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Preface 

Living creatures show distinct abilities to interact adaptively with their 
environment. These characteristics find their roots in the self-organizing 
dynamics of neural circuits, which in nonlinear science represent the high- 
est example of emergent system behavior. In this work bio-inspired loco- 
motion control is achieved by means of arrays of locally coupled nonlinear 
systems (Cellular Nonlinear Networks). The main point of the approach is 
that nonlinear oscillators are an efficient way not only to model the prin- 
ciples underlying neural structures devoted to locomotion control in living 
creatures, but more importantly to implement them to build autonomous 
walking robots. In this context the concepts of self-organization and syn- 
chronization, universal paradigms of science and real world laws, play a 
fundamental role in the emergence of the complex behavior of the network 
of nonlinear circuits. The proposed method is efficient at  all levels of the 
hierarchical control of locomotion: the low level of gait generation, reflex 
and sensory feedback implementation, and the high level of posture sta- 
bilization and behavioral modules. The strategy introduced is hardware- 
oriented, so the concepts of emergent behavior and self-organization can 
be appreciated in chip devices applied to walking machines. Experimental 
results obtained with a prototype of the VLSI chip implementing the Cel- 
lular Nonlinear Network generating the locomotion pattern and tests on a 
bio-inspired insect-like robot are presented. 

This book constitutes a complete monograph on new locomotion con- 
trol strategies of bio-inspired robots implemented through Cellular Nonlin- 
ear Networks (CNNs). The new approach for locomotion control, based 
on emergent properties of nonlinear dynamical systems, is exhaustively de- 
scribed and several case studies are presented. Topics related to the problem 
of locomotion control from low level to high level control are addressed. 
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The book contains both a detailed introduction on the fundamentals 
of Cellular Nonlinear Networks and bio-inspired control and research re- 
sults with particular emphasis on applications. The proposed methodology 
is illustrated with the help of several examples dealing with bio-inspired 
hexapod robots. The present book is thus aimed both at  newcomers to the 
field of bio-inspired locomotion control and graduate students in advanced 
courses on bio-inspired robotics as well as PhD students and researches 
both from academic institutions and industrial companies. In particular, 
the main features of the approach beneficial to the reader are the following: 
analog computation is used to control locomotion systems; realization of 
well-tested circuit for control is discussed; each reader could implement its 
own circuits at low cost (few dollars for each a.nalog unit). 
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Chapter 1 

Introduction 

The problem of locomotion control in legged robots can be faced by taking 
inspiration from biology and applying to walking robots the principles un- 
derlying the neural control of locomotion in animals. This is the viewpoint 
of the so-called biologically inspired robotics (whose interests, of course, are 
not restricted to locomotion control) and is a major theme of this book. 

Bio-inspired robotics [Webb and Consi (2001); Arkin (1998)] is, by def- 
inition, a broad field, including synergies from various disciplines: neuro- 
science, biology, ethology and robotics. Robotics itself is multi-disciplinary 
involving at  least mechanics, electronics and computer science. Hence a 
large variety of bio-inspired approaches have been developed, whose degree 
of biological inspiration ranges from very accurate mechanical designs (the 
most representative example of which is the cockroach-like robot illustrated 
in [Quinn et. al. (1998)]) to neuromorphic systems [Horiuchi (1992)l. 

From the engineering viewpoint the main reason for the great interest 
in bio-inspired approaches is the fact that bio-robotics provides suitable 
solutions for the design of efficient walking robots since the nature of the 
problems an animal and a legged robot deal with is the same. These solu- 
tions are very often common principles shared by a large variety of animals 
and are even present in low phyla, so they appear as simple solutions to 
hard problems. Applications of these principles are possible since great ad- 
vances have been made by biologists in understanding animal locomotion, 
and a t  the same time they are interesting topics of study for biologists 
since bio-robots are a good realistic way to verify a hypothesis regarding 
the biological model and a good source for new ideas. 

For this reason bio-inspired robotics includes both robotic animal mod- 
els ( that  can be useful for a better understanding of biological behavior), 
and more abstract robotic models, and thus benefits both robotics and 
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biology [Marder (2001); Webb (2001)]. 
This work focuses on bio-inspired locomotion control in a hexapod 

robot. This includes both a low-level control and a brief look at  the pos- 
sibilities of high-level control, for example attitude control and trajectory 
planning. Two different biological hypotheses are considered for the low- 
level locomotion control: the Central Pattern Generator and the decentral- 
ized locomotion contol. Both of them lead to suitable control schemes with 
different advantages and drawbacks. 

The control of legged locomotion is by no means a trivial problem and 
large computational resources are often required to solve this problem in 
real time. On the other hand the high degree of adaptability even sim- 
ple animals possess when moving in complex, unstructured environments is 
surprising. I t  is more exciting to observe how a universal paradigm emerges 
from studies performed on very different animals: the slow movement of the 
two wings of the sea angel Clione limacina, a marine mollusc, and the per- 
fect running of the cat; the undulatory swimming movements of one of the 
oldest vertebrates, the lamprey; the flight of the locust and the scratching 
of domestic mice are regulated by motor systems whose structures share 
surprising similarities [Orlovsky et. al. (1999)]. All these examples ex- 
hibit a hierarchical organization of the motor system; this paradigm, called 
the Central Pattern Generator (CPG), is a central topic of this work and 
therefore needs to be dealt with in greater detail. 

1.1 The Central Pattern Generator (CPG) 

The history of progress in the knowledge and understanding of neural con- 
trol of locomotion demonstrates the usefulness of the synergy between en- 
gineering and biology. The first pioneering studies, based on photographic 
techniques to capture the essential features of animal locomotion, have 
evolved to include high resolution frequency video-recordings of animal lo- 
comotion, recordings of the activity of individual muscles using an elec- 
tromyograph (EMG) and even computer simulations of possible models 
[Shepherd (1997)l. These techniques provide quite an accurate sequence of 
animal movements and monitoring of the neurons involved in locomotion 
control. Although they do not provide a complete understanding of the 
whole system (often made up of a huge number of neurons), these studies 
reveal a common paradigm in many animal species, from invertebrates to 
vertebrates. 
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First of all, they reveal that the pattern of locomotor activity is due to a 
pattern of neural activity. Then different elements, hierarchically organized 
and common to the motor system of various animals, can be identified 
despite the differences in the kind of locomotion and body forms. 

The key component of the motor system is the Central Pattern Genera- 
tor (CPG), a neural circuit that can produce a rhythmic motor pattern with 
no need for sensory feedback or descending control. I t  is mainly located in 
the spinal cord of vertebrates or in relevant ganglia in invertebrates. The 
CPG includes all of the essential neural mechanisms for generating coordi- 
nated rhythmic motor-neuron and therefore muscle outputs. Signals from 
the CPG directly control the effector organs (cilia, legs), while the signals 
it receives from higher control neurons are necessary only to initiate the 
locomotion, but not to generate the correct pattern of movements: indeed 
the generation of rhythmic movements takes place a t  the neural level of the 
CPG. This has been demonstrated in a number of experiments, animals de- 
prived of commands from high-level neural centres are still able to locomote 
provided there is external stimulation to the CPG. Likewise, the presence 
of feedback from environment is not strictly necessary to generate a rhyth- 
mic pattern: this has been observed even when the feedback is inhibited 
in what is called fictive locomotion [Cohen and Wallen (1980)], consisting 
of removing sensory feedback and descending control and eliciting the mo- 
tor pattern. Obviously, the feedback signals modify the locomotion pattern 
and are fundamental to achieve good performance by the whole control sys- 
tem in real environments. Likewise, removing higher control signals often 
results in a loss of the stability for the animal. In other words, it appears 
that the posture control involves higher neuron centers. We will come back 
to this important issue when dealing with the problem of attitude control 
in the hexapod robot. 

Figure 1.1 shows the key features of the motor system of many animals, 
emphasizing the presence of different types of feedback: central feedback 
directed to the higher control neurons, reflex feedback from the motor out- 
put to the CPG, and sensory feedback from the environment to either the 
CPG or the higher level control. In Fig. 1.1 the feedback paths on the left 
represent the flow of proprioceptive information, while those on the right 
represent the flow of exteroceptive information. 

It should be pointed out that in many biological cases the functional 
subdivision shown in Fig. 1.1 does not correspond to different neural net- 
works: the same networks may act a t  different levels of the structure (for 
example in the Tritonia [Shepherd (1997)l). 
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The motor system 

Fig. 1.1 
from the Clione to the cat. 

The main functional features of the motor system are common to many animals, 

Besides eliciting the motor pattern, the higher control neurons are re- 
sponsible for important decisions such as the choice of the right locomotion 
pattern (i.e. swimming if the animal is in water or walking if it is on the 
ground) or escape reactions. 

The great importance of the CPG lies in the fact that central generators 
of rhythms have been demonstrated in all animals to account for rhythmic 
movements that are essential for survival: the ability to move (defined by 
Shepherd [Shepherd (1997)] as “the most important characteristic of ani- 
mal life”) and, an even more significant example, breathing in vertebrates 
[Randall et. al. (2001)]. 

1.2 Locomotion control in hexapods 

The walking of hexapod insects is probably the most controversial example 
of the role of the CPG in locomotion control. Stick insects, cockroaches 
and locusts have been widely studied by neurophysiologists. Recordings 
of walking by video cameras and other experiments reveal various types 
of behavior: reflexes and typical locomotion gaits can be reconstructed 
from experimental data and thoroughly investigated. These studies reveal 
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a fundamental role played by sensors in determining locomotion gait. 
In absence of sensory feedback the behavior of these insects is differ- 

ent: while rhythmic movements of the single legs are still evident, but the 
coordination among legs is lost in the cockroach, in the stick insect even 
coordination among the joints of each single leg disappears [Orlovsky et. al. 
(1999)l. This behavior is explained by different models: CPG supporters 
hypothesize that there exist two different kinds of CPG: the first, account- 
ing for the findings on the cockroach, consists of a common oscillator for 
different leg joints; the second, accounting for the findings on the stick 
insect, consists of an individual oscillator for each joint. Since the interac- 
tions between the CPGs are not sufficient for the normal coordination of 
legs in absence of feedback (the phase shifts between the legs are abnormal 
in such cases), it seems clear that sensory feedback plays an important role 
in these cases. In other hexapod walkers, the crustaceans, the situation 
seems less critical; the rhythm, artificially promoted, resembles the forward 
or backward walking of intact animals, but is usually slower [Chrachri and 
Clarac (1987)]. 

The neural network devoted to locomotion control in hexapod walkers 
remains unclear, since there are at least two other factors, not yet discussed, 
that play an important role in the locomotion control: posture control which 
involves high-level controls, and the high number of neurons (indeed it is 
more correct to talk about motor-neuron pools than motor-neurons). 

Although the experiments on the stick insect can be explained by hy- 
pothesizing CPGs a t  the level of individual leg joints, the formulation of a 
CPG sounded quite artificial to some biologists and other theories have been 
developed to take into account the complex features of locomotion control 
in the stick insect. Cruse formulated a decentralized locomotion control 
model in which there is no endogenous oscillator: the stepping rhythm is 
induced by sensory feedback [Cruse (199O)I. 

The decentralized control paradigm is based on a distributed network 
of neural controllers, with no hierarchy, that are able to generate proper 
motions based on reflexes and local influences [Cruse et. al. (1998a)l (unlike 
the CPG it strictly needs sensory feedback for pattern generation, while the 
generation of the locomotion pattern in the CPG takes place even in absence 
of sensory feedback). The decentralized model is based on a controller 
network for each leg and on a set of local influences acting on two kinematic 
parameters: the posterior extreme position (PEP) and the anterior extreme 
position (AEP) of the leg contact point. The kinematics of a leg is divided 
into two phases: the stance phase (or power stroke) in which the leg is on 
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the ground, supports the weight of the body and moves in the opposite 
direction to the body motion; and the swing phase (or return stroke) in 
which the leg is lifted off the ground and moves in the direction of the insect 
motion. The AEP represents the point when the leg touches the ground, 
i.e. the transition from the return stroke to the power stroke, while the 
PEP represents the transition from the power stroke to the return stroke, 
i.e. the point when the leg is lifted in the air. 

The leg controller alternately switches between the stance and swing 
phases on the basis of sensorial inputs (the ground contact signal, indicating 
when a leg is on the ground, and the PEP signal, indicating whether the 
PEP has been reached or not) and proprioceptive information (the joint 
angles). A set of local influences acting on the kinematic parameters (AEP, 
PEP) of each leg controller has been shown to be suitable to explain the 
emergence of a well-defined gait in stick insect locomotion [Cruse et. al. 
(1998a)l. 

1.3 Main topics of the work 

This work presents a new strategy for bio-inspired locomotion control based 
on locally coupled nonlinear circuits, like the motor-neurons of the neural 
systems in animals. The aim is to discuss the control strategy focusing on 
both theory and implementation issues, starting from low-level control of 
locomotion (represented by the CPG or decentralized locomotion control) 
and extending to a brief discussion of possible bio-inspired strategies based 
on nonlinear circuits, which are suitable for the implementation of high-level 
behavior. 

Both control schemes, the CPG and decentralized locomotion control, 
are investigated. From an engineering viewpoint the scheme based on the 
CPG paradigm is mainly feedforward control (it is able to generate the 
right signals in absence of feedback), while the decentralized control scheme 
totally relies on feedback. From the viewpoint of robotics implementing 
the two approaches is not a mere exercise. They rely on very different 
hypotheses and therefore offer very different advantages. In principle, it 
seems more robust to rely on the status of the sensor signals. However, 
in the case of hexapod walking for example it can be very hard to deal 
with a distributed networks of sensors: ground contact signals for example 
are strongly influenced by the force distribution of the hexapod on the 
legs in the stance phase, hence the ground sensor of a stance leg can give 
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erroneous information about the leg status. Moreover, biological findings 
strongly support the CPG scheme. Though the two approaches are by 
themselves self-contained and exhaustive, it may be worthwhile envisaging 
a framework that exploits the advantages of the two schemes: the CPG 
may be more suitable for high speeds, escaping behaviors and so on, while 
the decentralized scheme can be more efficient in slow walking, exploration 
and so on. 

Features common to the two biological schemes are the concepts of 
motor-neurons, local influences and signals from high-level control centers. 
The main difference is the role played by sensor feedback: in decentralized 
locomotion control it is essential and without sensors no locomotion can 
be obtained. In the CPG feedback modulates the locomotion pattern, but 
it is not needed to generate it. These common features allow a unified 
approach to the implementation of these schemes. The concepts of local 
interaction, self-organization and nonlinear circuits are the main ingredients 
of the approach introduced in this book. 

Cellular Neural/Nonlinear Networks (CNNs) play an important role in 
this research field since they offer the possibility of implementing nonlinear 
dynamics like those arising in natural phenomena, through parallel, fully 
analog but digitally programmable circuitry. They provide a framework 
for the implementation of the CPG for locomotion control. Even if the 
approach is general and can be applied to any locomotion system with 
particular benefits when the number of actuators grows, the focus of this 
work is mostly on a hexapod robot, since the need to have an experimental 
framework, in which to perform real tests of the methodology, forces us to 
choose a specific example. 

The guidelines for the design of the CNN-based CPG are illustrated in 
Chap. 2. The role of feedback is discussed in Chap. 3. Since the work 
aims to give particular emphasis to the implementation issue, the design 
of a VLSI CNN-based CPG chip has been considered. Its features and 
the experimental results obtained with the first prototype of a CNN chip 
for locomotion control are also discussed in Chap. 3. The VLSI chip is 
implemented with a switched-capacitor technique: the choice of the imple- 
mentation strategy adopted is fundamental to achieve a simple and efficient 
control strategy. 

Chapter 4 introduces decentralized locomotion control: two different 
implementations, through CNNs and integrate-and-fire neurons, are dis- 
cussed. 

Chapter 5 shows several examples of bio-inspired robots. In particular, 
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a lamprey robot and several prototypes of hexapod robots are taken into 
account as applications of the analog approach to locomotion control. 

The next two Chapters deal with high-level analog control. In partic- 
ular, in Chap. 6 the important issue of attitude control for the hexapod 
robot is approached with two different strategies. The first one is based 
on distributed control through CNNs, while the second, based on Motor 
Maps, introduces a more general framework for the control of nonlinear 
systems in which self-organization and unsupervised learning play a funda- 
mental role in realizing an adaptive controller inspired by the motor cortex 
of the human brain. Chapter 7 introduces a strategy for obstacle avoidance 
and navigation control based on autowaves and Turing patterns. A very 
important point of this strategy is that both the two approaches can be im- 
plemented in a CNN. The examples of robots implementing these control 
strategies are given in these two Chapters. 

Chapter 8 compares our work with other bio-inspired approaches and 
draws the conclusions of the book. 

One final remark concerns the tools exploited to investigate the topics 
dealt with. The implementation of real circuits on either discrete compo- 
nent electronic boards or dedicated chips is often a time-consuming process. 
On the other hand one of the key points of bio-inspired robotics is to per- 
form experiments on real hardware. For these reasons two tools have been 
developed. Aiming to be a first step in the design of a legged robot and a t  
the same time a tool for testing bio-inspired control, a software simulator of 
a hexapod robot with a graphic interface has been considered. Moreover, a 
framework in which the bio-inspired control system, implemented via soft- 
ware, is running on a PC driving the real robot, through the parallel port 
or a communication module, has also been implemented. These tools are 
presented in Appendix A. 

Appendix B illustrates the design of the CNN used to implement the 
CPG. Appendix C illustrates a bio-inspired sensor for robot navigation in 
complex environments. 

Movies and experiments of the bio-inspired robots presented in this book 
are available on-line [DIEES webpage]. 



Chapter 2 

CNN-based Central Pattern 
Generators 

The concept of a Central Pattern Generator (CPG), a network of neurons 
producing the locomotion pattern within a lattice of neural activity, is a 
suitable paradigm for biologically inspired control of artificial locomotion. 
In this Chapter a new approach to the design of CPGs, based on Cellular 
Neural Networks (CNNs), is presented. From a biological point of view this 
new approach includes an approximated chemical synapse implemented in 
a CNN structure. This allows us to obtain a general class of artificial CPGs 
in which the desired locomotion pattern and switching among patterns are 
achieved by means of a spatio-temporal algorithm implemented in the CNN 
structure. 

2.1 Introduction 

Walking animals employ several distinct periodic patterns of leg move- 
ments, called gaits. Stereotyped movements (locomotion patterns) are also 
observed in swimming, flying, crawling animals. The hypothesis underly- 
ing the CPG is that  these patterns are due to a pattern of neural activities 
within the CPG network (the key feature of these networks is that the pat- 
tern of neural activity is mapped onto the pattern of locomotor activity). 
This concept is useful in robotics, since the control of a legged robot is a 
hard task, involving a high number of interconnected degrees of freedom 
(DOF). Its application to robotics gives rise to the following problem: given 
a desired behavior (i.e. a locomotion pattern), generating the feedforward 
signals driving the legs of the robot. 

