34 (3.36)

1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.


Wiring Options


I-Force Ironless 410 Series

Magnet Track Specifications

410xxM Modular - mm (in)

410xxS Single Piece - mm (in)

	410xxM Modular	410xxS Single Piece
Incremental Length – mm (in)	3.36 (85.3)	1.68 (42.7)
Minimum Length – mm (in)	6.72 (170.7)	8.4 (213.4)
Maximum Length – mm (in) (for single piece)	63.89 (1621.5)	62.16 (1578.9)
Flatness - mm (in) per 12" of magnet track	0.1016 (0.004)	0.1016 (0.004)
Weight – kg/m (lbs/ft)	29.9 (20.0)	29.9 (20.0)

410xxM Modular

	L		
Part Number	mm	in	Ν
41006 M	170.69	6.72	2
41010M	256.03	10.08	3
41013M	341.38	13.44	4
41016 M	426.72	16.80	5
41020M	512.06	20.16	6
41023M	597.41	23.52	7
41026M	682.75	26.88	8
41030M	768.10	30.24	9
41033M	853.44	33.60	10
41036M	938.78	36.96	11
41040 M	1024.13	40.32	12
41043M	1109.47	43.68	13
41047 M	1194.82	47.04	14
41050M	1280.16	50.40	15
41053M	1365.50	53.76	16
41057 M	1450.85	57.12	17
41060M	1536.19	60.48	18
41063 M	1621.54	63.84	19

Modular Track Combinations With 41006M and 41010M

Lengt	h (L)*	Qua	ntity
mm	in	41006M	41010M
170.69	6.72	1	0
256.03	10.08	0	1
341.38	13.44	2	0
426.72	16.80	1	1
512.06	20.16	0	2
597.41	23.52	2	1
682.75	26.88	1	2
768.10	30.24	0	3
853.44	33.60	2	2
938.78	36.96	1	3
1024.13	40.32	0	4
1109.47	43.68	2	3
1194.82	47.04	1	4
1280.16	50.40	0	5
1365.50	53.76	2	4
1450.85	57.12	1	5
1536.19	60.48	0	6
1621.54	63.84	2	5
1706.88	67.20	1	6
1792.22	70.56	0	7
1877.57	73.92	2	6
1962.91	77.28	1	7
2048.26	80.64	0	8
2133.60	84.00	2	7
2218.94	87.36	1	8
2304.29	90.72	0	9
2389.63	94.08	2	8

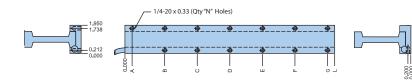
410xxS Single Piece

L		A	\	
mm	in	mm	in	Ν
213.4	8.40	5.08	0.200	3
256.0	10.08	26.42	1.040	3
298.7	11.76	47.75	1.880	3
341.4	13.44	69.09	2.720	3
384.0	15.12	90.42	3.560	3
426.7	16.80	10.16	0.400	5
469.4	18.48	31.50	1.240	5
512.1	20.16	52.83	2.080	5
554.7	21.84	74.17	2.920	5
597.4	23.52	95.50	3.760	5
640.1	25.20	15.24	0.600	7
682.8	26.88	36.58	1.440	7
725.4	28.56	57.91	2.280	7
768.1	30.24	79.25	3.120	7
810.8	31.92	100.58	3.960	7
853.4	33.60	20.32	0.800	9
896.1	35.28	41.66	1.640	9
938.8	36.96	62.99	2.480	9
981.5	38.64	84.33	3.320	9
1024.1	40.32	105.66	4.160	9
1066.8	42.00	25.40	1.000	11
1109.5	43.68	46.74	1.840	11
1152.1	45.36	68.07	2.680	11
1194.8	47.04	89.41	3.520	11
1237.5	48.72	9.14	0.360	13
1280.2	50.40	30.48	1.200	13
1322.8	52.08	51.82	2.040	13
1365.5	53.76	73.15	2.880	13
1408.2	55.44	94.49	3.720	13
1450.8	57.12	14.22	0.560	15
1493.5	58.80	35.56	1.400	15
1536.2	60.48	56.90	2.240	15
1578.9	62.16	78.23	3.080	15
	mm 213.4 256.0 298.7 341.4 384.0 426.7 469.4 512.1 554.7 597.4 640.1 682.8 725.4 640.1 682.8 725.4 81.5 1024.1 938.8 981.5 1024.1 1066.8 1102.1 1152.1 1152.1 1152.1 1194.8 1237.5 1280.2 1322.8 1365.5 1408.2 1450.8 1493.5 1536.2	213.48.40256.010.08298.711.76341.413.44384.015.12426.716.80469.418.48512.120.16554.721.84597.423.52640.125.20682.826.88725.428.56768.130.24810.831.92853.433.60938.836.96931.538.641024.140.321066.842.001109.543.681152.145.361194.847.041237.548.721280.250.401322.852.081365.553.761408.255.441450.857.121493.558.801536.260.48	mminmm213.48.405.08256.010.0826.42298.711.7647.75341.413.4469.09384.015.1290.42426.716.8010.16469.418.4831.50512.120.1652.83554.721.8474.17597.423.5295.50640.125.2015.24682.826.8836.58725.428.5657.91768.130.2479.25810.831.92100.58853.433.6020.32896.135.2841.66938.836.9662.99981.538.6484.331024.140.32105.661066.842.0025.401109.543.6846.741152.145.3668.071194.847.0489.411237.548.729.141280.250.4030.481322.852.0851.821365.553.7673.151408.255.4494.491450.857.1214.221493.558.8035.561536.260.4856.90	mminin213.48.405.080.200256.010.0826.421.040298.711.7647.751.880341.413.4469.092.720384.015.1290.423.560426.716.8010.160.400469.418.4831.501.240512.120.1652.832.080554.721.8474.172.920597.423.5295.503.760640.125.2015.240.600682.826.8836.581.440725.428.5657.912.280768.130.2479.253.120810.831.92100.583.960853.433.6020.320.800896.135.2841.661.640938.836.9662.992.480981.538.6484.333.3201024.140.32105.664.1601066.842.0025.401.0001109.543.6846.741.8401152.145.3668.072.6801194.847.0489.413.5201237.548.729.140.3601280.250.4030.481.2001322.852.0851.822.0401365.553.7673.152.8801408.255.4494.493.7201450.857.1214.220.5601493.558.80 <td< th=""></td<>

*Length is unlimited by combining modular track sections.

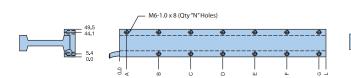
I-Force Ironless 410 Series

Coil Specifications


Imperial Mounting Options

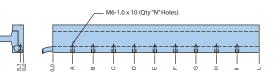
Top Mounting (A)

6


1/4-20 x 0.40 (Qty "N" Holes)

Coil Size/		Dimensions (in)									
Mounting Code	L	N	Α	в	С	D	Е	F	G		
410-2A	7.84	5	0.50	3.92	7.34	-	-	-	-		
410-3A	11.20	8	0.50	1.60	5.60	9.60	10.70	_	-		
410-4A	14.56	9	0.50	3.28	7.28	11.28	14.06	_	-		
410-6A	21.28	13	0.50	2.64	6.64	10.64	14.64	18.64	20.78		
410-8A	28.00	13	2.00	6.00	10.00	14.00	18.00	22.00	26.00		

Coil Size/ Mounting		Dimensions (in)									
Code	L	Ν	Α	В	С	D	Е	F	G	н	Т
410-2B	7.84	3	2.90	4.90	6.90	-	-	-	-	-	-
410-3B	11.20	3	4.10	7.10	10.10	-	-	-	-	-	-
410-4B	14.56	4	2.78	5.78	8.78	11.78	-	-	-	-	-
410-6B	21.28	6	3.14	6.14	9.14	12.14	15.14	18.14	-	-	-
410-8B	28.00	9	3.50	6.50	9.50	12.50	15.50	18.50	21.50	24.50	27.50


Metric Mounting Options

Top Mounting (M)

Coil Size/			I	Dime	nsior	ns (in)		
Mounting Code	L	Ν	Α	в	С	D	Е	F	G
410-2M	199.1	5	12.7	99.6	186.4	-	-	-	-
410-3M	284.5	8	12.7	40.6	142.2	243.8	271.8	—	-
410-4M	369.8	9	12.7	83.3	184.9	286.5	357.1	_	-
410-6M	540.5	13	12.7	67.1	168.7	270.3	371.9	473.4	527.8
410-8M	711.2	13	50.8	152.4	254.0	355.6	457.2	558.8	660.4

Side Mounting (N)

Coil Size/		Dimensions (in)									
Mounting Code	L	N	А	в	С	D	Е	F	G	н	I.
410-2N	199.1	3	73.7	124.5	175.3	-	-	-	-	-	-
410-3N	284.5	3	104.1	180.3	256.5	-	-	-	-	-	-
410-4N	369.8	4	70.6	146.8	223.0	299.2	-	-	-	-	-
410-6N	540.5	6	79.7	156.0	232.2	308.4	384.6	460.8	-	-	-
410-8N	711.2	9	88.9	165.1	241.3	317.5	393.7	469.9	546.1	622.3	698.5

How to order

Fill in an order code from each of the numbered fields to create a complete Motor Coil and Magnet Track order number.