A widespread approach to modelling CPGs is to use dynamical systems 
[Cohen et. al. (1982); Collins and Stewart (1993a); Collins and Stewart 
(1993b); Golubtisky et. al. (1998)]: CPGs are viewed as networks of coupled 

9 
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nonlinear systems. Some of these works exploit the symmetry of animal 
gait to build up CPGs and analyze the possible patterns of oscillation by 
means of considerations on the network symmetry and Hopf bifurcations in 
symmetrical systems [Golubtisky and Stewart (1985)]. 

This strategy considers a network of coupled nonlinear systems with 
given connections and allows the system parameters to be variable in or- 
der to account for distinct gaits. The so-called “group-theoretic approach” 
[Collins and Stewart (1994)l predicts all the possible solutions respecting 
the symmetry of the network, based on general considerations that are in- 
dependent on the specific models, but it does not discuss the stability of 
the solution, which is strictly related to the specific model used. From 
an engineering viewpoint this is a fundamental feature that needs to be 
investigated, at least numerically, to guarantee the feasibility of the imple- 
mentation. 

There are common assumptions in the dynamical approach to CPGs: 
the nonlinear oscillators are often assumed to be identical, the stepping 
movements of each limb are controlled by a single oscillator, while inter- 
limb coordination is provided by the connections between the oscillators. 
Moreover, the results are often general and independent of the physiological 
interpretation of the oscillators: i.e. the oscillator may represent either a 
single motor-neuron or a population of neurons controlling the movement of 
a leg or an inter-neuron. Moreover, as discussed in Chap. 1, biologists and 
neurophysiologists often refer to CPGs for single leg control. Very often in 
the dynamical approach to CPGs the term CPG refers to the network con- 
trolling the whole motor system, i.e. it comprises both single leg controllers 
and connections between them. 

In the present work the problem of locomotion control is also approached 
from the perspective of coupled nonlinear oscillators. However, our interest 
focuses primarily on the design of a network of coupled oscillators where 
distinct locomotion patterns emerge to provide a suitable control for bio- 
inspired robots, and in particular for six-legged robots. 

Moreover, particular attention is devoted to implementation issues. 
Therefore, CNNs, known as universal tools for the study and implemen- 
tation of nonlinear complex dynamics, have been chosen to model both the 
nonlinear oscillator and the whole population dynamics. However, in order 
to realize a robotic CPG we are forced to fix the interpretation level: the 
nonlinear oscillator consists of a second-order nonlinear circuit, made u p  of 
two elementary first-order CNN cells, and in the examples given in Chap. 5 
it is used to directly control the stepping movement of a leg (in the case of 
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the hexapod robot) and the movement of a body segment (in the case of 
the lamprey robot). This oscillator is referred to  as the CNN motor-neuron 
or CPG cell (since it is the basic cell to  build up the CPG). 

As the approach aims to be general, in the first part of the Chapter 
we will refer to a generic locomotion structure and to a generic locomotion 
pattern. Then we will focus on an example of legged robot. 

In particular, the following definition of locomotion pattern is assumed: 

(Locomotion pattern.) A locomotion pattern is a pattern Definition 2.1 
of periodic movements for the actuators of a given locomotion structure. 

When the attention will focus on the example of hexapod robots, we will 
refer to gaits instead of locomotion patterns as the term is more appropriate 
for legged robots. 

The hierarchical organization of the biological motor system inspired 
the design of the analog distributed control of several motion systems as 
illustrated in [Arena et. al. (1999); Arena et. al. (2000)l. The control 
of these robots is based on Reaction-Diffusion equations implemented by 
means of CNNs and is the starting point for the more general approach 
discussed in this Chapter. The approach to the design of CPGs for artificial 
locomotion control depicted in this Chapter is the result of a generalization 
of the synaptic connections between the neurons constituting the CPG. 

It  is not quite clear which physiological mechanisms are used to re- 
organize the neuron configuration in order to switch between locomotion 
patterns. Two mechanisms involved in this operation are focused on by neu- 
robiologists. In some cases it is only necessary to change the parameters of 
the synapses, while in other cases a complex reorganization of the network 
is required. In this latter case some synaptic connections may well be in- 
hibited and others excited towards neurons not yet involved in the former 
pattern generation. This latter case is implemented by using Reaction- 
Diffusion (RD) CNNs and is dealt with in Sec. 2.4.1. The more general 
approach to CPG implementation, based on the principle that the same 
group of neural cells can be reorganized by changing the synaptic connec- 
tions, corresponds to a CNN implementation with space variant templates 
and is dealt with in Sec. 2.4.2. 
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2.2 Brief overview on CNN architectures 

CNNs were introduced by L. 0. Chua [Chua and Yang (1988a); Chua and 
Yang (1988b)l in 1988. His idea was to use an array of simple, identical, 
locally interconnected nonlinear dynamic circuits, called cells, to build large 
scale analog signal processing systems. The cell was defined as the nonlinear 
first-order circuit shown in Fig. 2.1(a), ut3, yt3 and xt3 being the input, the 
output and the state variable of the cell respectively. The output is related 
to the state by the nonlinear equation: 

A CNN is defined as a two-dimensional array of M x N  identical cells 
arranged in a rectangular grid, as depicted in Fig. 2.l(b). Each cell mutu- 
ally interacts with its nearest neighbors by means of the voltage controlled 
current sources Izy (i,j;k,l)=A(Z,j;k,l)~k~ and I,, (i,j;k,l)=B(i,j;k,l)ukl. The 
constant coefficients A(i,j;k,l) and B(i,j;k,l) are known as the feedback and 
input cloning templates, respectively. If they are equal for each cell, they 
are called space-invariant. If B(i,j;k,l)=U the CNN is said autonomous. 

A CNN is described by the state equations of all cells: 

with i = 1, .2, ..., M and j = 1,2, ..., N where 

with k = 1, .2, ..., M and 1 = 1,2, ..., N is the r-neighborhood. 
This model is known as the Chua-Yang model or linear CNN and refers 

to a single-layer CNN. This model can be extended to a multilayer CNN if 
instead of only one state variable, there may be several state variables in 
each cell of the multilayer CNN. 

The Chua-Yang model has been generalized in many different ways. 
These generalizations allow the inclusion in the model (2.2) of nonlinear 
interactions, direct dependence on the state variables of the neighborhood 
cells, different grids, and lead to a more general definition for CNNs [Chua 
and Roska (1993)]: 
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Fig. 2.1 (a) The C N N  cell scheme. (b) A CNN bi-dimensional array. 

Definition 2.2 A CNN is an n-dimensional array of mainly identical 
dynamic systems, called cells, which satisfies two properties: (a) most in- 
teractions are local within a finite radius r, and (b) all state variables are 
continuous valued signals. 

I t  follows that a more complete single-layer C N N  model including some 
of the above mentioned generalizations is described by the following nor- 
malized state equations (setting C = 1, R, = 1): 

with 

Y i j  = m j )  

where A i j ; k l ( . ,  .), B i j ; k l ( . ,  .) and C i j ; k z ( . ,  .) are two-variable nonlinear func- 
tions (the nonlinear templates) and f(.) is the output nonlinearity. 

As the CNN for modelling and implementing artificial CPG is a two- 
layer CNN,  we explicit the equations for an autonomous two-layer CNN: 
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where yh,z3 ( ~ h , ~ j )  (with h = 1 ,2 )  is the saturation nonlinearity as in Eq. 
(2.1) and the feedback template is: 

Significant attention has been directed to studying the dynamic proper- 
ties of the various CNN models. One of the most challenging issues is surely 
stability [Chua and Yang (1988a)I. In fact, the particular structure, high 
order and nonlinearity of these systems create serious problems. Almost all 
kinds of dynamic behavior, ranging from simple equilibria to chaos, have 
been reported among the different kinds of networks. 

The CNN behavior is basically dictated by the templates. However, the 
choice of templates that are suitable to achieve a desired processing task is 
hard to accomplish in a direct way. 

This leads to the so-called learning a n d  design problem [Nossek (1994); 
Nossek et.  al. (1993)]. The term design is used when the desired task can 
be translated into a set of local dynamic rules, while the term learning is 
used when the templates need to be obtained by learning techniques, so 
pairs of inputs and outputs must correspond. Some good results have been 
obtained with discrete-time CNNs in simple cases, but this is a really diffi- 
cult problem for continuous-time models. Most of the templates currently 
available have been obtained by intuitive principles and refined by trial and 
error with the aid of simulators. 

2.3 The CPG neuron 

As basic unit to build up the CNN-based CPG a second-order CNN cell 
will be taken into consideration. This will be referred in the following as 
CNN neuron or CPG cell. More precisely, the following definition can be 
stated: 

Definition 2.3 
resented by the following equations: 

(The CNN cell-neuron.) The second-order CNN cell rep- 

where 
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with i = 1,2 ,  ..., M ,  j = 1, ..., N and k = 1 , 2  is the basic unit to build 
up the CNN-based CPG and is referred as the CNN neuron or the CPG 
cell. 

The most important characteristics of Eq. (2.5) is that for a suitable 
choice of parameters it behaves as a nonlinear oscillator with slow-fast dy- 
namics. In other words, Eq. (2.5) admits a stable limit cycle. 

Proposition 2.1 
Table 2.1 has a stable limit cycle with slow-fast dynamics. 

The CNN neuron of Eq. (2.5) with parameters as in 

The behavior of the CNN neuron ( 2 . 5 )  can be accurately analyzed by 
considering the phase plane divided into nine different affine subspaces in 
which either all or some of the cell states are saturated or not, and ex- 
amining the equilibria of these regions. The corresponding equilibria are 
indicated with subscripts relating to the partial saturated region ( p )  or sat- 
urated region (s) and superscripts relating to the value of the saturation 
(+l, -1) or linear ( L )  value of both variables. They are: 

p i +  = (1 + p - s + il, 1 + p + s + i 2 ) ;  

pQ- =(1+p+s++1, -1-p+S+i2) ;  
p,- = (-1 - p  + s +il ,  -1 - p  - s + i 2 ) ;  

p,+ = (-1 - p - s + il, 1 + p - s + i 2 ) ;  

p;1+1 = (Y, 1 + p + f . (s - 21) + 22); 

(I + p + ; . (s + i 2 )  + il, -*); 

The oscillating behavior of the CNN neuron may be proved by verifying 
the conditions for which the Poincar6-Bendixson Theorem holds [Strogatz 
(1994)]. 

This theorem is a powerful tool to establish the existence of periodic 
orbits in 2D flows. It states that if R is a closed region that does not 
contain fixed points for the vector field x = f (x) and a trajectory C con- 
fined in R does exist, then R contains a closed orbit (and either C is itself 
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P 

the closed orbit or spirals towards to it). The behavior of cell (2.5) is an- 
alyzed by dividing the plane into nine regions (DO, D1, ..., &) delimited 
by the saturation points. In each of these regions system (2.5) is linear. 
The region R can easily be identified by constructing a trapping region, 
as schematically illustrated in Fig. 2.2. H represents a closed disk in DO, 
surrounding the equilibrium point of DO and whose boundary constitutes 
the inner boundary of the region R (see Fig. 2.2). The equilibrium point of 
DO is an unstable equilibrium point, thus the flux is towards R and outside 
H .  

S 1 il I 22 

Fig. 2.2 The trapping region R. 

Table 2.1 Parameter values of the 
CNN neuron (2.5). 

Therefore, to prove the existence of the limit cycle it is necessary to 
verify that all the stable points among the equilibria (2.7) are virtual, that 
is, they do not lie in the region to which they belong. In fact, if a t  least one 
of these equilibria is not virtual, the trajectory asymptotically converges to 
this point and so no oscillation may exist. 

The importance of this consideration is related to the fact that the values 
of the bias can influence the virtuality of an equilibrium point. Moreover, 
the role of the bias is fundamental in order to achieve slow-fast dynamics. 
This is obtained by the interaction of the trajectory with a virtual equi- 
librium point. The closer a virtual point is to the boundary (between the 
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region to which it belongs and the region in which it lies) the stronger its 
slowing action on the dynamics of the trajectory near the virtual point will 
be. 

With the parameters shown in Table 2.1, two virtual points influence 
the trajectory. Choosing il # 0 and 22 # 0 breaks the symmetry of the 
system, thus letting the trajectory close to two virtual points, p;+ and 
p;-. These equilibria are virtual if the following conditions hold: 

i 1 > p - s  (2.10) 

i , < p + s  (2.11) 

Conditions (2.8) and (2.9) refer to pT+, while conditions (2.10) and 
(2.11) refer to p ; - .  These conditions are found by requiring the point p ; + ,  
which belongs to the saturation region {x E R2 : x1 < -1,x2 > l}, to lie in 
the region {x E R2 : z1 < -1,lx2l < l}.  Conditions (2.10) and (2.11) are 
found similarly. 

When the trajectory passes near one of these points, slow dynamics is 
evident. Moreover, this slow dynamics can be modulated by the values of 
the biases. Acting on i l l  and respecting conditions (2.8)-(2.11), implies 
moving both the two equilibria; but while the distance between p;+and 
the boundary 2 2  = 1 is not varied, p;- is closer to the boundary 2 1  = -1. 
This increases the duration of the slow dynamics. This effect is common 
to systems near bifurcation points as well clarified in [Strogatz (1994)l: the 
role of these virtual points or ghosts is to slow the dynamics of the system 
when trajectories pass in their neighborhood. 

In Fig. 2.3 an example of what happens by keeping i 2  constant and 
varying the parameter il is shown. In Fig. 2.3(c) the phase plane x1 - x2 
is represented, emphasizing that by increasing il both p;+ and p;- move. 

These considerations led to the idea of using suitable synaptic laws to 
modulate the bias values so as to control the dynamics of a population of 
neurons, each one represented by the dynamical model (2.5). 
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Fig. 2.3 Behavior of the C N N  neuron with different values for the bias il (the other 
parameters are fixed to  the values p = 0.5; s = 1; 22 = 0.3): (a) limit cycle in the phase 
plane 2 1  - x 2 ;  (b) x 1  versus time; (c) equilibria moving with increasing values of 22. 

2.3.1 The synapse model 

A fundamental element in the CPG design is the way in which CNN neurons 
are connected. Biologists identify two kinds of synapses: electrical and 
chemical. In this Section we introduce the idea of an approximated CNN 
chemical synapse. This is derived from the properties of the basic cells 
and therefore follows the discussion on the CNN neuron. We will show in 
following Sections that this way of connecting CNN neurons is more general 
than the RD-CNN approach that corresponds to electrical synapses. 

Various mathematical models of the chemical synapse have been pro- 
posed: they are either static (see for example [Rabinovich et. d. (1997)]) 
or dynamic models (see for example [Huerta et. al. (2001)l). We will focus 
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our attention on one of these models. In order to use this kind of synapse in 
a CNN structure some approximations of the model are required to make 
it consistent with the CNN paradigm. 

The model assumed for the chemical synapse is described in [Rabinovich 
et. al. (1997)], where the so-called Hindmarsh-Rose neuron model [Hind- 
marsch and Rose (1984)] is considered. This model is represented by a 
set of three ordinary differential equations, while the CNN neuron (2.5) is 
a second-order model that does not take into account the recovery time 
of biological neurons. Obviously, both models have a variable mimicking 
the cross membrane potential. The mathematical model of the chemical 
synapse connecting a neuron b with a neuron a can be expressed by the 
following additive term in the differential equation of the cross membrane 
potential (the variable X I  in Eq. (2.5)) of neuron a: 

(2.12) 

where xa and xb represent the cross membrane potentials of the two neu- 
rons, E is the strength of the coupling, V, the reverse potential, the 
synaptic delay, X the threshold, 6 ( . )  indicates the Heaviside function, ya 
and za are the two other state variables and g(xa,  ya , za )  is the reactive 
part of the dynamics (omitted for the sake of simplicity). 

This synapse is called inhibitory if E < 0, excitatory if E > 0. In the 
case of inhibition, when neuron b bursts, it acts on neuron a with a negative 
current input, thus hyperpolarizing neuron a and inhibiting its burst. In the 
other case (excitatory synapse), when neuron b bursts, a positive current 
input due to the activity of neuron b, depolarizes neuron a,  exciting the 
burst. 

Synapse (2.12) can be simplified to obtain a CNN chemical synapse, 
considering the properties of the reactive part of the CNN neuron in Eq. 
(2.5). Therefore, the result will depend in some manner on this specific 
neuron model. 

Let us assume that the bias il is not fixed, but is a function of a variable 
related to another cell (another neuron), and let us assume that this variable 
is either the variable z1 or 2 2  of the second cell. Let us consider a nonlinear 
law, such that when the variable is greater than the threshold value tl an 
excitatory action is performed by adding a positive term E to the bias and 
so by increasing the distance between the virtual equilibrium point and 
its boundary and encouraging the onset of a spike (i.e. reducing the slow 
part of the trajectory); otherwise, when the synaptic input takes a value 
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lower than the threshold -1, the constant term E is subtracted and so the 
trajectory is slowed down. Let us consider a linear law for the other values 
of the synaptic input between the two threshold values. This leads the 
same nonlinearity characterizing the output of the CNN cell; the synaptic 
influence can depend linearly on the cell output. Thus, the chemical synapse 
(2.12) can be approximated, in a CNN structure based on cell (2 .5) ,  with 
the following linear additive term depending on the output of neuron b in 
the state equation relative to the variable x1 of neuron a: 

kl = 91(x1,22) + EYi,b (2.13) 

where again for the sake of brevity the reactive part of the dynamics 
of the CNN neuron has been indicated with g l ( x l , x 2 ) .  We consider Eq. 
(2.13) as the definition of the simplified CNN chemical synapse. 

Definition 2.4 (Simplified CNN synapse.) Equation (2.13) constitutes 
a simplified CNN synapse and is called inhibitory if E < 0 or excitatory if 
& > 0. 

Either the output of the first layer or that of the second one can be 
considered; therefore i = { 1,2} in ( 2 . 5 ) .  When the CNN chemical synapse is 
realized by using yz  instead of y l ,  in the case of system (2.5) it is possible to 
obtain a simplified delayed chemical synapse, because in the cell dynamics, 
y2 has a phase lag with respect to y1. It  must be pointed out that the 
addition of a chemical synapse, in the case of both a delayed and a non- 
delayed synapse, corresponds to  a change in the coefficients of the template 
A. Therefore, synaptic weights are set up through the feedback template 
coefficients. 