Magnet Track

Motor Coil

Orc	Order Example:							Order Example:							
(1	2	3	4	(5)	6		1			1		2		
4	10 -	2	В -	NC -	WD2	Ρ	-	8			41023M	-	Ν		
1	Serie 410	es							1	Series 41006M			tions (refer to Modular ns chart on page 27)		
2	Coil									41010M	10.08" mc	dular se	ections (refer to Modular		
	2 3 4	-	Two pole: Three pol ⁻ our pole	es						410xxM	Track Combinations length chart on page 2 6.72 to 63.89" single piece, 3.36" increments (refer to part number selection chart on page 27) 8.4" to 62.16" single piece, 1.68" increments (refer to part number selection chart on page 27)				
	6 8	9	Six poles Eight pole							410xxS					
3	MountingAImperial top mountBImperial side mountMMetric top mountNMetric side mount					2	Magnet (N B	et Coating Nickel coating (standard) Black epoxy							
4	Cool NC AC LC	ן י	No coolin Air coolin _iquid co	g											
5	Wirin WD1 WD2 WD3 WD4		t ions (Re	fer to pa	age 25)										
6	Wind S P T		Series ^D arallel Triple												
1	Cabl xx	e Len	-	n feet (8	ft standaı	rd)									

RIPPED Ironcore Linear Motors

Parker RIPPED ironcore linear motors, with their patented anti-cog technology, produce the large forces needed for many industrial applications – without the roughness associated with traditional ironcore linear motors. With forces ranging from 13 lbf (57.8 N) continuous up to 1671 lbf (7433 N) peak, the RIPPED family is well suited for a broad range of extremely demanding applications.

Parker offers modular magnet tracks for unrestricted travel length. The RIPPED motor connector modules allow quick and easy installation while reducing overall maintenance costs. Ultra-high-flex cables come standard.

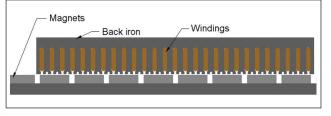
Virtually cog-free operation combined with powerful ironcore technology make the RIPPED family of motors a superior choice for affordable high-force, ultrasmooth motion.

Features and Benefits

- Ideal for high force
 applications
- Patented ultra-smooth anticog technology
- Connector modules allow quick and easy installation
- Internal thermal cutout
 switch protects coil
- Digital HEDs, home and +/limit sensors incorporated into connector module
- Modular magnet tracks with flush mounted magnet separators
- Built-in cable strain relief
- Two lengths of modular magnet tracks allow unlimited length of travel

Ironcore advantages

- High force per size uses laminations to concentrate the flux field
- Lower cost open face design only uses one row of magnets
- Laminations and large surface area allows good heat dissipation


Ironcore Disadvantages Compared to I-Force Ironless Linear Motors

- Normal attractive force

 5 to 13 times greater
 than force generated
- Cogging limits the smoothness of motion and creates velocity ripple. This is counteracted by Parker's patented anti-cog technology

RIPPED Ironcore Design Features

Ironcore motors consist of a forcer which rides over a single magnet rail. The forcer is made of copper

windings wrapped around iron laminations. The back iron provides an efficient path for the magnetic flux to circulate between the motor and the magnet rail. In addition, there is an efficient path for heat to escape the motor.

This ironcore design allows for extremely high forces and efficient cooling. In fact, the ironcore design offers the highest force available per unit volume. Finally, the ironcore design is economically attractive because only one row of magnet material is required. One of the drawbacks of the ironcore design is that the motor has a high attractive force between the forcer and the magnet track. The attractive force can range from 5 to 13 times the rated force of the motor. This force must be supported by the bearing system of the motor. In addition, the high attractive force makes installation more challenging than other linear motor designs.

Another drawback of the ironcore design is the presence of cogging

forces. Cogging occurs when the iron laminations exert a horizontal force on the motor in order to line up with their preferred positions over the magnets. Cogging limits the smoothness of motion systems because the force generated by the motor must change with position in order to maintain a constant velocity.

Parker has developed a patented anti-cog technology that virtually eliminates cogging and allows ironcore motors to be used in applications where only ironless motors were considered before. This offers the machine builder a powerful combination of extremely high force and smooth operation in an economical package.

Model R7 R10 R16 Page 36 38 40 Cross Section - H x W mm (in) 37.5 x 70 (1.476 x 2.756) 58 x 100 (2.28 x 3.94) 58 x 160 (2.28 x 6.30) Continuous Force - N (lbs) 462 (104) 1121 (252) 2230 (501) Peak Force - N (lbs) 1761 (396) 4097 (921) 7435 (1671) Maximum Track Length - mm 160 or 240 180 or 240 180 or 240 Cooling - - - Digital Hall Effect Devices Optional Optional Optional	I-Force Ironless Motor Selection			
Cross Section - H x W mm (in) 37.5 x 70 (1.476 x 2.756) 58 x 100 (2.28 x 3.94) 58 x 160 (2.28 x 6.30) Continuous Force - N (lbs) 462 (104) 1121 (252) 2230 (501) Peak Force - N (lbs) 1761 (396) 4097 (921) 7435 (1671) Maximum Track Length - mm 160 or 240 180 or 240 180 or 240 Cooling - - -	Model	R7	R10	R16
Cross Section - H x W mm (in) (1.476 x 2.756) (2.28 x 3.94) (2.28 x 6.30) Continuous Force - N (lbs) 462 (104) 1121 (252) 2230 (501) Peak Force - N (lbs) 1761 (396) 4097 (921) 7435 (1671) Maximum Track Length - mm 160 or 240 180 or 240 180 or 240 Cooling - - -	Page	36	38	40
Peak Force - N (lbs) 1761 (396) 4097 (921) 7435 (1671) Maximum Track Length - mm 160 or 240 180 or 240 180 or 240 Cooling - - -	Cross Section – H x W mm (in)			
Maximum Track Length - mm 160 or 240 180 or 240 180 or 240 Cooling - - -	Continuous Force – N (lbs)	462 (104)	1121 (252)	2230 (501)
Cooling – – –	Peak Force - N (lbs)	1761 (396)	4097 (921)	7435 (1671)
	Maximum Track Length – mm	160 or 240	180 or 240	180 or 240
Digital Hall Effect Devices Optional Optional Optional	Cooling	—	—	—
optional optional optional optional	Digital Hall Effect Devices	Optional	Optional	Optional

RIPPED Ironcore R7 Series

Performance*

Model	Units	R7-1	R7-2	R7-3
Peak Force ¹⁾	N (lb)	587 (132)	1174 (264)	761 (396)
Continuous Force ²⁾	N (lb)	154 (35)	308 (69)	462 (104)
Peak Power	W	3600	7200	10800
Continuous Power	W	180	360	540

* Specifications are based on the maintaining the air gap between the coil and track shown in the drawings. Refer to www.parkermotion.com

for motor performance curves at different air gaps. 1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units	R7-1	R7-	-2	R7	-3
Winding Serie	es/Parallel/Triple	S	S	Р	S	т
Peak Current	A ^{pk sine} RMS	29.7 21.0	29.7 21.0	59.4 42.0	29.7 21.0	89.1 63.0
Continuous Current	A ^{pk sine} RMS	6.6 4.6	6.6 4.6	13.2 9.3	6.6 4.6	19.8 14.0
Force Constant ¹⁾	N/A peak Ib/A peak	23.2 5.2	46.4 10.4	23.2 5.2	69.6 15.6	23.2 5.2
Back EMF ²⁾	V/m/s V/in/s	26.8 0.68	53.5 1.36	26.8 0.68	80.3 2.04	26.8 0.68
Resistance @ 25°C (phase-to-	-phase) ³⁾ ohms	4.0	8.0	2.0	12.0	1.33
Inductance (phase-to-phase)) ⁴⁾ mH	6.1	12.2	3.1	18.3	2.0
Electrical Time Constant ⁵⁾	ms	1.5	1.5	1.5	1.5	1.5
Motor Constant ⁶⁾	N/W Ib/W	11.5 2.58	16.2 3.65	16.2 3.65	19.9 4.47	19.9 4.47
Terminal Voltage (max.)	VDC	330	330	330	330	330

1) The force constant gradually decreases at high current levels. At the peak current the force constant is reduced by 24%.

Refer to www.parkermotion.com for motor performance curves at different current levels. TIPS sizing software accommodates the changing force constant with current in its algorithm.

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply

resistance by 1.295 (75 °C rise * 0.393%/°C).

4) Inductance measured using 1 Kz with the motor in the magnetic field.