Let us show an example of a network based on this synapse: this is 
namely the first and simplest example of CPG presented in this Chapter. 
Let us consider the flexor-extensor CPG. This is one of the most popular 
examples because of its simplicity and its importance in biological control 
of locomotion [Orlovsky et. al. (1999)] and is characterized by two neurons 
firing in out-of-phase synchronization. Such a CPG can be obtained by two 
mutually inhibited neurons. 
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Let us consider the system obtained by coupling two CNN neurons with 
two inhibitory CNN chemical synapses as follows: 

i 1 , a  = --Z1,a + (1 + p)Yl+l - s . y 2 , a  + il + E . y1,b 

i 2 , a  = --52+ + (1 + p ) y ~ , ~  + s . ~ 1 , ~  + i 2  
i l , b  = --Zl,b + (1 + p)!h,b - s ' Y 2 , b  + 21 + E .  91 ,a 

(2.14) 

x 2 , b  = -X2,b  + (1 + p ) y 2 , b  + s ' y 1 , b  + i 2  

Figure 2.4 shows a schematic representation of system (2.14) and the 
result of the simulation with a value of E = -0.6 (the other parameters 
were chosen according to Table 2.1). 

The result agrees with the expected anti-phase synchronous behavior 
that characterizes two mutually inhibited coupled neurons. 

Fig. 2.4 
time). 

(a) Flexor-extensor model. (b) Simulation of the flexor-extensor (21  versus 

2.4 The CNN-based CPG 

In this Section it is shown how connections among CNN neurons lead to 
complex systems able to  constitute the CPG for artificial locomotion con- 
trol. Firstly we discuss the approach based on RD-CNN that is the starting 
point for the more general approach based on the chemical synapse intro- 
duced above, then we show some guidelines for the CNN-based CPG design. 
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2.4.1 RD- CNNs to design artificial locomotion patterns 

Reaction-Diffusion (RD) phenomena occur in many systems (biological, 
chemical, physical systems) [Murray (1993)], but they obey the same laws 
that can be represented under the following general RD equations: 

d U  
d t  
- = F(u) + D . V2U (2.15) 

where u is a vector of at  least two elements. For instance u can represent the 
dynamics of an activator/inhibitor system diffusing in a nonlinear medium 
and showing pattern formation. Another example is the propagation of 
autowaves in a nonlinear medium. This term was first coined by R. V. 
Khorhlov to indicate autonomous waves [Krinsky (1984)]. They represent a 
particular class of nonlinear waves which propagate without forcing in active 
nonlinear mediums. Autowaves have some typical characteristics, basically 
different from those of classical waves in conservative systems: their shape 
remains constant during propagation and reflection and interference do not 
take place, while diffraction is a common property between classical and 
autowaves. These autowaves are the basis of the RD-CNN approach. 

CNNs are able to show complex phenomena arising in space-distributed 
fields such as Reaction-Diffusion phenomena in 2D arrays [Arena et. al. 
(1997)l. Examples are autowaves travelling in nonlinear media or Turing 
patterns generated in CNNs. We will come back to this important topic in 
Chap. 7. In this Section we introduce a CNN for autowave propagation in 
a 1D array. 

CNNs can map Eq. (2.15) if the diffusion term represented by the Lapla- 
cian V2u is discretized. In a monodimensional field the following discretized 
Laplacian can be assumed: 

V2U = Ui+l  - 2ui + ui-1 

As regards the reactive part of Eq. (2.15), namely F ( u ) ,  we aSume 
that it implements the dynamics of the CNN neuron (2.5). This allows to 
establish an analogy with the biological case: the reactive part of (2.15) 
F(u) models the action potential generated by a neural cell. 

In this analogy the diffusive term is the equivalent of the synapses be- 
tween neurons. Thus, the entire CNN can realize a net of diffusive coupled 
neurons in which the nerve pulse propagates. This kind of coupling repre- 
sents the equivalent of electric synapses, the next Section will deal with the 
use of CNN chemical synapses. 
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Let us thus consider a ring-like structure as follows: 

i 1 , i  = - 5 1 , i  + (1 + P)Yl,Z - SY2,i + 21 + Dl(Yl,i+l - 2Yl3 + Y 1 , i - 1 )  

i 2 , i  = -52 , i  + (1 + ~ ) ~ 2 , i  + S Y I , ~  + 22 + D 2 ( ~ 2 , i + 1  - %2,i + ~ 2 , i - 1 )  

(2.16) 
where the discretized Laplacian acts on the output of the CNN, i = 1..N 

(N is the number of CNN neurons in the ring) and periodic boundary 
conditions are assumed. The key point is that  the CNN neuron shows a 
steady-state dynamics consisting of a stable slowfast limit cycle, while the 
corresponding RD-CNN generates autowaves. At this point, if the output 
variables of the CNN neurons constitute the signals driving the actuators 
of the locomotion system, the CNN plays the same role as the CPG in 
biological control of locomotion. In fact the wave propagating in the CNN 
resembles the wave that characterizes several locomotion patterns in nature. 

The following definition of RD-CNN for locomotion control can be there- 
fore given. 

Definition 2.5 (RD-CNN for locomotion control.) A RD-CNN for loco- 
motion control is the CNN approximation (2.16) of the RD equation where 
some of the CNN state variables are used to drive the actuators of the 
locomotion structure. 

The reactive part of the RD-CNN corresponds to  the dynamics of the 
CNN neuron (2.5), while the diffusive part indicates the way in which neu- 
rons are connected. They are connected through the outputs of nearest 
neighbors. 

Various locomotion patterns can be implemented using such a structure. 
The way to change the locomotion pattern is to use a different number of 
cells constituting the RD-CNN and to rearrange the connections between 
actuators and motor-neurons (CNN cells). This corresponds in biological 
terms to a great topological reorganization of the neural network and allows 
to obtain effector organs synchronized in a way that depend on the number 
of neurons in the ring. The synapses are reorganized either involving new 
neurons or decreasing the number of neurons in the network. I t  is worth 
remarking that the structure of the connections remains unchanged (thus 
the feedback template of the CNN is kept constant). When the connec- 
tions are reorganized to build up the new CPG, the connections between 
neurons and actuators are also rearranged. Thus a given actuator does not 
always correspond to a given motor-neuron, but changes according to the 
locomotion pattern. 
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The approach depicted in the next Section allows us to have a network in 
which the connections between actuators and motor-neurons do not depend 
on the locomotion pattern, as in the biological case. To this end the CNN 
chemical synapse has been introduced. Diffusive connections play the same 
role as electrical synapses. The introduction of chemical synapses in our 
CPG model allows to obtain a network with a given number of cells, showing 
a much greater variety of behaviors than those considered in the RD-CNN. 

2.4.2 

Analogously to the RD-CNN for locomotion control the definition of CNN- 
based CPG extending the connection paradigm to include simplified CNN 
synapses can be introduced as follows: 

Guidelines for CNN-based CPG design 

Definition 2.6 (CNN-based CPG.) A CNN-based CPG is a CNN made 
of n CNN neurons (2.5) connected by simplified CNN synapses. Some of 
the CNN state variables are used to drive the actuators of the locomotion 
structure. 

In this Section some guidelines for the realization of CNN-based CPG 
are sketched. These heuristic considerations can help to build up networks 
of neurons that behave in a given way. A network of neurons is made up of 
coupled nonlinear oscillators. Even with a reduced number of oscillators, 
the analysis of such a network can be very difficult in the more general case 
of coupling. For example in [Heagy et. al. (1994)] several examples of sys- 
tems made up of coupled oscillators were analyzed, but only approximate 
results were given for the case of single coupling. It is also true that ana- 
lytical results often arise only in the case of global coupling or an infinite 
number of elementary units. This is not our case, in which a few cells and 
flexible couplings among them are needed. 

To explore the behavior of the network and thus to design a CPG, the 
problem is split up into a simpler one. If a simple ring-like structure can 
be assumed to be the core of such networks, then this sub-network can 
be coupled with other neurons or sub-networks of neurons to achieve the 
desired CPG. 

The CPGs that can be implemented in our approach have the common 
feature that a one-to-one correspondence between motor-neurons and the 
moving machine legs is assumed and the connections neighborhood is T = 1, 
therefore this will be the neighborhood of the CNN. 
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The design of such a CPG for a specific locomotion pattern must take 
some considerations into account. In general, it has to be possible to focus 
on the distinct phases forming a pattern: at each phase one-leg motion, 
synchronous motion by two or more than two legs, or no leg motion are 
allowed. This is fundamental to build up the ring-like structure that is the 
core of the CPG. 

To clarify this consideration, let us introduce the definition of ring of N 
neurons. 

Definition 2.7 (Ring of N neurons.) A ring of N neurons is an array of 
N neurons with periodic boundary conditions, each neuron being connected 
to its neighbor with an excitatory (or inhibitory) synapse in a well-defined 
direction (clockwise or counter-clockwise) . 

The importance of these networks is related to the simplicity of their 
behavior. Simulations carried out indicate that in these networks the fir- 
ing sequence respects the order of the neurons in the ring and it has the 
same direction as the synapses if they are excitatory, the opposite direc- 
tion otherwise. This result agrees with [Wolpert et. al. (2000)], in which 
a ring of an odd number of cells is examined. Moreover, the simulations 
carried out allow this conjecture to be extended for the first time to rings 
of even neurons in which delayed synapses are used to connect the CNN 
neurons: for a given range of coupling ( E  in the CNN chemical synapse), a 
travelling wave arises and each neuron fires in a different phase. The result 
of the self-organization of the network is thus that the neurons oscillate at  
the same frequency despite parameter variations (a very important point 
for the hardware implementation) and that between adjacent neurons the 
phase lag is constant (A$ = s). 

It should be remarked that while the oscillator model assumed in 
[Wolpert et. al. (2000)] is different, the results obtained are similar to 
the case treated here, thus confirming the hypothesis [Golubtisky et. al. 
(1998)] that the behavior of the whole system is to a certain extent quite 
independent of the single oscillator dynamics. 

Let us now move from the behavior of simple ring structures to more 
complex networks. a 
given sequence of coordinated leg movements)] and let us indicate with 
N the number of phases constituting the pattern (for example in the anti- 
phase synchronization pattern N = 2) and with n the number of movement 
actuators (for example, legs). We will design a network of n neurons. These 
n neurons will provide the signals to drive the n movement actuators. 

Let us consider a given locomotion pattern (i.e. 
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The following steps are required to design a CPG. 

Create a ring of N neurons 
The aim of this step is to obtain a network with N phases that will 
constitute the core of the CPG. To do this, a ring of a number of 
neurons equal to the number of the CPG phases, namely N ,  is built 
up. Furthermore, this consideration implies that the smallest ring 
in the CPG must be the one formed by N neurons. This condition 
is necessary due to the fact that the smallest ring establishes the 
phases of the pattern, but it does not exclude the possibility of 
having two rings of N neurons. Of course connections among the 
N neurons have to assume that neurons only fire one at a time. 

In the second step the n - N neurons are added and connections 
with the other neurons are established. These new neurons need 
to be synchronized with the other ones. Two methods of synchro- 
nization are defined: synchronization via coupling and synchroniza- 
tion via duplication. In the former case, since the coupling estab- 
lishes the phase in which each neuron fires, the synchronization is 
achieved by considering two different rings formed by k neurons and 
sharing a neuron, as in Fig. 2.5(a) with k = 3. In this case, consid- 
ering the shared neuron (A),  k - 1 other neurons are “enrolled” in 
the network; the connections are exactly the same as those among 
corresponding neurons (B and B’; C and C’ in Fig. 2.5(a)). In 
the second case synchronization is achieved by exactly duplicating 
the connections of the neuron that has to be “cloned”, as shown 
in Fig. 2.5(b). In the latter case new neurons are added (B’ in 
Fig. 2.5(b)), while in the first case it was possible to synchronize 
two subnetworks of CNN neurons, that, in principle, can deal with 
different tasks. However, the results that can be obtained by using 
these two different approaches are equivalent. 
It is worth remarking that the n - N neurons are added in order 
to obtain a network of n neurons, in which a one-to-one correspon- 
dence between motor-neurons and movement actuators is estab- 
lished. This mimics the biological case and offers the possibility 
of having a flexible network able to  implement various locomotion 
patterns, provided there is a suitable change in the synaptic con- 
nections. 

Add n-N neurons and synchronize them with the other ones 

0 Choose the synaptic weights in the whole network 
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Fig. 2.5 Neuron synchronization via coupling (a) or via duplicating (b). 

Finally, the synaptic weights have to be chosen. The choice of 
the weights is made bearing in mind that the oscillation period 
depends on them. In our case they were selected by performing 
numerical simulations of the ring-like core of the CPG and choosing 
the same weight value for all the synapses in the network. This 
synaptic weight E is chosen in the first step in order to guarantee the 
stability of the synchronization pattern in which each neuron fires 
in a different phase. Then, once the other neurons are connected 
in the second step of the design, the synaptic weights of these 
neurons are arranged so that if a neuron has k synaptic inputs and 
E is the synaptic weight in the case of a single neuron input, then 
the weights of these inputs are ~ / k .  

Once established the network structure able to achieve a given loco- 
motion pattern has been established, the set of corresponding templates 
is written. Template A takes into account the connections between neu- 
rons. In general this template is space-dependent7 related to the position 
of the cell to which it applies. Moreover, a different set of templates cor- 
responds to each pattern. Thus, changing the locomotion pattern only 
requires reloading the set of corresponding templates. Since the number of 
neurons required to implement such a strategy is often small, it does not 
seem particularly disadvantageous to have space-variant templates. 
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Moreover, the whole methodology assumes the role of a spatio-temporal 
algorithm for locomotion generation, in which a given template set estab- 
lishes a given locomotion type. 

It should be remarked that the Considerations presented in this Section 
give some heuristic guidelines for the design of a CPG and thus constitute 
one way to design new templates. Moreover, this approach, here called 
the Multi-Template Approach ( M T A )  [Arena et. al. (2002c)], avoids the 
need to rearrange the connections between actuators and motor-neurons as 
needed in the RD-CNN, thus simplifying the hardware circuitry. The great 
flexibility of this method is fundamental, since the new set of templates, 
corresponding to an arbitrary selected locomotion pattern, can be simply 
designed by following these guidelines. 

2.5 Example: the caterpillar gait for hexapods 

In this Section the application of the guidelines outlined in the previous 
Section is illustrated with the help of an example. In the case of animal 
walking the locomotion pattern is called gait. Even if more general defini- 
tions can be given, in the following only periodic gaits will be taken into 
account. The characteristics of a locomotion gait can be defined through 
the concepts of cycle time, d u t y  factor and phase lag [Waldron and Song 
(1989)l. 

Definition 2.8 
a locomotion cycle. 

Definition 2.9 
in which the leg i is in the power stroke phase. 

Definition 2.10 The phase lag pi is the fraction of a cycle period by 
which the beginning of the return stroke of leg i lags behind the beginning 
of the return stroke of the left front leg, chosen as a reference. 

The cycle time is the time required for a leg to complete 

The duty factor dfi is the time fraction of a cycle time 

Alternatively, instead of considering the phase lags between each pair of 
legs, some authors [Pfeiffer et. al. (1995)] make use of phase lags between 
ipsilateral and contralateral legs. 

As an example a hexapod gait that following [Golubtisky et. al. (1998)] 
we call “caterpillar gait” is taken into account to illustrate the steps in the 
design of the corresponding CPG. In this pattern of locomotion the right 
and left legs move in synchrony: first legs R1 and L1 complete their swing 
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movement, then legs R2 and L2 move, finally legs R3 and L3 move. Thus 
legs move in synchrony in a wave passing from front to  back; this sequence 
is inverted with respect to that actually adopted by caterpillars. 

The step pattern of the caterpillar gait is shown in Fig. 2.6, where the 
white areas indicate the stance phase, i.e. the period when the legs are on 
the ground and help to move the body, while black areas indicate the swing 
phase, i.e. the period when the legs are lifted. In terms of duty cycle and 
leg phases the caterpillar gait is characterized by a duty factor equal for all 
the legs (dfi = $) and by the following phase lags: 

1 2 (2.17) 

where the legs (and consequently the corresponding neurons) are num- 

1. 2 
P L 2  = 3, (PL3 = 3 ;  p R 1  = 0; (PR2 = 3; (PR3 = 3 

bered from front to rear and labelled as left (L) or right (R). 

L3 R1 

L A% 
2 63 

LI 
R2 
L3 
R1 
L2 
R3 

Two layer 3x2 CNN ~ e x ~ p o d  

Fig. 2.6 Step pattern of the caterpillar gait and correspondence between legs and CNN 
neurons. In the step pattern black and white areas represent the swing and stance 
phases, respectively. Legs (and the corresponding neurons) are numbered from front to 
rear and labelled a s  left, (L) or right (R). 

Figure 2.6 also illustrates the correspondence between legs and CNN 
neurons. At this point we have also to specify how the variables of the CNN 
neuron are used to drive a leg of the hexapod robot. In other words, in 
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view of an hardware implementation the level of interpretation of the state 
variables of neuron (2.5) needs to be fixed. Generally speaking, depending 
on the application, one or both the outputs of the neuron to control one 
or more DOF of a given locomotion structure can be used. However, when 
used to control a leg with two DOF as in the hexapod robot (whose design 
is discussed in detail in Chap. 5), the variables y1 and yy~ are used to control 
the elevation/flexion (p -joint) and the retraction/protraction (a -joint) 
of the leg, respectively (see Fig. 2.7; the y - joint is kept at a constant 
value). In detail the relationship between the motor-neuron outputs and 
the joint variables can be described by the following equation: 

(2.18) 

where the indexes ij account for the robot legs (Rl,R2, ..., L3), aij, pij 

and yij are used to control the joint positions and al,ij..b3,ij are constant 
values that set the joint excursion. 

With these assumptions the limit cycle of the CNN neuron (2.5) rep- 
resents the periodic movement of the leg in the forward direction, and in 
particular fast dynamics (the action potential) by the motor-neuron cor- 
responds to the swing phase, while slow dynamics represents the stance 
phase. 

Fig. 2.7 
and ’p indicate roll and pitch angles, respectively. 

Structure of the hexapod robot. a,  p and y indicate the 3 DOF of each leg. 6 
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Figure 2.8 illustrates in a graphical way the various steps in the design 
of the caterpillar CPG. The hexapod has six legs, thus it needs n = 6 
motor-neurons. The pattern has N = 3 phases: the first is characterized 
by the movement of the first pair of legs, then the middle legs move, and 
finally the hind legs move. 

Fig. 2.8 The design of the CPG for the caterpillar gait. 