5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

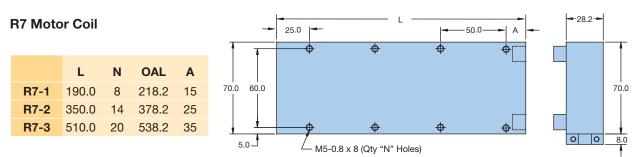
6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

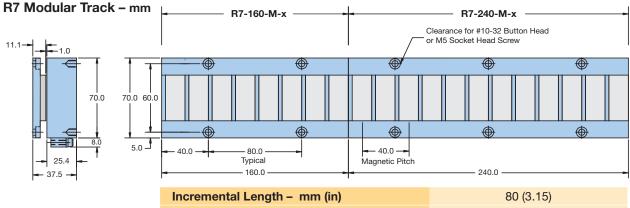
Thermal*

Model	Units	R7-1	R7-2	R7-3
Thermal Resistance Wind-Amb	°C/W	0.42	0.21	0.14
Thermal Time Constant (min.) ¹⁾		12.7	12.7	12.7
Maximum Winding Temperature ²⁾	°C	100	100	100

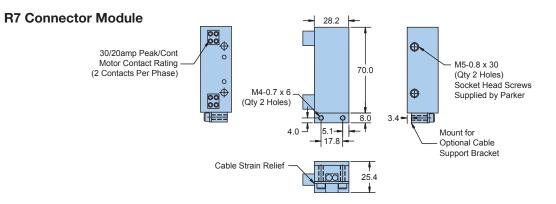
* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.

1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.


2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.


Mechanical

Model	Units	R7-1	R7-2	R7-3
Coil Weight	kg (lb)	1.5 (3.3)	3.0 (6.7)	4.5 (10.0)
Coil Length	mm (in)	218.2 (8.59)	378.2 (14.89)	538.2 (21.19)
Attractive Force	N (lbf)	1557 (350)	3114 (700)	4671 (1050)
Electrical Cycle Length ¹⁾	mm (in)	40 (1.575)	40 (1.575)	40 (1.575)


1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

Dimensions – mm

incremental Length – mm (in)	80 (3.15)
Minimum Length – mm	160 (6.30)
Weight – kg/m (lbs/ft)	4.57 (3.08)

RIPPED Ironcore R10 Series

Performance*

Model	Units	R10-1	R10-2	R10-3
Peak Force ¹⁾	N (lb)	1366 (307)	2731 (614)	4097 (921)
Continuous Force ²⁾	N (lb)	374 (84)	747 (168)	1121 (252)
Peak Power	W	6098	12196	18294
Continuous Power	W	305	610	915

* Specifications are based on the maintaining the air gap between the coil and track shown in the drawings. Refer to www.parkermotion.com

for motor performance curves at different air gaps. 1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model	Units	R10-1	R10	-2	R10	0-3
Winding Series/F	arallel/Triple	S	S	Р	S	т
Peak Current	A ^{pk sine} RMS	35.1 24.8	35.1 24.8	70.2 49.6	35.1 24.8	105.3 74.4
Continuous Current	A ^{pk sine} RMS	7.8 5.5	7.8 5.5	15.6 11.0	7.8 5.5	23.4 16.5
Force Constant ¹⁾	N/A peak Ib/A peak	47.7 10.7	95.5 21.5	47.7 10.7	143.2 32.2	47.7 10.7
Back EMF ²⁾	V/m/s V/in/s	55.1 1.40	110.2 2.80	55.1 1.40	165.4 4.20	55.1 1.40
Resistance @ 25°C (phase-to-pha	ise) ³⁾ ohms	4.1	8.2	2.05	12.3	1.36
Inductance (phase-to-phase) 4)	mH	15.4	30.8	7.7	46.2	5.1
Electrical Time Constant ⁵⁾	ms	3	3	3	3	3
Motor Constant ⁶⁾	N/W lb/W	21.4 4.82	30.3 6.82	30.3 6.82	37.1 8.35	37.1 8.35
Terminal Voltage (max.)	VDC	330	330	330	330	330

1) The force constant gradually decreases at high current levels. At the peak current the force constant is reduced by 24%. Refer to www.parkermotion.com for motor performance curves at different current levels. TIPS sizing software accommodates the changing force

constant with current in its algorithm.

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply

resistance by 1.295 (75 °C rise * 0.393%/°C).

4) Inductance measured using 1 Kz with the motor in the magnetic field.

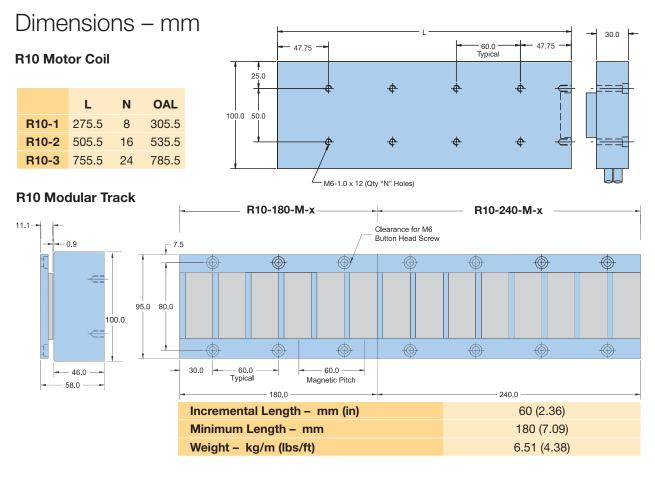
5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

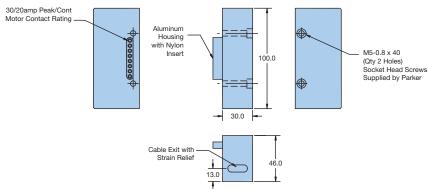
Thermal*

Model	Units	R10-1	R10-2	R10-3
Thermal Resistance Wind-Amb	°C/W	0.24	0.12	0.08
Thermal Time Constant (min.) ¹⁾		14.6	14.6	14.6
Maximum Winding Temperature ²⁾	°C	100	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.


1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.


Mechanical

Model	Units	R10-1	R10-2	R10-3
Coil Weight	kg (lb)	4.5 (10.0)	9.1 (20.0)	13.6 (30.0)
Coil Length	mm (in)	305.5 (12.027)	545.5 (21.476)	785.5 (30.925)
Attractive Force	N (lbf)	3559 (800)	7117 (1600)	10675 (2400)
Electrical Cycle Length ¹⁾	mm (in)	60 (2.362)	60 (2.362)	60 (2.362)

1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

R10 Connector Module

RIPPED Ironcore R16 Series

Performance*

Model	Units	R16-1	R16-2	R16-3
Peak Force ¹⁾	N (lb)	2478 (557)	4955 (1114)	7433 (1671)
Continuous Force ²⁾	N (lb)	743 (167)	1487 (334)	2230 (501)
Peak Power	W	7065	14130	21195
Continuous Power	W	353	707	1060

* Specifications are based on the maintaining the air gap between the coil and track shown in the drawings. Refer to www.parkermotion.com

for motor performance curves at different air gaps. 1) Peak force and current based on 5% duty cycle and one second duration.

2) Continuous force and current based on coil winding temperature maintained at 100 °C.

Electrical

Model Units		R16-1	R16	R16-2		R16-3	
Winding Series/F	Parallel/Triple	S	S	Р	S	т	
Peak Current	A ^{pk sine} RMS	34.8 24.6	35.1 24.8	69.8 49.3	34.8 24.6	104.5 73.9	
Continuous Current	A ^{pk sine} RMS	7.8 5.5	7.8 5.5	15.6 11.0	7.8 5.5	23.4 16.5	
Force Constant ¹⁾	N/A peak Ib/A peak	95.5 21.5	190.9 42.9	95.5 21.5	286.4 64.4	95.5 21.5	
Back EMF ²⁾	V/m/s V/in/s	110.2 2.80	220.5 5.60	110.2 2.80	330.7 8.40	110.2 2.80	
Resistance @ 25°C (phase-to-ph	ase) ³⁾ ohms	6.1	12.2	3.05	18.3	2.0	
Inductance (phase-to-phase) ⁴⁾	mH	29.0	58.0	14.5	87.0	9.7	
Electrical Time Constant 5)	ms	4.8	4.8	4.8	4.8	4.8	
Motor Constant ⁶⁾	N/W Ib/W	39.6 8.89	55.9 12.57	55.9 12.57	68.5 15.40	68.5 15.40	
Terminal Voltage (max.)	VDC	330	330	330	330	330	

1) The force constant gradually decreases at high current levels. At the peak current the force constant is reduced by 24%.

Refer to www.parkermotion.com for motor performance curves at different current levels. TIPS sizing software accommodates the changing force constant with current in its algorithm.

Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
 Resistance measured between any two motor leads with motor connected in Delta winding at 25 °C. For temperature at 100 °C, multiply

resistance by 1.295 (75 °C rise * 0.393%/°C).

4) Inductance measured using 1 Kz with the motor in the magnetic field.

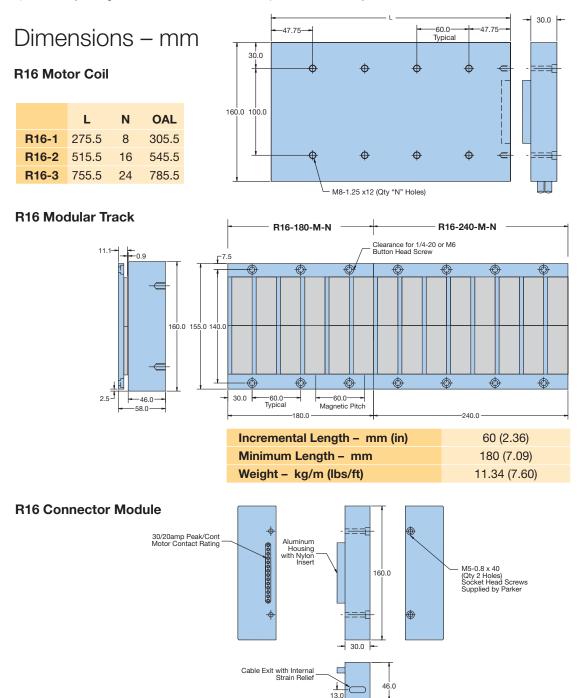
5) Electrical time constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

6) Motor constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.