First, a ring of N = 3 neurons is created (Fig. 2.8(a)) and a synaptic 
value equal to E is chosen so that each neuron fires one at  a time: according 
to the inhibitory feature of synapses, the firing sequence follows the arrow 
outlined in Fig. 2.8(a). Assuming the use of synchronization via duplication, 
the second step is to consider another ring of n - N = 3 neurons, firing in 
the same sequence as the first ring (Fig. 2.8(b)). Subsequently, if neurons 
(2,2) and (2 , l )  have to fire synchronously, they must possess the same 
synaptic inputs. Therefore, neuron (2,2) has to be connected to neuron 
(1,2) with synapse s1. Similarly, neuron (2,l)  must have the synaptic input 
5-2 like (2,2) from neuron (3,1), in order to  fire synchronously with (2,2) 
(Fig. 2.8(c)). 

If E indicates the synaptic weight chosen in the first design phase, the 
final step is to rearrange the synaptic weights of the whole network taking 
into consideration the new connections after the phase in which the n - N 
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neurons are added: since each neuron must have a total synaptic input 
equal to E ,  the final synaptic values are chosen as in Fig. 2.8(d). 

The complete firing sequence is shown in Fig. 2.9(a), which, adopting the 
cell-leg connections as depicted in Fig. 2.6, exactly matches the caterpillar 
gait. 

Note that the displacement of the neurons does not reflect the leg posi- 
tion. The great advantage is that, by adopting this configuration, distinct 
hexapod gaits in a CNN structure with neighborhood r = 1 can be imple- 
mented in the same configuration, only changing the synaptic connections 
(i.e. the templates). 

The circuit realizing the core of the CPG (the CNN neuron) is described 
in Appendix B. Connections among the six motor-neurons are rearranged in 
order to implement the feedback templates corresponding to the caterpillar 
gait as follows E ,  = -0.6: 

0 0 0  0 0 0  0 0 0  

0 0 0  

. .  

0 0 0  0 0 Ec/2 

0 0  0 0 E ,  0 

As the system is autonomous, the template B is zero. 
In Fig. 2.9(b) the trend of the six neuron outputs (XI of the CPG circuit 

simulated by SPICE) is shown. The outputs are synchronized as required 
in the Caterpillar gait to generate the signals driving the legs. 

2.6 A spatio-temporal algorithm for controlling locomotion 
of a hexapod robot 

We focus now on a specific example, the design of a CPG for a hexapod 
robot that accounts for the several different gaits that hexapods adopt in 
different environmental conditions. We discuss an algorithm accounting for 
the generation of distinct gaits and show simulation results. 

Hexapod walkers typically adopt several gaits characterized by differ- 
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4 . 0  

Fig. 2.9 
time) (b) for the caterpillar CPG. 

Firing sequence (a) and SPICE simulation (21  of each motor-neuron versus 

ent speeds: at low speeds the so-called slow gai t  or wave gai t  is adopted, 
m e d i u m  gai t  emerges at intermediate speeds, and alternating tripod or f a s t  
gai t  is adopted at high speeds [Collins and Stewart (1993b); Pearson (1976); 
Wilson (1966)]. 

Using the parameters previously defined of duty cycle and phase lags, 
it is possible to characterize fast gait as a periodic gait with the same duty 
factor for all the legs (dfi = 0.5) and the following phase lags: 

(pL2 = 2; I ' pL3  = 0; (PR1 = 3; 1 (PR2 = 0; (PR3 = (2.19) 

and the phase lags are as 

2 

For medium gait the duty factor is dfi = 
follows: 
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For slow gait the duty factor is dfi = A and the phase lags are a s  
follows: 

(2.21) 

These three gaits are obtained by choosing the connections among the 
six neurons as in Fig. 2.10. Since the symbols adopted are not standard, it 
should be pointed out that each circle represents a CPG cell as in Eq. (2.5) 
controlling a hexapod leg. Moreover, the connections indicate the synapses 
realizing the CPG scheme: inhibitory synapses (i.e. with a negative sign) 
terminate with a dot, while excitatory ones terminate with an arrow. 

The possibility to implement the three gaits with templates gives us 
the opportunity to build a spatio-temporal algorithm based on templates 
and running on a CNN structure. This algorithm is able to select the most 
suitable gait pattern based, for example, on sensor information. Therefore 
the whole robot locomotion generation and control is driven by a complex 
spatio-temporal dynamics, where each template subroutine is devoted to 
controlling the robot in particular environmental conditions. 

The hexapod robot discussed in [Arena et. al. (1999)] is controlled by 
the RD-CNN CPG, where the slow, medium and fast gait differ in the num- 
ber of the cells involved in the ring. If simplified chemical synapses are used 
instead of diffusive synapses and so if the approach depicted in Sec. 2.4.2 is 
adopted for the CPG realization] three different template sets will be ob- 
tained. Indeed, the templates depend on the cell (they are space-variant) 
and on the pattern. On the other hand, the CNN able to generate and con- 
trol the whole locomotion dynamics is often made up of a low number of 
neurons. Therefore the space-variant template approach does not constitute 
a drawback. Moreover, the advantage of this approach is that the network 
structure] as well as all the cell-leg connections are fixed. A particular gait 
to be implemented depends only on the template values. Therefore the lo- 
comotion problem is solved through a fixed hardware structure adaptively 
controlled by a spatio-temporal algorithm. 

Simulation results are presented in Fig. 2.10. The scheme of the three 
gaits (slow, medium and fast gait), the corresponding CNN-based CPG 
and waveforms of the state variables of the CNN neurons are shown. The 
corresponding templates that can be easily derived from the CPG schemes 
of Fig. 2.10 are summarized in Table 2.2. For example, in Fig. 2.10(a) 
neuron (1,l) in the MTA diagram exactly follows the fast gait templates 
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of Table 2.2. It is, in fact, driven by the template coefficients. The ab- 
sence of connections in the MTA diagram indicates zero coefficients in the 
corresponding template. 

0 10 20 M 40 5c 
Time it  u I 

t i  
R2 

(b) ii 
12 
R3 

o m r n 3 0 4 0 5 0  
Time It u j 

11 

R2 

(c) :: 
u 
R3 

o t o r n 3 0 4 0 5 0  
Time (I u ) 

rz R2 L2 

Fig. 2.10 Gait schemes, CNN-based CPG and waveforms of (a) CPG for fast gait; (b) 
CPG for medium gait; (c) CPG for slow gait. The step patterns are shown on the left 
and their correspondence to the MTA CPG is shown in the middle. For example, in 
Fig. 2.10(a) neuron 1,l in the MTA diagram exactly follows the fast gait templates of 
Table 2.2. It is, in fact, driven by the template coefficients. The absence of connections in 
the MTA diagram indicates zero coefficients in the corresponding template. Excitation 
and inhibition, corresponding to  positive and negative template coefficients, are shown 
in the MTA diagram as arrows and circles respectively. Delayed synapses are assumed 
for medium and slow gait. 

Even if locomotion gaits are often regarded as distinct, the locomotion 
control for instance in insects 1Graham (1985)] is much more complex: the 
transition between two gaits is continuous and leads to a class of intermedi- 
ate gaits. We briefly discuss how to extend the spatio-temporal algorithm 
for the control of hexapod locomotion to account for continuous transition 
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between gaits. 
Behavioral approaches based on CPG (for instance [Klaassen et. al. 

(2002)] and [Ayers et.  al. (1998)l) often consider a set of basic motion pat- 
terns dealing with different forms of behavior, for example to account for 
forward locomotion and left and right turning patterns. These basic pat- 
terns can be simultaneously stimulated and combined to form the desired 
pattern. These considerations inspired the idea of fading the distinct basic 
gaits (i.e. slow, medium and fast) to obtain a gait able to show continuous 
transitions between them. The idea consists of activating more than one 
set of templates a t  the same time, i.e. as the gait template we consider 
a weighted sum of the basic templates for fast, medium and slow gait in 
Table 2.2. However, an important difference from the behavioral approach 
emerges. In [Kirchner (1997)] distinct behavioral modules are simultane- 
ously activated, while in our case we define a new set of connections. In 
other words, we do not sum the effects of two or more distinct units, but 
use a dynamical CPG network to generate the locomotion gait. 

More precisely, let us indicate with A Z j , f g  the set of templates associated 
with the fast gait (Table 2.2) as follows: 

and analogously with AZj+g and A z j , m g  the templates for slow and 
medium gait, respectively. The following definition can be given: 

Definition 2.11 
through its feedback templates as follows: 

The cont inuous generalized gait  (CG gait) is defined 

Az3,cW = a A 2 3 , f S  + pAzll,mg + yAz33’s9 (2.22) 

where a, p and y are control parameters having values between 0 and 
1 and whose sum is 1, i.e. they should respect the following constraints: 

C r + p + y = 1  (2.24) 
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When cy = 1 and /3 = y = 0 the CG gait clearly matches fast gait, while 
when cy = y = 0 and /3 = 1 the CG gait corresponds to medium gait and 
when cy = p = 0 and y = 1 we have slow gait. In Fig. 2.11 an example is 
given, the control parameter LY is changed from 1 to zero, correspondingly 
y is varied according to y = 1 - cy and p = 0. In this way the gait changes 
from fast to slow gait with continuity. The simulation results show a smooth 
transition between fast and slow gait. 

L1 
R 2  
L3 
R I  
L2  
R3 

200 300 400 500 600 700 
Time (tm.) 

Time (t.u.) 

(b) 

Fig. 2.11 
of the control parameter a ( p  = 0 and y = 1 - a) .  

Behavior of the CG gait. (a) Transition from fast gait t o  slow gait. (b) Values 

I t  is worth remarking that the approach presented can be extended to 
structures with a larger number of legs (or other bio-inspired actuators 
[Arena et. al. (2002d)l) by following the guidelines sketched in Sec. 2.4.2. 
As an example of application of the control strategy in Chap. 5 a hexapod 
robot controlled by a CNN-based CPG is illustrated. 

2.7 Motor-neurons and inter-neurons 

The neurons belonging to the CPG network have been referred to in this 
Chapter as motor-neurons. The reason for this is that they are directly used 
to drive the legs of the hexapod robot. Many biological models also include 
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inter-neurons: these neurons are involved in the generation of the rhythm 
of the locomotion and are connected to the motor-neurons that directly 
synapse the muscles. The approach presented here is easily generalized to 
include this scheme: it can be assumed that the neurons of the CPG sim- 
ply give the rhythm for the locomotion system, while other motor-neurons 
are included in a hierarchical structure, receiving signals from the CPG 
and driving the actuators. The approach depicted is therefore suitable for 
the control of a more general locomotion system, with a given number of 
n actuators, driven by n motor-neurons of a CPG with N inter-neurons. 
Moreover, the assumption that the neurons of the network are identical can 
be removed. 

Therefore, two generalizations leading to a more flexible CPG design 
can be introduced: 

including inter-neurons; 
considering neurons with different parameters. 

Fig. 2.12 Half-bound of the hare: (a) the locomotion pattern, obtained by plotting 
on a gray scale the trends of z~ , i$(z~ , i )  (O(z) is the Heaviside function); (b) the CPG 
network: H2..H6 are inter-neurons as in Eq. (2.5), RH and LH are motor-neurons as in 
Eq. (2.5), while L F  and R F  are motor-neurons as in Eq. (2.25). 

An example of such a CPG is illustrated below. The half-bound of 
the hare [Collins and Stewart (1993a)l is a locomotion pattern in which 
the back legs move synchronously and the front legs are half a period out 
of phase with the back pair, and slightly out of phase with one another. 
This pattern is adopted by some animals at galloping speeds (for instance, 
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squirrels). To realize this pattern a network with a ring of six neurons 
has been considered. The network includes five neurons and four motor- 
neurons, as shown in Fig. 2.12(b): the inter-neurons are labelled H2..H6, 
while the motor-neurons are LF (left front leg), R H  (right hind leg), LH 
and RF. The motor-neurons associated with the front legs are slightly 
different. They can be expressed by the following equations: 

(2.25) 

The factor ;, multiplying the right hand side of both Eq. (2.25), scales 
the dynamics of the system making it slower than system (2.5). The lo- 
comotion pattern shown in Fig. 2.12(a) is very similar to the half-bound 
of the hare reported in [Collins and Stewart (1993a)). The waveforms of 
variable ~ 1 , ~  for the four motor-neurons of the CPG are shown in Fig. 2.13. 

q 2 J  = ; ( - q z J  + (1 + P)Yl,ZJ - SY2,ZJ) 

5 2 , Z J  = +Z2,ZJ + (1 + P)Y2,23 + SYl,,,) 
{ :  1 

I I I I 1 I I I 

- .. . ... ... .... ...~ ...... ..... ......... . .... .... .... ... ... ..... .. .. 
1 3  135 1 4  145 1 5  155 1 6  1 6 5  

Time (samples) x 10' 

Fig. 2.13 
the half-bound of the hare. 

Waveforms of variable ~ 1 , ~  for the 4 motor-neurons of the CPG generating 

Finally, it is worth remarking that the MTA-CNN for real-time loco- 
motion control in bio-inspired robots allows us to overcome a limit of the 
RD-CNN implementation for CPGs: the absence of chemical synaptic input 
which prevented us from obtaining different locomotion patterns without 
varying the CNN structure. The simplified CNN chemical synapse intro- 
duced is the core of a more general class of CNN-based CPGs mimicking 
the behavior of the neural systems involved in locomotion of a very large 
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variety of beings. The most evident consequence of this generalization is 
the necessity to have templates that depend on the position of the cell in- 
stead of space-invariant templates. On the other hand, the low number of 
neurons of the CNN controlling the locomotion makes this drawback al- 
most negligible. The way in which the kind of locomotion changes is now 
completely different from the previous one: it is not necessary to vary the 
topology of the neurons involved as well as the cell-actuator connections 
(as happens in RD-CNN), but it simply implies a new set of templates es- 
tablishing synaptic connections. Indeed, the generality of the approach is 
evident, since it does not exclude a reorganization of the network to include 
other neurons not yet involved in the generation of the locomotion pattern. 
The problem of building up a new CPG is thus reconnected to a choice 
of new templates. This choice can be made by following the guidelines 
remarked in Sec. 2.4.2 and the considerations discussed above. 
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Table 2.2 MTA templates for different gaits. 

Feedback templates 
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Chapter 3 

CNN-based CPGs with sensory 
feedback and VLSI implementation 

The role of feedback in the CPG for walking is essential to deal with com- 
plex environments. In this Chapter the topic of including feedback from 
sensors in the CNN-based CPG is addressed: an approach based on a lo- 
cal bifurcation of the CNN cells constituting the sub-units of the CPG 
network is introduced, allowing the direction of the robot to be controlled. 
The dynamics near the bifurcation is furthermore exploited to include feed- 
back from ground contact signals in the CPG. Moreover, the speed of the 
pattern can be controlled in a very simple way by adopting a switched- 
capacitor technique to implement the CNN-based CPG. This leads to the 
so-called hybrid approach, in which the core of the control is analog and 
a digital control provides the signals modulating the outputs of the analog 
core. At the end of this Section experimental results obtained with the first 
prototype of the CNN-based CPG chip are discussed. 

3.1 Direction control 

The approach described here aims to include feedback in the CNN-based 
CPG and relies on a local bifurcation of the CNN neurons constituting 
the sub-units of the CPG network. Suitable control can be achieved by 
changing the value of the bias of the CNN neurons, according to a strategy 
inspired by the idea of Braitenberg creatures [Arkin (1998); Braitenberg 
(1984)]. 

Braitenberg showed how surprisingly complex behavior (that he com- 
pared with cowardice, aggression, and other forms of human behavior) can 
be obtained by using relatively simple direct couplings between the sensors 
and motors of vehicles. These couplings can be either inhibitory or excita- 
tory depending on the “personality” of the creature. An example is given 
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where this approach is successfully applied to build up a purely reactive 
hexapod able to avoid obstacles. 

3.1.1 The CPG cell 

In this Section it is shown that, when the bias is varied, the dynamics of 
each CNN neuron of the CPG changes from a limit cycle to  a stable fixed 
point. 

This property is used, as shown in Sec. 3.1.2, to include feedback signals 
and to allow the robot to change the direction of its motion. 

The equations of the CPG cell are the following: 

(3.1) 
fl = -x1 + (1 + p)y1 - 5y2 + il i. x2 = -52  + sy1 + (1 + P)Y2 + i 2  

where yz = tanh(2xz) with i = {l,2}.  System (3.1) is analogous to 
system (2.5). Below we will refer to Eq. (3.1) because of its smoothness. 
Moreover, the circuit will implement the smooth nonlinearity. The results 
are qualitatively the same and the same considerations hold both for neuron 
(2.5) and neuron (3.1). 

Like neuron (2.5) for the choice of parameters reported in Table 3.1, 
system (3.1) admits a periodic solution with slow-fast dynamics. Moreover, 
as shown below, this limit cycle disappears when the bias i 2  is varied. 

Table 3.1 Parameters of system 
(3.1). 

p ( S I  il ( i z  1 i, 
0.5 I 1 I -0.3 I 0.3 1 0.3484 

Proposition 3.1 The global behavior of system (3.1) with the parameters 
in Table 3.1 changes from a periodic solution to a stable fixed point, when 
i2 2 i,. 

Proof. The behavior of system (3.1) is analyzed by means of the 
Poincark-Bendixson theorem [Strogatz (1994)]. The dynamical system (3.1) 
has an instable point (the origin when the biases are zeros; a point close to 
the origin otherwise) that is surrounded by a stable limit cycle for i2 < i,. 
Indeed no other fixed point exists in the phase plane x1 - x2 and since the 
flux is bounded, the hypotheses of the theorem are verified, thus proving 
the existence of the stable limit cycle. 
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When the bias i 2  is changed, other equilibria can arise. In this case the 
hypotheses of the Poincark-Bendixson theorem may no longer be valid. For 
this reason we will investigate the equilibria of system (3.1) when the bias 
i2 changes. 

With i2 = i, there is a bifurcation of the equilibrium points. Two other 
fixed points arise for i 2  > i,, one stable and one unstable. This appears in 
Fig. 3.1 showing the nullclines (the curves where either i1 = 0 or i 2  = 0) of 
the system. While in Fig. 3.l(a) (where i2 < ic) the nullclines intersect in 
only one equilibrium point (unstable), for i 2  > i,, as shown in Fig. 3.l(c), 
three equilibrium points exist. Figure 3.l(b) shows the case where i2 N i,. 

-1 '!ei - 2  -3  -2 0 2 XI 

Fig. 3.1 
the  parameter i2. (a) 22 = 0.34; (b) i2 = 0.35; ( c )  22 = 0.36. 

Plane 2 1  - 2 2  showing the nullclines for system (3.1) with different values for 

The value of i, can be calculated as follows. We examine the behavior 
of the cell near the critical point. As can be noticed in Fig. 3.1, the bifur- 
cation occurs in a region in which the variable 2 1  is less than -1. Thus 
we can assume that the output y1 is saturated at the value -1. In this 
approximation system (3.1) can be rewritten as follows: 

The Jacobian of the system (3.2) is: 
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The first eigenvalue of J,  is XI = -1. The bifurcation occurs when ,A2 
is zero. The values of the equilibrium point and the critical parameter can 
be found by verifying this condition. 

First, it is verified that A2 = 0. This holds for a given equilibrium point 
that can be computed as follows: 

With the parameters in Table 3.1 2 2  is derived: 

1 
2 

3 2  = - cosh-'( d m )  = 0.5731 

Then, it should be verified that the point 3 2  is an equilibrium for system 
(3.2). This is true if the following relation (from which we find the value 
ic) holds: 

x 2  = 0 + - 3 2  + (1 + p )  . tanh(212) - s + i, = 0 + i, = 0.3484 

To further prove our assertion, we can observe that, since the eigenvalue 
associated with the first equation in system (3.2) is negative and the second 
equation does not depend on 21, we can apply the center manifold theorem 
[Kuznetsov (1998)] and investigate the behavior of the system by studying 
the behavior of the second equation. Let us rewrite it as follows: 

j.2 = f(x2,i2) 

The genericity conditions of the fold bifurcation [Kuznetsov (1998)] for 
the second equation of system (3.2) are: 

8(1 + p )  tanh(252) 
cosh2 (2&) = -6.5321 # 0 (3.3) 
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The non-zero values of relations (3.3) and (3.4) prove that there is a 
local bifurcation of the equilibria of system (3.1). This consideration and 
the PoincarBBendixson theorem allow us to draw conclusions on the global 
behavior of the system. When i2 > i ,  the limit cycle disappears and the 

0 

Remark 3.1 Near the bifurcation there is a bottleneck due to the “ghost” 
(or virtual) equilibrium point (see [Strogatz (1 994)] and the discussion in 
Chap. 2). This leads to a slow-fast ratio in the system that depends on 
the value of the bias iz. Figure 3.2 shows how the period T of oscillation 
depends on the parameter i2: the function T(i2) FZ (ic-::ll/3 (continuous 
line) is also shown for comparison; it has a similar form to that reported 
in [Strogatz (1 994)]. 

trajectories go towards the stable equilibrium. 

Numerical data (diamond) and T(i ) (continuous line) 
1 

I 
0.15 0.2 0.25 0.3 0.35 

i2 

Fig. 3.2 Period of oscillation of system (3.1) versus iz. As iz approaches the critical 
value i,, the period T increases until the periodic solution disappears. The function 
T( i2 )  x 10 ( i c - i 2 ) l / 3  (continuous line) is also shown for comparison. 

3.1.2 

In this Section the design of a CNN-based CPG with sensory feedback is 
discussed with an example. A CPG for a hexapod robot including feedback 

CPG with sensory feedback for direction control 
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signals to avoid obstacles is designed. 
The robot head has been endowed with two sensors, as shown in 

Fig. 3.3(a) with the CPG scheme of the robot. Each circle represents 
a CPG cell, as in equation (3.1) with an appropriately scaled time unit, 
controlling a hexapod leg. The connections in dashed lines indicate the 
synapses realizing the CPG scheme, while the connections in continuous 
lines close the feedback loop. 

The sensors detect the distance from the obstacles and are directly cou- 
pled with the motor controllers (in this case the CPG cells). This approach 
was inspired by the well-known Braitenberg vehicles [Braitenberg (1984)], 
where the sensors are directly coupled to the motors. In our case the cou- 
pling is realized with connections between sensors and CNN motor-neurons 
that are also connected with each other. The suitability of the approach 
is guaranteed by the fact that the sensor feedback modifies the locomotion 
pattern without dramatic changes in the behavior of the cells not directly 
coupled to the sensors. 

To avoid obstacles, the configuration shown in Fig. 3.3 was assumed: 
the left sensor is connected with an inhibitory coupling to the CPG cell 
controlling the middle right leg (R2), while the right sensor is connected 
to the middle left leg (L2). The sensor state establishes the value of the 
bias of the CNN neuron: thus, when the sensor detects an obstacle (i.e. 
when the distance from an object is less than a given threshold), it inhibits 
oscillation of the CPG cell by setting iz > i,. As a result the corresponding 
leg is blocked and the robot turns in one direction. 

The example discussed here deals with phobic behavior. To implement 
other kinds of behaviors, for example to include some attracting source in 
the obstacle-avoiding control system, it is sufficient to reverse the wires 
connecting the sensors and motors. 

The behavior of the system has been tested by using a hexapod model 
in a VisualNastran environment. A scenario with two sidewall obstacles 
was used to test the performance of the system. The hexapod walks in the 
passage between the two sidewalls with the trajectory shown in Fig. 3.4. 

Figure 3.5 shows the signals from the CPG. The state z1 of each of the 
CPG cells is given as well as the sensor signals 0 U t R X  and 0 u t L X  (for the 
right and left middle leg, respectively). These signals indicate when the leg 
should be stopped and depend on the output of the opposite side sensor (as 
in Fig. 3.3); a digital circuit prevents both signals from taking high values 
at  the same time. 

As can be noticed, when the middle right leg (R2) is stopped, large 
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Fig. 3.3 
hexapod. Left and right distance sensors are labelled SLX and S R X ,  respectively. 

Scheme of the CNN-based CPG with sensory feedback and leg labels of the 

0- 

( 4  

-0.2 0 0.2 0 4  0.6 0.8 

Fig. 3.4 (a) Trajectory of the robot. (b) A frame of the simulation 

oscillations in its state x1,R2 disappear, x1,R2 < -1 and the corresponding 
output y/1,R2 is saturated at its low value -1. Y1,R2 being the control signal 
for the leg motor regulating its height, the leg is kept on the ground until 
OUtRX takes the low value. As can be observed, the oscillations of cells R1 
and L2 are only slightly affected by the dramatic change in the behavior 
of cell R2. Analogously, the effect of these two cells on R2 is a small 
modulation of the stable equilibrium point. 

The Braitenberg idea of direct couplings between sensors and motors led 
to the design of a CPG able to avoid obstacles as well as performing other 
tasks. Indeed, a purely reactive hexapod CPG able to follow a source can be 
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Fig. 3.5 State 2 1  for each of the CPG cells and sensor signals OUtRX and OutLx. 

designed in a similar way. This proves that simple principles can implement 
sensory feedback in the CPG-based hierarchical locomotion control system, 
providing the bio-inspired robot with further capabilities. 

3.2 Feedback from ground contact sensors 

In this Section another example of sensory feedback is presented [Arena 
et. al. (2003a)l. This approach exploits the synchronization of dynamical 
systems to allow modulation of the locomotion pattern by means of feedback 
from sensors. The approach does not depend on the sensors used. However 
it will be assumed that a sensor for each leg provides the ground contact 
information, i.e. it indicates if a leg is touching the ground or not. 

The inspiration comes from the behavior observed in the CPG of crus- 
taceans. As discussed in Chap. 1, sensory feedback is fundamental for 
walking. However, the rhythmic activity observed in insects in absence of 
sensory feedback varies from species to species: in the stick insect for in- 
stance the mutual influences between the leg controllers are not sufficient 
for their normal coordination. In other examples sensory feedback gives 
rise to  many reflexes that are fundamental for good locomotion on rough 
terrain, but its removal does not imply loss of the locomotion pattern. In 
any case, sensory feedback is of great importance for the generation of step- 
ping movements: its importance is witnessed by the multitude of different 
sense organs involved. 
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In crustaceans control of walking movements takes place in the thoracic 
ganglia. Generation of the rhythmic pattern can be promoted in isolated 
chains of thoracic ganglia by the application of pilocarpine [Orlovsky et. al. 
(1999)I. In this case the rhythm elicited is usually slower than normal. 
Starting from this observation we designed a CPG able to show similar 
behavior. Our interest of course is not merely to reproduce the CPG be- 
havior of crustaceans, but is strongly motivated by the capabilities of such 
a system: indeed it adapts its rhythm to the sensory outputs. 

From the viewpoint of the implementation of CPGs by using dynam- 
ical nonlinear systems, such behavior is possible if the oscillations of the 
system are able to synchronize themselves to an external signal provided 
by the sensor outputs. Therefore, the approach pursued for the design 
of the CNN-based CPG system was to investigate the synchronization of 
the second-order CNN motor-neurons and exploit them to include feedback 
from ground contact sensors. 

3.2.1 Behavior of the CNN neuron driven by a periodic 
forcing signal 

The concept of synchronization is an important topic for the study of non- 
linear systems. Self-sustained oscillators can be entrained by a weak exter- 
nal periodic forcing signal, provided that the forcing frequency is close to 
that of self-sustained oscillations. For a suitable range of the parameters of 
the forcing signal (frequency and amplitude), called the synchronization re- 
gion (or Arnold tongue), the oscillations of the entrained nonlinear system 
have the same frequency as the forcing signal. This behavior is independent 
of the characteristics of the forcing signal and common to many nonlinear 
oscillators [Pikovsky et. al. (2001)]. If the frequency of the forcing signal 
is not close to that of the nonlinear oscillators, synchronization may still 
occur, but in a more complicated form: in this case the general relation, 
in the synchronization region, between the frequency of the external peri- 
odic forcing signal we and that of the entrained nonlinear oscillator w ,  can 
be expressed as nw, = m w .  This synchronization regime is called n : m 
synchronization. 

The feedback from the ground contact signals acts as an external signal 
entraining the self-sustained oscillations. Therefore, the synchronization 
properties of the CNN nonlinear oscillator (3.1) should be investigated to 
address the issue of feedback from ground contact signals. To this end, Eqs. 
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(3.1) have to he rewritten as follows: 

(3.5) 
il = - 2 1  + (1 + p)y1 - sy2 + il i i 2  = -x2 + s y ~  + (1 + p)y2 + i 2  - C 

where yi = tanh(2xi) with i = {1,2} and is the external periodic 
signal. This is a periodic pulse-like signal with period T,, amplitude A, 
and duty cycle 6,. The duty cycle was kept constant at a value of 6,  = 0.2, 
while the other parameters of the periodic forcing signal were changed. The 
parameters of the CNN neuron (3.5) are those in Table 3.1 except for the 
bias which was set at  22 = -il = 0.33 (of course for these parameters the 
limit cycle still exists). 

Figure 3.6 shows a typical trend of the synchronized waveform zl, ob- 
tained for an entraining signal with A, = 0.1 and Te = 30(t.u.). The 
entraining signal is applied starting from t = 200(t.u.): the oscillation pe- 
riod of the CNN neuron changes from T,, = 40.2(t.u.), when the forcing 
signal is not applied, to T,, = 30(t.u.), when the forcing signal is applied. 

2 

1.5 

1 

0.5 
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-0.5 

--1 

-1.5 
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-2 5 
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t 

Fig. 3.6 Waveform 2 1  of system (3.5) when entrained by a periodic pulse-like signal < 
with A, = 0.1 and T, = 30(t.u.). The forcing signal is applied starting from t = 200(t.u.), 
when the oscillation period is entrained to that of the forcing signal. 

The synchronization region was studied numerically. Figure 3.7 shows 
the Arnold tongues of system (3.5): 1 : 1, 2 : 1, 3 : 1, 4 : 1 and 5 : 1 
synchronization regions were found. The asymmetrical form of the Arnold 
tongues is due to the fact that the forcing signal acts on system (3.5) by 
shortening the duration of the slow dynamics, as is evident in Figure 3.6; 
thus it is impossible to observe synchronization at  entraining frequencies 
higher than the frequency of spontaneous oscillations. 
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5 10 15 20 25 30 35 40 45 

Fig. 3.7 Synchronization regions of system (3.5) driven by a pulse-like periodic forcing 
signal with amplitude A,  and period Te: the first (from right to left) Arnold tongue 
refers to 1 : 1 synchronization, the second to 2 : 1 synchronization and so on up to 5 : 1 
synchronization. 

It should be pointed out that this approach is equivalent to moving the 
system near the bifurcation illustrated in Sec. 3.1.1. The short pulses of 
the entraining signal act on the slow part of the dynamics by moving the 
ghost equilibrium. 

After a brief look at the synchronization properties of system (3.5), let 
us move to the key point of the approach. The ground contact signal acts 
as the I signal, i.e. short pulses are applied when the leg is in stance. Let 
us assume for a while that the robot is walking on a perfectly flat terrain 
and let us recall that y1 drives the p-joint, i.e. it regulates the height of the 
leg. In this case the ground contact signal is high when 21 5 -1. This is a 
positive feedback during the stance phase. The concept of positive feedback 
during the stance phase was introduced by Cruse [Cruse et. al. (1998a)l 
and has biological implications. What is the frequency of oscillations when 
such a signal entrains system (3.5)? 

Figure 3.8 shows an example of such a case, when the signal < is equal 
to the idealized ground contact, i.e. 

A, 21 5 -1 
I = {  0 otherwise 

As can be noticed, the slow dynamics is almost cancelled by the effects 
of the positive feedback. The frequency of oscillations is thus the highest 
frequency possible for the given value of A,. Figure 3.9 confirms this: 
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Fig. 3.8 Waveform 2 1  of system (3 .5)  when entrained by signal (3.6) with A,  = 0.1. 
This signal is applied starting from t = 200(t.u.), when the oscillation period changes 
from T,, = 40.2(t.u.) to T,, = 28.98(t.u.). 

it shows the period of oscillations versus the amplitude of the idealized 
ground contact signal. To match this plot with the 1 : 1 Arnold tongue 
shown in Fig. 3.7, the period of oscillations is on the x-axis, even if the 
period is a function of the applied signal amplitude. Figure 3.9 allows us 
to draw the conclusion that the oscillations occur at the boundary of the 
1 : 1 synchronization region. Therefore, this approach leads to a CPG able 
to show a locomotion pattern modulated by the sensory feedback, in which 
the stepping frequency is slower in absence of feedback. 

Of course, when the robot is walking on rough terrain, the behavior is 
unpredictable: as shown below this feedback provides the CNN-based CPG 
with adaptive capabilities. 

I t  is worth remarking that similar results are also discussed in [Gallagher 
et. al. (1996)] even if the underlying approach is quite different. The 
CPG controller in [Gallagher et. al. (1996)] is automatically built up by 
an evolutionary technique based on a description of the desired behavior. 
This controller was constructed under the hypothesis that feedback is not 
always available. The hexapod agent driven by this controller shows a 
higher stepping frequency (and in general better performance) when sensors 
are available. 

3.2.2 

In order to validate the new strategy proposed, the control scheme has been 
tested by using the dedicated simulation environment HexaDyn (see also 

CPG with ground contact feedback: results 
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Fig. 3.9 To match 
Fig. 3.7 the period of oscillations is on the z-axis, while the amplitude of C is on the 
y-axis. 

Period of oscillations of system (3.5) entrained by signal (3.6). 

Appendix A). The dynamic hexapod robot model is called the HexaDyn 
robot. HexaDyn includes ground contact sensors: they take into account 
the vertical projection of the force at the tip of each leg and, if this results 
in a force towards the ground, the leg touches the ground, otherwise it is 
considered t o  be lifted in the air. The signal coming from this simple sensor 
is not very accurate and sometimes (for example, when the leg is sliding) 
it does not indicate the correct status of the leg. However, this is sufficient 
for our purpose and, at the same time, demonstrates the robustness of the 
approach to  sensor faults. 

The scheme of the CPG (fast gait with ~f = -0.6) with ground con- 
tact feedback is the same as in Fig. 3.3(a) in which each motor-neuron is 
equipped with a ground contact sensor. 

The ground 
contact feedback is activated starting from s E 400(samples). The stepping 
frequency is higher in the presence of sensory feedback. 

Moreover, an emerging property was noticed: when the feedback is acti- 
vated, the motor-neuron signals rapidly synchronize. Figure 3.11 illustrates 
this behavior: when the control is switched on, the waveforms of the motor- 
neurons belonging to  the same tripod are not well-synchronized; when the 
feedback is switched on, they rapidly synchronize. 

To further validate the approach, the behavior of HexaDyn when walk- 

Figure 3.10 refers to the robot walking on flat terrain. 



56 

Fig. 3.10 (a) Step pattern of the HexaDyn robot while walking in tripod gait with 
ground ~ n t a C t  feedback and (b) waveforma of the contml rignab ZI for each motor- 
neuron. At 6 = 400(amm9e.9) the gmund contact feedbadr is switched on. 

Fig. 3.11 An emerging property 01 the ground contsSt feedbsck: when the control is 
switched 0% the wavefarms of the mofwney~ons belonging to the -me tripod a e  not 
weU-synchmniaed; wbeo the leedbadr is switched on (st I 1 150(3omglea)) t h e  rapidly 
synchronize [a) Step pattern of the HexaDyn robot and (b) aavefarm of the control 
sign& 51 for d mot~r-neumi. 

ingon rough terrain was considered. In most cases the locomotion pattern is 
almost unchanged, asshown in Fig. 3.12(a), but sometimes the coordination 
between leg controllers slightly changes to match the terrain characteristics, 
as can be seen in Fig. 3.12(b). 
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Fig. 3.12 Waveforms of the control signals y i  for each motor-neuron of HexaDyn walk- 
ing on rough terrain (after appropriate scaling these signals are used to drive the robot's 
p-joints, so vertical units are arbitrary). Two different cases are presented: (a) the 
locomotion pattern is almost unchanged; (b) the coordination between leg controllers 
changes to match the characteristics of the terrain. 

3.3 Reflex implementation 

When insects walk on irregular terrain, they move in a very effective way by 
using a variety of local leg reflexes [Pearson and Franklin (1984)]. Insects 
are able to deal with irregular surfaces, small elevated steps, ditches, poor 
supports and so on. These reflexes can provide robotic solutions to build 
up autonomous structures able to negotiate uneven terrain [Espenschied 
et. al. (1996)l. Indeed, reaching areas that cannot be accessed by wheeled 
vehicles is a clear advantage of walking robots: this can be achieved by 
implementing local reflexes. 

A CPG including two fundamental local reflexes is here introduced. 

3.3.1 The elevator reflex 

When during the return stroke a leg encounters an obstacle blocking its 
trajectory, an elevator reflex is triggered [Pearson and Franklin (1984)]: 
the leg rapidly retracts to  disengage from the obstacle, then lifts the foot 
and swings over the obstacle. 