Thermal*

Model	Units	R16-1	R16-2	R16-3
Thermal Resistance Wind-Amb	°C/W	0.21	0.11	0.07
Thermal Time Constant (min.) ¹⁾		37.1	37.1	37.1
Maximum Winding Temperature ²⁾	°C	100	100	100

* Use Parker's MotionSizer software for the most accurate estimate of coil temperature for a particular motion profile.


1) Thermal time constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

2) Thermal resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated determined experimentally.

Mechanical

Model	Units		R16-2	R16-3	
Coil Weight	kg (lb)	9.1 (20.0)	18.2 (40.0)	27.3 (60.0)	
Coil Length	mm (in)	305.5 (12.027)	545.5 (21.476)	785.5 (30.925)	
Attractive Force	N (lbf)	7117 (1600)	14234 (3200)	21351 (4800)	
Electrical Cycle Length ¹⁾	mm (in)	60 (2.362)	60 (2.362)	60 (2.362)	

1) Electrical cycle length is distance coil must travel to complete 360° electrical cycle.

RIPPED Ironcore Linear Motors

How to order

Fill in an order code from each of the numbered fields to create a complete Motor Coil, Magnet Track and Connector Module order number.

Motor Coil

der Examp	ole:				
1	2	3	4	(5)	6
R10	2	Α	NC -	Μ	S
Series R7 R10 R16					
Coil Size 1 2 3	One p Two p	oles			
Mounting A	•	ard			
NC	No co		ling option	s.	
Module I M	-	ves conr	nector mo	odule	
Winding S P T			• /		
e extreme ca ntain expose by ferrous me lock. The amou stance from the fingers or hau	nution in h d magnet tal, steel c unt of attr ne magne	andling tr s and hav or iron, wil active for t decreas	e an open l be attract ce increase es. Severe	magnetic ed to the s significa injury ma	field. magnet antly as the ly occur
	T R10 R10 R10 R10 R16 Coil Size 1 2 3 Mounting A Cooling* NC * Consult fa Module I M Winding S P T fety Prec e extreme cantain expose y ferrous me	R10 - 2 Series R7 R10 R16 Coil Size 1 1 One p 2 Two p 3 Three Mounting A A Standa Cooling* No cool MC No cool * Consult factory for Module Ready M Receive Winding S S Series P Paralle T Triple (Series P P Paralle T Triple (①②③R10-2ASeriesR7R10R16Coil Size1One pole2Two poles3Three polesMountingThree polesMounting*StandardCooling*NCNCNo cooling* Consult factory for water coordModuleReceives conrestWindingSeriesPParallel (2-pole)TTriple (3-pole)cottetTriple (3-pole)AStandlight to the magnet decreasfingers or hands if caught between the magnet decreas	①②③④R10-2A-NC-SeriesR7R10R16-NC-Coil Size1One pole1One poles2Two poles3Three polesMountingAStandardCooling*NCNo coolingNCNo cooling* Consult factory for water cooling optionModule ReadyMReceives connector modeMindingSSeriesPParallel (2-pole only)TTriple (3-pole only)settereme caution in handling tracks. Irono ration exposed magnets and have an open y ferrous metal, steel or iron, will be attractive force increases. Severe fingers or hands if caught between the track-	①②③④⑤R10-2A-NC-MSeriesR7R10R16-NC-MR10R16-One poleACoil Size1One pole2Two poles-Three poles3Three polesMounting-StandardAStandardMousting*-No cooling* Consult factory for water cooling optionsMReceives connector moduleWindingSSeriesSSeriesPParallel (2-pole only)TTriple (3-pole only)steet Preceutions:e extreme caution in handling tracks. Ironcore Linear train exposed magnets and have an open magnetic of encreases signification of en

Use extreme caution when installing the coil. The data sheet lists the attractive force between the coil and track. Refer to the "Motor Installation Guide" for proper installation instructions.

Any person with medical electronic implants should use extreme caution when near an open magnetic field. The magnetic field could interfere with the medical device's operation.