This reflex can be implemented in motor-neuron (2.5) by allowing the 
bias 22 in Eq. (2.5) to be expressed by the following relation: 
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iz = 0.3 + [ (3.7) 

where < is a short pulse (of amplitude A< = -2.2) triggered by the 
obstacle. When such a signal is applied the behavior of system (2.5) changes 
as shown in Fig. 3.13. The trajectory is slightly modified. If we assume that 
the signal driving the /3-joint is x1 saturated only at the low level (51 = -1), 
the leg is elevated when the reflex is triggered. Moreover, to allow larger 
excursion of each leg, it has been assumed that the high saturation point 
of yl is y1 = 2 instead of y1 = 1. 

Time (1.u.) 
X8 

Fig. 3.13 
phase plane 11 - 2 2 ;  (b) waveforms of 2 1  and 22. 

Behavior of a CNN motor-neuron when the elevator reflex is triggered: (a) 

The behavior of the CPG is illustrated in Fig. 3.14. As can be no- 
ticed the leg R1 lifts higher when the reflex is triggered. A very efficient 
way to implement a sensor for the elevator reflex is reported in [Klaassen 
et. al. (2002)l. By measuring the current of the joint motor it is possible 
to monitor whether the leg encounters an obstacle during the swing phase. 

3.3.2 The searching reflex 

When support is missing, as occurs for example if there is a hole in the 
terrain surface, insects adopt the strategy of rapidly moving the leg to 
search for additional support [Pearson and Ffanklin (1984)]. This behavior 
is called the searching reflex. Insects randomly search for possible foothold 
positions in increasing areas. 
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Fig. 3.14 Behavior of tripod gait (cf = -0.1) when the elevator reflex is triggered. The 
waveforms of Z ~ , R I ,  ~ 1 , ~ 3 ,  z1,~1 and ~ 1 , ~ 3  are shown. 2 1 , ~ ~  and z1,~2, not shown, 
follow the trend of ~ 1 , ~ 3  and 5 1 3 3 ,  respectively. 

The searching reflex is introduced in the CNN-based CPG scheme by 
adopting a chaos-driven search for a foothold: when the expected location 
of the foothold is not met, the trajectory changes from periodic to chaotic as 
an effect of the activation of the reflex. This enables the leg tip to  randomly 
explore the area below to search for a foothold position. 

To this end the basic motor-neuron has to include the possibility of vary- 
ing its behavior from periodic to chaotic as some parameters are changed. 
Zou and Nossek showed that chaotic behavior can be obtained in a nonau- 
tonomous CNN consisting of two cells and driven by a sinusoidal input 
[Zou and Nossek (1991)]. The CNN has an opposite-sign template like 
motor-neuron ( 2 . 5 ) ,  which can be slightly modified to build a CPG with 
the searching reflex according to [Zou and Nossek (1991)]. System ( 2 . 5 )  is 
therefore rewritten to include a sinusoidal input as follows: 

where 

Here two different sets of parameters are considered. For the following 
set of parameters: 

p = 1; s = 1.2; il = -0.14; i 2  = 0.14; A = 0; w = $; T = 4 (3.9) 
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a stable limit cycle appears, while for the following parameters 

p = 1;s = 1.2;Zl = 0;ia = O;A = 4 . 0 4 ; ~  = $!;T = 4 (3.10) 

a chaotic attractor is evident. The behavior of the cell is illustrated in 
Fig. 3.15. 
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Fig. 3.15 
as in (3.10); (c)-(d) parameters as in (3.9). 

Behavior of system (3.8) for different sets of parameters: (a)-(b) parameters 

Motor-neuron (3.8) can be used to build a CPG as shown in Fig. 3.16, 
where slow gait (with E ,  = 0.2) was considered. The underlying idea is that 
when contact is not found, the sinusoidal input is switched on, allowing the 
cell to behave chaotically. In the meanwhile the gait is stopped: by adopting 
the strategy discussed in Sec. 3.1 it is possible to stop each leg either in the 
stance contact position or at the lift-off point. 

3.4 Speed control 

The control of walking speed in insects is complex. In order to  walk faster, 
insects increase the velocity of joint movements, in particular shortening the 
stance phase. This may result in adopting a totally different gait. Moreover, 
in some cases [Watson and Ritzmann (1998)] new motor-neurons may be 
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Fig. 3.16 Scheme of the  CPG including the  searching reflex 

recruited a t  high speeds. The transition between slower and faster gaits is 
continuous and very complex. 

Taking inspiration from the real world, the approach depicted here is 
much more simplified. As mentioned above, different connections between 
the motor-neurons account for the possibility of changing the locomotion 
pattern. To vary the walking speed without changing the locomotion pat- 
tern another mechanism is used. This is based on changing the frequency of 
the oscillations of the CNN neurons constituting the CPG. It  can be accom- 
plished in a very simple way by adopting a switched-capacitor technique 
to implement the CPG. In this sense the control strategy proposed here 
is strictly related to the VLSI technique adopted. The switched-capacitor 
(SC) technique [Gregorian and Temes (1986)] is a key factor to obtain a 
simple control strategy: even if there is clearly nothing analogous to such 
an approach in the biological world , the technique can be said to  be bio- 
inspired given its features of immediateness and simplicity, and since the 
core of the control is analog. 

3.4.1 Speed of the gait 

In order to illustrate the idea underlying speed control, let us rewrite the 
equation of the second-order CNN neuron (2.5) as follows: 

with 

1 
Y. - -(I52 + 11 - 122 - 11) i = {1,2] ‘ - 2  
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This introduces a time-scaling factor in Eq. (2.5) that does not change 
anything but the frequency of the oscillations of the CPG cell. The param- 
eter r in Eq. (3.11) constitutes the time-scaling factor; when the cell (3.2) 
is implemented in an electronic circuit, this is usually given by r = RC. 

In switched-capacitor based integrated circuits resistors are imple- 
mented by means of switched capacitors. An equivalent resistor circuit can 
be implemented by a capacitor CR, switched by a clock with a frequency 
fc  = $. It  approximates a resistor of the following value: 

The time-scaling factor is thcrcfore given by: 

(3.12) 

(3.13) 

Equation (3.13) is fundamental to achieve two features of locomotion 
control. 

0 The control approach is suitable for different kinds of actuators 
requiring different actuating frequencies. For instance, it can be 
used to drive a walking robot actuated by servo-motors and with 
a stepping frequency in the order of magnitude of Hz as well as a 
micro-robot using piezoelectric actuators operating in a 60-90 Hz 
frequency range. 

0 The speed of a given locomotion control can be changed by slightly 
varying the frequency of the clock. 

In other words, large variations in the clock frequency lead to the possi- 
bility of controlling different kinds of actuators, while slight changes address 
the speed control issue. 

Moreover, Eq. (3.13) allows large time constants to be integrated. The 
typical stepping frequency of insects (and of walking robots) is in the order 
of magnitude of Hz. This could lead to large capacitors that may require 
either large silicon areas or external capacitors. Neither solution is ap- 
pealing. Instead, by using switched-capacitor based integrated circuits, it 
is possible to obtain low stepping frequencies. For instance, by selecting 
c = 10 and a clock frequency of fc = lOOHz the time scale factor is equal 
C R  
to r = O.ls, the oscillations of the CNN neuron (3.11) have a frequency 
equal to fo rx &, and a stepping frequency in the order of magnitude of 
Hz is achieved. 



CNN-based CPGs with sensory feedback and VLSI implementation 63 

3.4.2 Locomotion pat tern  

The CNN-based CPGs for the most common gaits for hexapod walkers are 
described in Sec. 2.6. The choice of the right locomotion pattern can be 
addressed by a higher level control. This can be based on Turing patterns 
(as illustrated in Chap. 6) and can use any source of information to establish 
which speed has to be adopted. Hence our model provides two different 
strategies: switching between a given set of possible locomotion patterns 
and continuous variation of the speed of the pattern. 

3.5 The CNN-based CPG VLSI chip 

3.5.1 T h e  hybrid approach 

The strategies discussed previously allow control of the direction of the 
robot, its walking speed and the choice of the gait and lead to the so called 
hybrid control illustrated in Fig. 3.17. The core of this control scheme is 
analog and consists of the CNN devoted to locomotion pattern generation. 
The behavior of this CPG is modulated by signals coming from sensory 
feedback or high level control. These signals can be processed by a dig- 
ital controller. Since the gait generation is entrusted to the CPG analog 
core, this strategy allows the use of a very simple and cheap digital micro- 
controller and, at the same time, conjugates the flexibility of digital control 
with the power of analog parallel processing. In other words, the strategy 
exploits the peculiar capabilities of the digital and analog world, delegating 
feedforward gait generation (the most difficult task for a micro-controller, 
since the number of actuators of the locomotion system can be high) to the 
analog core and the feedback control law to the digital control. 

The CNN-based CPG VLSI chip implements the analog core of the 
hybrid approach to locomotion control and as inputs receives all the signals 
to modulate the behavior of the CNN-based CPG according to the above 
considerations. The analog CPG is designed using a switched-capacitor 
technique. The clock frequency of the switches can be regulated to obtain 
suitable control of the stepping frequency. Moreover, different connections 
among the six motor-neurons of the CPG can be selected in order to obtain 
different locomotion patterns and the biases of the middle cells are regulated 
by external signals in order to change the direction of the robot. 
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CNN-based CPG 

Fig. 3.17 
by a digital controller modulating its behavior according to the sensory feedback. 

Scheme of hybrid control: the analog core (the CNN-based CPG) is controlled 

3.5.2 The VLSI Circuit Design 

The main blocks of the switched-capacitor chip are: 

a phase generator; 
rn six second-order circuits implementing Eq. (3.11) (the motor- 

neurons) ; 
rn three different sets of switchable connections for fast gait, medium 

gait and slow gait; 
0 a gait selector block. 

Since the switches are composed of an NMOS transistor and a PMOS 
device in a parallel arrangement (i.e. in the well-known CMOS transmission 
gate configuration [Rabaey (1996)]), the switched-capacitor circuit requires 
the availability of two nonoverlapping clocks (each with two complementary 
phases). The purpose of the phase generator block is to generate the two- 
phase clock starting from the external sinusoidal clock the chip is provided 
with. 

The schematics of a single motor-neuron is shown in Fig. 3.18, the de- 
sign follows the operational amplifier implementation of the CNN cell (see 
Appendix B and [Manganaro et. al. (1999)]) and the switched-capacitor 
design technique [Gregorian and Temes (1986); Johns and Martin (1997)]. 
The values of the capacitors in the circuit were chosen to match the pa- 
rameters given in Table 3.1 minimizing the area occupation. These values 
are given in Table 3.2. 

The operational amplifiers involved in the motor-neuron schematic 
are canonical two-stage CMOS operational transconductance amplifiers 
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Fig. 3.18 
neuron. 

Schematic of the switched-capacitor circuit implementing a C N N  motor- 

Table 3.2 Capacitor values of the circuit in 
Fig. 3.18. 

[Rabaey (1996); Johns and Martin (1997)] with dominant-pole compen- 
sation, static gain A E 55dB,  phase margin M,+, = 60" and unity-gain 
frequency f~ = 15MHt .  
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In order to implement different gaits, three different sets of connec- 
tions have been implemented, adopting the topologies discussed in Sec. 2.6. 
These connections are switchable and are activated according to the value 
of an analog input, the Gait Select (GS) signal. This signal constitutes the 
input of a comparator block whose outputs select the switchable connec- 
tions, thus establishing the locomotion gait. 

The characteristics of the chip are shown in Table 3.3. The inputs of 
the chip are the control signals GS, i 2 , ~ 2  and i 2 , ~ 2  (bias of the middle 
motor-neurons to allow direction control), while the outputs are the two 
state variables of each motor-neuron. 

Table 3.3 Characteristics of the  CNN-based CPG chip. 

Power Supply rt2.5V 

Power Consumption 50m W 

Pins 19 

Area 1400pmx 1200pm 

Clock (sinusoidal) amplitude 1.5V, frequency fc 

The technology adopted is CMOS AMS 0.8prn. The layout of the chip 
is shown in Fig. 3.19. A photo of the first prototype is shown in Fig. 3.20. 

3.5.3 Experimental resul ts 

The experimental results illustrate the key points of the control approach 
discussed above. These results were obtained on the first chip prototype. 
All the data was acquired using a data acquisition board (National Instru- 
ments AT-MI0 1620E) and successively plotted using MATLAB tools. 

a Range of oscillation frequency 
First of all, the behavior of the single cell a t  different clock fre- 
quencies is illustrated. Here and in what follows, if not explicitly 
stated, it is assumed that the connections among the cells are set 
to  fast gait. Figure 3.21 shows the trends of the two state variables 



Fig. 3.19 Layour of the CNN-based CPG cbip. 

x, and x2 of the motor-neuron L1 at two different clock frequencies 
(Fig. 3.21(a) refers to  fe = IOkHz, Fig. 3.21(bJ to fc = 1OOHz) 
and the phase plane zl - zz for the w e  of f. = lOOHa (the caso 
of f c  = lOkHz is practjcally indistinguishable); the oarresponding 
oscillation frequencies are f,, = 132Hr and f. = 1.32Nz. respec- 
tively. T h w  two ca8es demonstrate the suitability of the approach 
to control different actuators (for instance servc-motors and p iem 
electria). Mormver the low stepping frequency of the latter case 
is evperimental conlinnation that this technique allows large time 
constants with relatively small capacitances. 
The frequency range was further investigated by measuring the 
period of millations versus the clock frequency in the interval 
100mHr- 500kK.z. Figure 3.22 illustrates the results of the analy- 
sis, showing the suitability of the approach in the considered range. 
These results wereobtained by considering fast gait, storing all the 
data and then computing the period of oscillations. The s p e d -  
cations of the data acquisition board do not allow us to consider 
clock frequencies greater than I, = 500kHz. However, an analysis 
on the oscilloscope reveals that the operating range is even wider; 
at fc = 3 M H z  the chip outputs are saturated. 
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Fig. 3.20 Photo of the CNN-based CPG chip. 

0 Speed control 
Speed control can be addressed by providing slight changes in the 
clock frequency. As an example we considered small variations of 
the clock frequency around fc = 100Hz, since this value represents 
a suitable value for control of the hexapod robot. The results are 
shown in Fig. 3.23. 
Table 3.4 shows a comparison between the simulated and measured 
periods. As can be noticed, the agreement between simulation and 
experimental results is good. 

Table 3.4 Comparison between simulated and 
measured oscillation period at different clock fre- 
quencies. 

0 Locomotion gait 
The CNN-based CPG is able to generate different patterns of lo- 
comotion. However, in the first chip prototype only fast gait was 
implemented. Figure 3.24 shows the waveforms of 2 1  for each cell 
at two different clock frequencies. As can be noticed the signals of 
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Fig. 3.21 Waveforms of the two state variables 51 and x2 of the motor-neuron L1 a t  
two different clock frequencies f c  = l 0 k H z  (a) and fc = l00Hz (b). (c) Phase plane 
51 - 2 2  with f c  = 100Hz. 

the two tripods are perfectly synchronized. The good agreement 
between simulations and experimental results for fast gait guaran- 
tees the possibility of obtaining the other gaits. 

The two chip inputs i 2 , ~ 2  and i 2 , ~ 2  provide a suitable way to con- 
trol the direction of the robot. The results given here illustrate the 
possibility of changing the behavior of the CPG by acting on these 
inputs. One of these two inputs was kept constant at  2.5V, while 
a periodic square wave (between 2.5V and 5V with a duty cycle of 
6 = 30% and variable frequency) was applied to the pin correspond- 
ing to the other input. The suitability of the approach was verified 

Direction control 
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Fig. 3.22 Period of oscillations T of the fast gait signals versus the  clock frequency fc 
(log-log plot). 

at different clock frequencies. In particular, Figs. 3.25 and 3.26 
refer to fc = 100Hz. In this case the frequency of the square wave 
signal applied to the input 22,R2 is fi = 80mHz. Figure 3.25 shows 
that, when the square wave signal is high, the movements of the leg 
R 2  stop since the state x1,R2 of the motor-neuron R 2  is less than 
-1, the output is Y1,R2 = -1, and thus the leg is on the ground. 
Figure 3.26 shows the waveforms superimposed on the same plot. 
This allows us to appreciate the short duration of the transitory 
phase: when the input signal emulating the sensor output goes 
down, the locomotion gait is rapidly recovered. 

In Chap. 5 further experimental results (on a hexapod robot controlled 
by the chip) are shown. 



Fig 3.23 
(slight changpb).  

Period af millations T of the fast gait rignai. versus the clock &ewemy fG 

Fig. 3.24 
n e w n .  (a) 

The fast gait at &Rerent dock frequencies; trend of 51 for each CNN motor- 
= 100Hz; (b) jc = IkXr. 
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Fig. 3.25 Direction mnlrol at fc = 1WWa: w a v e l m  of 21 for d cell. When the 
quare wave signd ia high, theosciUations of leg R2 stop. 

Fig. 3.26 
input i2.m goes down. 

Dirmtian control: recovery of the locomotioa pattern (fast gait) after the 



Chapter 4 

Decentralized locomotion control 

In this Section decentralized locomotion control inspired by the stick insect 
model is dealt with. In this model the locomotion pattern is the result of a 
set of local influences among leg controllers whose behavior is regulated by 
reflexes triggered by sensors. In this sense this scheme is totally different 
from the CPG, in which the generation of the driving signals docs not rely 
on sensory feedback. 

Two different irnplerrieritatioris of decentralized locomotion control are 
presented here. The first is based on CNNs, the second on integrate-and- 
fire neurons. The two approaches share the idea of using nonlinear dynam- 
ical systems at the low level of locomotion control. This implementation 
strategy is also common to the CNN-based CPG presented in the previous 
Chapters. The capability to solve the complex problems of legged robot lo- 
comotion by means of distributed control in which the computational effort 
is divided between the self-organizing nonlinear units is a peculiar feature 
of this implementation strategy. Moreover, the intrinsic self-organization 
of the networks makes the system robust to parameter changes and faults. 

4.1 CNN-based decentralized control model 

The stick insect (Fig. 4.1) is a fascinating insect that slowly walks by adopt- 
ing a large variety of reflexes. Its behavior is usually given as an example 
of an approach for locomotion control totally different froin the CPG. The 
locomotion control is based only on reflexes. 