Any person working or handling the tracks should remove personal effects. Items such as jewelny, watches, keys and credit cards may be damaged or adversely affected by the magnetic field.

Magnet Track

IVI8	Magnet Irack							
Or	der Ex	ample						
		1	2	3		4		
		R10	- 240	М	-	Ν		
1	Serie R7 R10 R16	es						
2	Trac	k Leng						
	160 180		160 mm (F 180 mm (F		316 on	(v)		
	240		240 mm (a			y)		
3	Mod	ular						
	Μ	ç	Standard					
4	Mag N	Ignet Coating Nickel coating (standard)						
Co	onnec	tor M	odule					
Or	der Ex ①	ample	e: ②	3	4		5	
	R1		HED -	B	S		1	
		0 -		n	3			
1	Serie R7 R10 R16	es						
2	Devi HED	N	scription Motor con imit sensc		igital H	EDs, ł	nome and	
3	Mod R	ule Ty	pe Standard					

Module Winding* (4)

S Single

Ρ Parallel

Т Triple

* Must corresponds to motor coil windings.

Cable Length (5)

- 1 meter (standard) 1
- specify length (in meters) х

Linear Motor-Driven Positioners

Visit our website for more information on Parker positioner products and integrated linear motor systems

T Series Smooth Motion I-Force Ironless Positioners

The Parker T Series linear positioners utilize our high-performance ironless linear motors in a pre-engineered, easily integrated, ready-to-run package. The T Series advantages include economical cost and design flexibility to accommodate customization. MX Series Miniature Linear Motor-Driven Positioners

Miniaturization of fiber optics, photonics, electronics and biomedical processes has driven the need for smaller and more efficient positioners. Parker's MX miniature stage, the smallest linear servo motor-driven positioner in the industry, is loaded with high-performance features for both rapid linear translation and precise positioning of lighter loads in small work envelopes.

mSR Series Miniature Square Rail Guided Positioners

The mSR is a miniature, high precision linear positioner which uses dual precision grade square rails for its guidance, and an ironless linear motor for its drive. Also included are a linear encoder and limit and home sensors. The mSR can easily be configured into multi-axis configurations.

LXR Series Precision Linear Motor-Driven Positioners

The 400LXR Series linear servo motor tables offer high acceleration, velocity, and precision with quick settling for superior throughput. Optimum performance is achieved by combining slotless linear motor technology with performance-matched feedback and mechanical elements. Offered in three widths and myriad options, the 400LXR Series can solve most high-performance applications.

Complete Motion Systems

Parker's Electronic Motion and Controls Division brings together leading brands in industrial and high-tech automation, including Compumotor, CTC, Custom Servo Motor, Daedal, and Trilogy. Designed for easy configuration to make a complete motion system — from miniature precision for life sciences to overhead gantries for the factory floor - these bestof-breed individual components are available separately, so you can build a motion system from the ground up, or as a complete motion system to make integration simple, fast and easy.

Total System Solutions

Parker's team of highly qualified application engineers, product development engineers, and system specialists can turn pneumatic, structural and electromechanical products into an integrated system solution. Moreover, Parker's Selectable Levels of Integration[™] allows you to choose the appropriate system, subsystem, or component to meet your specific need.

24/7 Emergency Breakdown Support

The Parker product information center is available any time of the day or night at 1-800-C-Parker. Parker operators will connect you with a live, on-call representative who will identify replacement parts or services for all motion technologies.

The Power of Parker

In today's competitive, fastmoving economy, what good is an application that isn't ready on time? This is especially true when compressed design cycles make the quick delivery of critical components essential. With factories strategically located on five continents, Parker offers an unrivaled delivery record, getting solutions out our door and onto your floor faster than ever.

Parker also has the industry's largest global distribution network, with more than 8,600 distributors worldwide. Each of these locations maintains ample product inventory to keep your downtime to a minimum. And many distributors have in-house design capabilities to support your system and subsystem requirements. Throughout the design process, Parker's factory-trained electromechanical engineers work hand in hand with you and day or night at 1-800-C-Parker. Parker operators will connect you with a live, on-call representative who will identify replacement parts or services for all motion technologies.

Parker's award-winning web site is your single source for:

- Product information
- Downloadable catalogs
- Motion-sizing software
- 3D design files
- Training materials
- Product-configuration
 software
- **RFQ** capabilities
- Videos and application reports

©2022 Parker Hannifin Corporation

Parker Hannifin Corporation **Electronic Motion and Controls Div.** 5500 Business Park Drive Rohnert Park, CA 94928 USA parker.com/emc Tel: 800-358-9070 Email: emn.service@support.parker.com Catalog 96-028778-01 Rev E Issue Date 8/2022