In fact, experiments carried out on the stick insect by Cruse [Cruse 
et. al. (1998a)l led to the emergence of a locomotion pattern from local 
influences among the networks of neurons devoted to the control of each 
leg. This is in contrast with a number of findings in other animals, in which 
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Fig. 4.1 A photo of a a t i d  iiuect 

the locomotion pattttern is mumed to be the result of hierarchical control 
and ita generation takm place at the neural Iwel of the CPG. The models 
u~ed Cruse we essentiaily implekented via artificial neural networks, 
based on a static neuron model. 
This Chapter introduces a new general methodology for the wntrol of le 

comotion patterns in hexapod robots, applied here to reproduce the motion 
of stick insect locomotion. This approach is inspired by the decentrnhed 
approach and introduces a network of l o d y  wupled nonlinesr dynamical 
systems able to orgmize themselves so as t o  show the same complex he- 
havior as the stick insect lowmotion generator. Particular attention is also 
paid to the possibility of directly realizing the mntrol scheme in a hardware 
framework. This is to fill the gap left by most of the methodologies intrc- 
ducd  up to now, which stop at a softwme level, neglecting implementation 
issues. This approach, on the contrary, foeuses directly on the hardware 
realization of the locomotion control. 

The basic dynamical unit conskts of the mnd-order nonlinear system 
(2.5). This choice was motivated by an analogy between this cell and an 
assembly of biological neurons forming an attractor network. The charac- 
teristics of the spatial-temporal dynamics arising in arrays of cells of this 
type are alw qualitatively the w e  as those arising in pooh of biological 
neurons. It will be shown that the dynamic capabilities of the cell can 
be efficiently exploited to control the leg kinematim of an insect-like hex& 
pod robot. In particuIar, the Emit cycle behavior of the cell, BS well as 
i t s  slow-fast dynamics, will be preserved in order to periodically drive the 
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leg; at the same time the interactions among the other cells will allow the 
emergence of the locomotion pattern. This mechanism will be formalized 
in a very simple way in order to guarantee the feasibility of the hardware 
realization. The proposed approach implements a dynamical leg controller 
structure, at the same time preserving the capabilities of both the stance 
controller network and the swing controller network, which strictly reflect 
the biological behavior [Cruse et. al. (1998b)l. 

The influences between the cells are the same as used in [Cruse et. al. 
(1993)I. However, the parameter values were changed, since the core of the 
leg controller is in this case a dynamical system, acting in a very different 
way with respect to the previous approach. The influence parameters were 
found by using both a heuristic procedure and genetic algorithms. 

The focus of this Section is to formalize a decentraIized locomotion 
control system using the CNN paradigm, in order to generate locomotion 
rhythms based on sensory feedback to provide suitable controllers for bio- 
inspired robots [Arena et. al. (2003b)l. The approach shows its suitability 
to drive six legs in an organized way, in accordance with the model of 
the stick insect. The simulation results obtained reveal that the network 
generated is able to reproduce both tripod and tetrapod gait and shows the 
capabilities of pattern recovery in the event of leg jamming due to external 
disturbances. 

4.1.1 The decentralized control paradigm 

The decentralized control paradigm is based on a distributed network of 
neural controllers, with no hierarchy, that are able to generate proper mo- 
tions based on reflexes and local influences (unlike the CPG, it strictly needs 
sensory feedback for pattern generation, while the locomotion pattern gen- 
eration in the CPG takes place even in absence of sensory feedback). This 
type of control is realized in [Cruse et. al. (1998a)], through the so-called 
Walknet model. Walknet is based on a controller network for each leg and 
on a set of local influences acting on two kinematic parameters: the pos- 
terior extreme position (PEP) and the anterior extreme position (AEP) of 
the leg contact point. The AEP represents the point when the leg touches 
the ground, i.e. the transition from the return stroke to the power stroke, 
while the PEP represents the transition from the power stroke to the return 
stroke, i.e. the point when the leg is lifted in the air. 

According to the Walknet model, each leg controller is divided into three 
main blocks: the selector net, the swing net and the stance net. The swing 
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net is devoted to controlling the trajectory of the leg while in the swing 
phase, whereas the stance net controls the leg trajectory when the leg is 
in the stance phase. On the basis of sensorial inputs and proprioceptive 
information, the selector net establishes which of the two other nets should 
actively control the leg. The inputs to this selector net are the ground 
contact (GC) signal, indicating when a leg is on the ground, and the PEP 
signal, which indicates if the PEP has been reached or not. 

A set of local influences acting on the kinematic parameters (AEP, PEP) 
of each leg controller has been shown to be suitable to explain the emergence 
of a well-defined gait in stick insect locomotion [Cruse et. al. (1998a)l. Ex- 
periments reveal that the stick insect adopts two gaits to deal with different 
environmental conditions: tripod gait and tetrapod gait. The former allows 
higher speed and is characterized by two alternating leg tripods sustaining 
the body. In tetrapod gait, in contrast, there are a t  least four legs in the 
stance phase at  the same time. 

The characteristics of these two patterns can be defined through the 
concepts of cycle time, duty factor and phase lags introduced in Sec. 2.5. 
For sake of commodity and completeness, let us now indicate the leg phases 
with capital letters @i and let us recall that using these parameters, it is 
possible to characterize tripod gait as a periodic gait with the same duty 
factor for all the legs (dfi = 0.5) and the following phase lags: 

where the legs are numbered from front to rear and labelled as left (L) 
or right (R). 

In the stick insect another gait is experimentally observed, the tetra- 
pod gait. In this investigation, we concentrate on an intermediate form of 
tetrapod gait (slightly different from the medium gait discussed in Sec. 2.6) 
characterized by dfi = 213 and the following phase lags: 

Even in this case it should be noticed that although often regarded as 
two different gaits, tripod gait is a special form of tetrapod gait. What is 
called tripod gait is the fast version of tetrapod gait [Graham (1985)]. This 
means that there is a continuous transition between slow tetrapod and fast 
tripod gait and all intermediate forms are stable versions of tetrapod gait. 
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In more detail, six local influences are identified [Cruse (1990)I: a leg in 
return stroke inhibits the start of the return stroke in the anterior leg (first 
influence, rostrally directed, i.e. from rear to front); when the leg begins 
its power stroke, it excites the start of the return stroke in the anterior leg 
(second influence, rostrally directed); while in stance a leg excites the start 
of the return stroke in the posterior leg (third influence, caudally directed, 
i.e. from front to rear); the position in which a leg touches the ground is a 
target for the posterior leg (targeting influence, caudally directed); the fifth 
influence is caused by increased loads and given the purely kinematic nature 
of our model is not considered at  the moment, nor is the sixth influence, 
which represents the treading-on-tarsus reflex. 

The selector net, the swing net and the stance net were realized in [Cruse 
et. al. (1998a)l by using artificial neural networks with static neurons. In 
this work the decentralized control paradigm is implemented as a space 
distributed architecture of nonlinear dynamical systems representing the 
leg controllers. This formalization led us to represent the decentralized 
control through the CNN paradigm. The peculiarities of this system will 
be examined in the next Section. 

4.1.2 The CNN leg controller 

In the hierarchical control of hexapod robots illustrated in Chap. 2, the 
periodic movement of each leg is controlled by the oscillating variables 
of a nonlinear dynamic system. This system corresponds to two coupled 
motor units responsible for driving the two joints of a leg. The biological 
system consists of a large number of sensory cells, inter-neurons, and motor- 
neurons. The CNN neuron has only two control signals that alternate 
between low and high excitation, needed to assure the correct movement of 
the leg in stance and in swing. 

The dynamics of the motor-neurons is described by Eq. (2.5). I t  is worth 
recalling that the output variables, y1 and yz, after appropriate scaling as 
in Eq. (5.1), are used to drive the joint actuators. More precisely, the 
leg of the hexapod robot used to illustrate the decentralized locomotion is 
made up of two links, as shown schematically in Fig. 4.2, and has two DOF 
actuated by servomotors driven by the variables of system (2.5). Let us 
recall that the variable y1 is used to drive the p-joint, therefore regulating 
the height of the leg, while the variable yz drives the a-joint. 

As discussed in Sec. 4.1.1, the decentralized control is based on two 
kinematic parameters, AEP and PEP, which can be identified on the phase 
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Fig. 4.2 
ized locomotion control. 

(a) Leg model (two actuated joints) and (b) the hexapod model for decentral- 

Fig. 4.3 
21 - 2 2  (dashed line) and y1 - yz (solid line). 

The limit cycle of system (2.5) with nonlinearity (2.6) in the phase planes 

plane in Fig. 4.3 where the limit cycle of the CNN neuron in both the phase 
planes XI - 22 and y1 - y2 is shown. To allow these parameters to change, 
instead of considering nonlinearity (2.6), the following nonlinearity can be 
taken into account: 
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(4.3) I 
Y 2 =  { 

That is, instead of a clipping function with fixed upper and lower bounds 
of 1 and -1, respectively, we now have variable upper bounds ( k l ,  k3) or 
lower bounds (k2, k4).  Introducing this nonlinearity in system (2.5) leads 
to an oscillating behavior that can be modified by acting on the parameter 
vector K = [kl  k2 k3 k4] of the nonlinearity. Figure 4.4 illustrates some 
examples showing how the original limit cycle (obtained for K=[l -1 1 -11) 
is modified as a function of K. 

I 
-6 -4 -2 0 2 4 -6' 

x 1  

Fig. 4.4 Limit cycle of system (2.5) with nonlinearity (4.3) for different values of K: 
K,=[l -1 1 -11; Kb=[2 -1 1 -11; Kc=[2 -2 2 -21; Kd=[3 -2 2 -21; Ke=[2 -2 3 -31. 

However, not all the possible values of K are such that the limit cycle 
behavior is maintained. The range of suitable values of K can be inves- 
tigated by considering the conditions for which the Poincark-Bendixson 
Theorem holds. The analysis follows that of Chap. 2; in this case the com- 
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putation refers to the saturation points that are now variable. In order to 
have a periodic orbit, k3 and k4 should be chosen so a s  to exclude stable 
equilibrium points in the other remaining regions (01, ..., 08). Solving the 
system given in Eq. (2.5) in each of these 8 regions, the four non-trivial 
conditions assuring the non-existence of equilibria inside them lead to the 
following relations as functions of k3 and k4, which guarantee the existence 
of a periodic orbit inside R: 

(4.4) 

These parameters can therefore be modulated around fixed values, de- 
pending on the state of the other legs. In particular, it is possible to act on 
k3 and k4 to vary the AEP and the PEP, as shown in detail in Sec. 4.1.3.1. 
In fact, the AEP is reached when the variable 5 2  passes the saturation point 
k3 and y1 reaches the low saturation limit kz. The stance phase begins at  
this point. I t  ends when the PEP is reached: this occurs when the variable 
y2 reaches its inferior saturating point k4. Therefore, to change PEP  or 
AEP, the parameters k4 or k3 have to be varied. Their modulation rules 
are derived following the influences known to control stick insect walking 
[Cruse (1990)l. In particular, to match the method adopted in Walknet and 
that based on CNNs, the local connections among the CNN cells influence 
the parameters k3 and k4. Therefore, for each cell, these two parameters 
modulating its clipping function are themselves functions of the neighboring 
cell state variables. 

4.1.3 

4.1.3.1 CNN Decentralized Control 

In this Section it is shown that the CNN paradigm is suitable for the im- 
plementation of the whole locomotion control system. To this end the local 
influences are re-examined. An overview of the whole control system, ac- 
cording to the Walknet model, is given in Fig. 4.5, where the influences 
among the CNN cells are indicated. These have been assumed to be of the 
same type as those used in other works dealing with the decentralized con- 
trol of the stick insect [Cruse (1990)]. Figure 4.6 shows the nonlinearities 
involved in the local influences: the subscripts i and c refer to ipsilateral 
(between legs on the same side of the insect) and contralateral (between cor- 

The whole control system and results 
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responding opposite legs, for example R2 and L2) influence, respectively, 
while the inputs of these nonlinearities will be discussed in detail below. 
The parameters appearing in the nonlinearity graphs were chosen by using 
an optimization strategy, as will be explained later on. The inputs of the 
influences are Ground Contact (GC), which is a binary signal coding if a 
leg touches the ground or not; the (normalized) displacement of the leg in 
the motion direction, Y ;  and a speed parameter, v, indicating the speed of 
the insect. The input of the first type of influence is GC, the input of influ- 
ence 2 is the product of GC and the displacement Y ,  the input of the third 
influence is X = YR1GCR1 + or X = YRIGCRl + ilog log(5v - 1.5) 
(contralateral and ipsilateral, respectively), and the input of influence 4 is 
the product of GC and Y .  

It should be pointed out that for influence 2 the nonlinearity follows 
a low-pass filter cascaded by a high-pass filter, and therefore the whole 
influence nonlinearity will be referred to as ?I, (.). 

3 

Fig. 4.5 Scheme of local influences: arrows indicate excitatory influences, while dots 
indicate inhibitory influences. Influences acting on the PEP are indicated with solid 
lines, those on the AEP with dashed lines. 

The local influences act on the leg controller, represented by Eq. (2.5) 
and (4.3), modifying k3 as regards the influence on the AEP (influence 4) 
or kq as regards the influences on the PEP (influences 1-3), according to 
the scheme shown in Fig. 4.5. Therefore, the output nonlinearity y2 of each 
cell (while the output y1 is not affected by the neighboring cells) can be 
written as: 
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which constitutes a slight generalization of the CNN output definition. The 
parameters k 3  and k 4  are modulated by the values of the outputs of neigh- 
boring cells and the sensory feedback. In more detail, the dependence of k 3  

and k 4  on the neighboring cells can be explained by considering the scheme 
in Fig. 4.5 and the nonlinearities in Fig. 4.6. For example, let us consider 
the controller of leg L1. The leg controller receives contralateral influences 
from the controller of leg R1 (influences 1-3) and from the ipsilateral leg 
L2 (influences 1-2). All these influences act on the PEP. Therefore, the 
nonlinearity y 2 , ~ 1  is given by: 

where A k 3 , L 1  = 0 since no influence acts on the AEP of L1 and 

The output nonlinearities of the other cells of the CNN implementing the 
whole decentralized control can be obtained in a similar fashion. 

As can be noticed, all the nonlinearities involved in the CNN model 
of decentralized control are piecewise linear with flat end segments. This 
ensures the stability of the control system. 

Fig. 4.6 Nonlinearities of local influences between leg controllers. 
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4.1.3.2 

For the first and second influence four parameters should be taken into 
account: i l z ,  i lc,  i Z C  and i Z z .  These describe the strength of the effect of 
influence 1 and influence 2 acting between ipsilateral legs or between con- 
tralateral legs, respectively. For the third influence four parameters for the 
ipsilateral and four for the contralateral influence were taken into account. 
Two of these four parameters describe the strength of the dependency on 
the position of the leg sending the information (slope, ordinate offset: 2 3 . 9 ~  

and i 3 1 n t ) ,  and two ( i 3 ~ ~  and &Low) describe an upper and lower bound 
limiting this effect. Finally, two further parameters (24 and zlog) were in- 
cluded, namely the strength of the fourth influence and the strength of the 
pattern dependency on speed. The value of k2 was also varied. Altogether 
15 parameters were allowed to vary. 

As discussed above, in the stick insect there is a continuous transition 
between the two locomotion patterns as a function of the speed parame- 
ter: when the speed parameter v is in the range of 0.5-0.7, tripod gait is 
the pattern adopted by the stick insect, while when the speed parameter 
assumes values in the range of 0.35-0.5 tetrapod gait arises. We considered 
the problem of finding a set of parameters for tripod gait and tetrapod gait 
separately. This was the first step to find a single set of parameters for 
both patterns and allows us to show that local influences are suitable even 
when a dynamical system is assumed as the leg controller. This is a first 
step that allows us to prove that local influences can be a suitable way to 
model insect gait, even when the dynamics of each cell changes completely. 

As a first approach we applied a heuristic (trial and error) procedure to 
find a set of parameters. This was shown to be suitable for tripod gait. 

To find suitable parameters for tetrapod gait, a heuristic procedure was 
not sufficient, so genetic algorithms [Goldberg (1989)] were used. They 
are an optimization algorithm based on the paradigm of natural selection. 
The algorithm operates on a population of individuals: each individual is 
represented by a string containing the parameter set. After the random 
generation of the initial population, the algorithm evolves through three 
operators: selection (survival of the fittest), crossover (mating between 
individuals) and mutation (introducing random modifications) to achieve a 
population containing the optimal solution with respect to a fitness function 
which will be specified below. For each set of parameters a simulation of 
the model was carried out. To allow a degree of randomness and at the 
same time to avoid starting from unnatural initial conditions, fixed values 

Choice of the parameters of the model 
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with small random additive terms (10% of the nominal value) were chosen 
as initial conditions for this simulation. The fitness function takes into 
account how well the simulation matches the given pattern. If @ ~ 2  Q L ~  

@RI @ ~ 2  @R3 indicate the phase lags of the target pattern and 4 ~ 2  4 ~ 3  

4 ~ 1  # ~ 2  #RS indicate the phase lags obtained in the simulation, the fitness 
function f is chosen as follows: 

where 

i E (L2, L3, R1, R2, R3) 

and the index k takes into account an average of the last n periods of 
oscillations. 

Similar results can be obtained if, in addition to Eq. (4.7), a further 
term is taken into account, i.e. the error achieved on the duty factor. 

Figures 4.7 and 4.8 show the gaits obtained by simulating the model. 
Figure 4.7 refers to tripod gait with phase lags as in Eq. (4.1) and parame- 
ters obtained by trial and error as shown in Table 4.1, while Fig. 4.8 shows 
tetrapod gait obtained by considering the phase lags as in Eq. (4.2) and by 
using the parameters obtained with genetic algorithms and shown in Table 
4.2. 

Fig. 4.7 The step pattern of tripod gait as produced by the C N N  model of the locomotor 
control system of the stick insect. The six traces indicate the six legs (from the top: L1, 
R2, L3, R1, L2, R3); black boxes denote the swing phase. 
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The pattern shown in Fig. 4.8 was obtained by running genetic algo- 
rithms with a population of 30 individuals for 100 generations. With the 
choice of the fitness function as in Eq. (4.7), minima of the problem are 
searched for. The fitness of the best individual is f = 5.9. lop4. The re- 
sults obtained fit the tetrapod gait of the stick insect very well, like those 
obtained with Walknet. 

parameter 
value 

Li 

R2 

u 

R7 

CL 

R3 

Fig. 4.8 

i l j  i l c  i 2 c  i 2 i  i 3 c H i  i 3 c I n t  i 3 c L o w  
1.3647 1.6824 0 0.5882 0.5000 0 -2.7235 

0.5000 5.0000 0 -0.5000 10.0000 0 0.1459 
i 3 c S L  i 3 i H i  i 3 i I n t  i 3 i L o w  i 3 i S L  i4 i l o g  

The step pattern of tetrapod gait as produced by the C N N  model of the loco- 
motor control system of the stick insect (parameters obtained running genetic algorithms 
with a population of 30 individuals for 100 generations). The six traces indicate the six 
legs (from the top: L1, R2, L3, R1, L2, R3): black boxes denote the swing phase. 

Table 4.1 Parameters of the C N N  controller: tripod ( k 2  = -3.8). 

parameter 1 ili i l c  i z c  iZi  i 3 c H i  i 3 c I n t  i 3 c L o w  
value 3 2 8 4 n n -3 

~ ~~ ~ ~~~~~~ 

i 3 c S L  i 3 i H i  i 3 i I n t  i 3 i L o w  i 3 i S L  24 i l o g  
I 3  0 0 -1 1 1 0.2 
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4.1.3.3 

The control system with the parameters obtained as described above was 
simulated in different conditions to test its robustness. The results discussed 
here deal with tetrapod gait (in all the simulations the parameters are kept 
fixed to the values given in Table 4.2). 

The first experiment deals with conditions similar to those reported 
in [Cruse et. al. (1998a)l and is devoted to testing the behavior of the 
system when a leg is blocked for a short time due to external disturbances. 
The model presented here shows the same capability of pattern recovery as 
in Walknet. The step pattern resulting from this experiment is shown in 
Fig. 4.9(a), while Fig. 4.9(b) shows the number of legs that are in stance at  
the same time as a function of the simulation step s. As can be noticed, a t  
approximately s = 1100(samples) the right middle leg (R2) should begin 
its swing phase, but it is externally forced to remain in stance. After a 
few cycle periods the pattern is recovered. A measure of the error induced 
by this disturbance in the gait, expressed in terms of the fitness function 
in Eq. (4.7) with n = 1, was considered. This is shown in Fig. 4.10 as a 
function of the gait cycle of the insect model: the leg R2 is blocked at the 
fourth cycle causing a sudden increase in the phase lag error; after 4 cycles 
the phase lags fit those of the ideal tetrapod gait (4.2) very well. 

Attention was also paid to the minimum number of legs in stance during 
the whole simulation. This is fundamental since static stability is assured 
if three (with at least one leg for each side) or more legs are in stance. 
Analysis of Fig. 4.9(b) reveals that the period when only two legs are on 
the ground corresponds to a small fraction of a swing phase and takes place 
soon after the disturbance. 

Finally, the robustness of the control system to different initial condi- 
tions of the CNN cells was tested. The parameter set was found by running 
genetic algorithms with random perturbations around nominal values of 
about 10%. This leads to the parameter set in Table 4.2, thus the control 
system already includes some robustness properties. To further investigate 
the robustness of the control system with parameters fixed to the values in 
Table 4.2, random perturbations (ranging from 0% to 80%) on the initial 
conditions of the CNN were considered. For each value of random pertur- 
bations (ranging from 0% to 80%) a set of 10 simulations of the control 
system was performed. The results are illustrated in Fig. 4.11, where the 
logarithm of the fitness function value as in Eq. (4.7) is given for the 10 
trials for each of the different values of the random perturbation on the 

Robustness of the CNN Decentralized Controller 
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Fig. 4.9 Recovery of tetrapod gait after the blocking of a leg: leg R2 is blocked for the 
period indicated by the two dashed marks: (a) the step pattern (black boxes denote the 
swing phase); (b) number of legs in stance versus the simulation step s. 

initial conditions. 
As can be noticed, the pattern is quite insensitive to the initial con- 

ditions. Only large perturbations (80%) lead to not well-defined patterns 
(when the fitness function takes values above in which in any case a 
form of locomotion is still present. 

Static stability was also taken into consideration in the investigations 
into the system's robustness to different initial conditions. For some initial 
conditions, the gait pattern may not be well defined in the first part of 
the simulation and for short periods (not longer than those examined in 
the case of leg blocking) only two legs are in stance. However, this is a 
conservative condition, and a more accurate analysis including dynamic 
constraints should be performed to investigate when this condition can 
cause the robot to fall. In any case, this can be taken into account in the 
choice of the fitness function. 

The experiments discussed here show an important feature of the con- 
trol system: its ability to deal with disturbances. Of course, even if the 

10-2
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Fig. 4.10 
and actual pattern versus gait cycles. 

Recovery of tetrapod gait after the blocking of a leg: error fl between target 

experiments deal with a particular kind of disturbance, the recovery capa- 
bilities are independent of the source of disturbance. Moreover, the genetic 
algorithm procedure gives a population of possible solutions among which 
the best is chosen, showing the intrinsic robustness of the evolution-based 
method in finding the parameters. The CNN neuron has also been shown to 
be robust to parameter changes [Arena et. al. (1999)l. All these consider- 
ations guarantee the feasibility of a hardware realization of the locomotion 
control. 

4.2 Integrate-and-fire neurons and decentralized control 

The aim of this Section is to propose another implementation of decentral- 
ized locomotion control. In particular this realization has two objectives: 

0 to study a network of spiking neurons and their suitability for lo- 

0 to implement a scheme totally based on reflexes. 
comotion control; 

It is well-known that spiking neurons are involved in the neural control 
of locomotion [Orlovsky et. al. (1999)l. Therefore using spiking neurons 
adds biological plausibility to the control scheme. Moreover, this allows to 
realize an analog control system totally relying on reflexes, i.e. there is no 
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Fig. 4.11 
performed for each value of the perturbation percentage. 

Robustness of the pattern with respect to initial conditions: 10 trials were 

intrinsic oscillation in the leg controller (the swinglstance periodic sequence 
is induced by sensors), whereas in the CNN model each leg controller is 
still an oscillator. Therefore, the new scheme essentially differs from the 
CNN model in the leg controller design, whereas interlimb coordination is 
achieved by means of the same local interactions. The rhythmic movements 
are the result of the interaction between the leg dynamics and the control 
system. This leads to a totally different leg controller design, that strictly 
requires sensory feedback for the generation of leg movements. 

To implement spiking neurons the well-known integrate-and-fire (IF) 
model is assumed. It should be remarked that IF neurons have already been 
used in bio-inspired systems [Lewis et. al. (1998)], where they constitute the 
last stage of a CPG for bipedal locomotion. The hierarchical organization 
of the motor control of [Lewis et. al. (1998)] consists of a pair of mutually 
inhibited oscillators driving two IF motor-neurons. The aim of our work is 
to further exploit spiking neurons for locomotion control and to build up a 
network consisting exclusively of IF neurons able to control the locomotion 
of a hexapod robot. 
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4.2.1 The leg controller 

The model for the leg controller is now presented. As discussed above, this 
is the core of the new scheme. The model does not reproduce any particular 
leg controller of a given insect, but relies on a few biological motivations, 
common to many arthropods and which will be examined below. 

The fundamental unit of the leg controller is the IF neuron, a very 
simple model of a spiking neuron. No intrinsic oscillations are included in 
the model and the rhythm of the locomotion is induced by the status of the 
sensors. 

4.2.1.1 Biological motivations 

The neural control of muscles takes place in a very different way in inverte- 
brates and vertebrates. While in vertebrates a number of neurons innervate 
the muscles, in arthropods typically few neurons innervate the muscles. For 
example, as regards the muscles controlling the extension of the femur, the 
studies carried out by Pearson and Iles [Pearson and Iles et. al. (1971)], 
based on electromyograms, reveal that only two motor-neurons (fast and 
slow depressors) innervate these muscles. 

It should also be remarked that animal movements are very often regu- 
lated by pairs of antagonistic muscles. The main blocks present in the model 
of the leg controller considered here reflect these considerations. They are: a 
“muscle block”, that plays the role of either the pair of antagonistic muscles 
or (in the robot) the servo-motor controlling the joint; the “motor-neurons” , 
two for each joint (depressor and extensor), and the “inter-neurons”. The 
motor-neurons drive a muscle block, while the inter-neurons are not con- 
nected to any joint. When a motor-neuron emits a spike, the muscle block 
integrates the spike and the joint moves according to the direction estab- 
lished by the kind of motor-neuron (depressor or extensor). 

4.2.1.2 The integrate-and-fire neuron 

The dynamics of accumulation and fire is common to different phenomena. 
Figure 4.12(a)-(c) shows a series of examples: a vessel that is slowly filled 
by water and is quickly emptied when the water reaches the threshold level; 
a neuron whose electric potential across its membrane slowly charges until 
it emits a spike (a huge current pulse discharging the membrane potential 
in a very short time) and the van-der Pol relaxation generator, in which the 
charge of the capacitor slowly grows until the threshold for the gas discharge 
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in the neon lamp is reached [Pikovsky et. al. (2001)l. The common feature 
of these systems is the presence of two different time scales: slow and fast 
motion alternate within an oscillation period. These systems are known as 
relaxation oscillators. The main building block of our leg controller, the 
neuron, represents a relaxation oscillator. 

The equations of the IF neuron are the following: 

where x is the membrane potential, Isp is a spontaneous current, Isyn is 
the synaptic current from other neurons, Idis is the discharge current and 
y = h ( x )  is a hysteresis: 

where ThL and ThH indicate the low and high threshold respectively. 
By choosing Idis >> Isp the dynamics of the neuron, in absence of 

other currents, is regulated by two different time scales: the small Isp 
slowly charges the membrane, while the large Idis rapidly discharges the 
membrane. It offers a good example of a relaxation oscillator. Moreover, 
far from reproducing the complex current exchanges occurring in the mem- 
brane of real neurons, they capture their essential dynamics, offering a 
biologically plausible model more than an accurate, but complex model. 

The typical trends of the variables x and y are shown in Fig. 4.12(d). 
As can be noticed, the trend of the variable y is characterized by spikes 
occurring at  instants when x reaches the threshold value. As mentioned 
above, spiking neurons are involved in the neural control of locomotion. 
This is the reason why we will think of the variable y as the output of 
the neuron and consider synaptic connections between the neurons realized 
through this output. 

4.2.1.3 

The leg controller provides the leg with the signals for proper locomotion. 
The leg has two DOF (a-joint and &joint in Fig. 4.2). The two phases, 
stance and swing, alternate on the basis of the sensory feedback. Two 
sensory signals are fundamental, the GC and the PEP-AEP. Both signals 
are binary coded: the GC is high when the leg tip touches on the ground, 

Scheme of the leg controller 
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Fig. 4.12 
laxation oscillator. 

(a)-(.) Examples of relaxation oscillator. (d) Slow-fast dynamics of the re- 

thus indicating that the stance phase should begin; the PEP-AEP is high 
when the PEP is reached, thus indicating that the swing phase should 
begin. 

During the stance phase the motor-neuron PS (power stroke neuron) is 
spiking, while during the swing phase the motor-neuron RS (return stroke 
neuron) is active. These motor-neurons drive the a-joint. Since during 
stance and swing this joint has to be moved in opposite directions, these 
motor-neurons act on the joint with opposite signs, meaning that when, 
for instance, RS emits a spike, the joint moves according to the forward 
direction of robot motion. Hence, the activities of these two neurons in 
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a certain sense define the beginning and the end of the power stroke and 
return stroke, the pattern of their activities being characterized by an al- 
ternating bursting of the two neurons. 

This behavior is due to the connections between sensors and neurons 
present in the leg controller network (shown in Fig. 4.13). These con- 
nections were established on the basis of the following considerations. For 
instance, since the GC indicates the beginning of the power stroke, it seems 
clear that it should excite the PS neuron and inhibit the RS neuron. Analc- 
gously, the PEP-AEP signal should excite the RS neuron (the return stroke 
initiates since the leg has reached the PEP) and inhibit the PS. Mutual 
inhibition between neuron RS and PS reinforces the anti-phase bursting of 
these neurons. The second actuated joint (the p-joint) is driven by two 
other motor-neurons, labelled E (extensor, lifting the leg) and F (flexor, 
lowering the leg). Neuron E should clearly be inhibited by the neuron PS, 
since the leg should not lift during the power stroke. 

These are inter- 
neurons, since they do not directly synapse any joint actuator. Their role 
is, however, important. For instance, neuron EIN is excited by neuron E 
and inhibits it. This kind of connection is quite common in real neural 
controllers [Orlovsky et. al. (1999)] and results in a pattern of activities, in 
which neuron E emits a burst of spiking and then stops. In our model it 
has been assumed that neuron EIN is a %low” neuron: it is slowly charged 
by the excitatory input provided by the synapse with neuron E. 

The behavior of the whole network is illustrated in Fig. 4.14. A rhythmic 
pattern is evident. It is induced by the rhythmic activation of the sensory 
feedback signals GC and PEP-AEP. Moreover, the pattern is periodic since 
it is assumed that the leg is on flat terrain and the outputs of GC and 
PEP-AEP are regular. 

Each connection in Fig. 4.13 is characterized by a weight and a sign, neg- 
ative if the synapse is inhibitory (indicated with a filled dot in Fig. 4.13) or 
positive if the synapse is excitatory (indicated with an arrow). The weights 
of these connections constitute the parameters of the leg controller and were 
obtained by trial and error according to the considerations outlined above. 
Table 4.3 gives these parameters, while Table 4.4 deals with the parameters 
of the neurons of the leg controller: spontaneous current I sp ,  discharging 
current I d z s  and threshold values according to Eq. (4.8). 

Finally, Fig. 4.15 gives the typical trends of the PS and RS outputs and 
of the position xL1 of the tip of leg L1 in the direction of motion. The 
position xL1, varying between AEP and PEP, goes from AEP to PEP  in 

The leg controller model includes other neurons. 
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Fig. 4.13 Scheme of the IF leg controller. 

F 

IN 

E 

RS 

t 

Fig. 4.14 Signals from the leg controller: the output of the motor-neurons RS and PS 
controlling leg protraction and retraction, the output of motor-neuron E and F control- 
ling the extension of the leg and the inter-neuron E are shown (normalized units are 
assumed). 

the stance phase (when neuron PS fires) and from PEP to AEP during 
the first phase of the return phase (when neuron RS fires). Two complete 
stepping movements are shown. 



Decentralized locomotion control 

Rs 
PS 
E 

IN 
EIN 

[IN 

95 

0 -4 0 0 0 0 0 -1.5 1.5 
-4 0 0 0 0 0 0 1.5 -1.5 
0 - 4 0 - 1 0 0 0 0  0 
0 - 1 1  0 0 0 0 0 0 
0 0 0 1 0  0 0 0 0 
0 0 0  0 1 0 0 - 1  0 

F O O O O O l O - 1  0 

4.2.1.4 The elevator reflex 

As discussed previously, there are a number of local reflexes which are 
fundamental for proper locomotion on rough terrain. The IF  leg controller 
can easily be modified to include other reflexes, such as the elevator reflex. 

To this end two new neurons are introduced in the leg controller network. 
In Fig. 4.16 the connections between the previously introduced neurons (R 
and RIN with parameters as in Table 4.5) and the other neurons of the 
leg controller, as well as the weight of these connections are drawn. The 
elevator reflex sensor represents a generic sensor whose output is normally 
high and goes down when the leg touches an obstacle. Neuron R is inhib- 
ited by neuron PS since the elevator reflex occurs only during the return 
stroke. When the reflex is activated, neuron R begins firing. It excites 
neuron PS, and the leg rapidly retracts. Then neuron R stops firing and a 
return stroke begins (this is induced by neuron RIN). As can be noticed in 
Fig. 4.17 showing the neuron outputs of a typical case, the leg lifts higher 
than normal. Figure 4.17 refers to a simulation in which only one leg of the 
dynamic hexapod model (shown in Fig. 4.16(a) and realized in VisualNas- 
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RS 

t 

Fig. 4.15 Signals from the leg controller: the position of the tip of the leg L1 in the 
direction of motion (sL1) varies between AEP and PEP: it goes from AEP to PEP in 
the stance phase (when neuron PS fires), while it goes from PEP to AEP during the first 
phase of the return phase (when neuron RS fires). Two complete stepping movements, 
referring to tetrapod gait, are shown. 

tran) is controlled; the obstacle is on a conveyor belt moved by the leg of 
the still hexapod. 

i I 

Fig. 4.16 
menting the elevator reflex. 

(a) Dynamic model of the hexapod. (b) Scheme of the IF network imple- 
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Fig. 4.17 Waveforms of the neuron outputs of the leg controller when the elevator reflex 
is activated. The trend of the signal controlling the &joint is given to show how the leg 
lifts higher than normal. 

Table 4.5 
for elevator reflex. 

Parameters of the IF neurons 

Neuron I Isp Idis ThL ThH 

4.2.2 The whole control scheme 

The leg controllers are coordinated by means of the influences described 
previously and shown in Fig. 4.6. Of course, the parameters have to be 
adapted to the new dynamics of the leg controller. This was done by 
following the same approach as that used for the CNN model. However, 
to account for both tetrapod and tripod gait the fitness function (4.7) was 
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modified. Now a longer simulation is considered to evaluate the fitness of 
an individual. In the first part of the simulation the parameter v is fixed 
to v = 0.35; this value is typical of tetrapod gait, so the fitness is evaluated 
as in Eq. (4.7) with the tetrapod phase lags. Then the speed v is switched 
to the value v = 0.7, typical of tripod gait, and a new term is calculated 
by considering Eq. (4.7) again and the set of tripod phase lags (4.1). The 
overall fitness function takes into account the two terms: 

where n and m indicate the last period of oscillations (stepping movement) 
at the end of the tetrapod and tripod phase, respectively. Therefore, as for 
the CNN model, an average of four stepping movements for both tetrapod 
and tripod gait was considered. 

It should be remarked that the tetrapod gait considered here is slightly 
different from Eq. (4.2). The leg R3 and L1 are slightly out of phase. The 
same holds for R1 and L3, as follows: 

Moreover, the velocity v also acts on the leg controller parameters. The 
spikes of motor-neuron PS and those of motor-neuron RS are weighted 
differently according to a parameter (that has been called sf) regulating the 
ratio between the duration of the stance and swing phases. This parameter 
is a function of the speed of the gait according to sf = +. 

Table 4.6 shows the optimized parameters of the network of IF neurons, 
while Fig. 4.18 illustrates a simulation of the step pattern as obtained with 
the IF controller. The gait changes at t = 8000(samples). 

Figures 4.19 and 4.20 are a zoom of tetrapod and tripod walking, re- 
spectively. 

Table 4.6 Influence parameters for the IF controller 

parameter ili i l c  i 2c  i 2 i  i 3 c H i  i 3 c I n t  i 3cLow 
value I 0.41 0.016 0 0.5041 0 0 -0.1402 

I 

i 3 c S L  i 3 i H i  i 3 i I n t  i3iLozu i 3 i S L  24 2109 
0.0735 0.1882 0 -0.2422 0.0539 0 0.1 
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tetrapod to tripod at t = 8000(sampIes). 

Step pattern of the gait produced by the IF controller: the gait changes from 

T 

Fig. 4.19 Step pattern of the gait produced by the IF controller: tetrapod gait. 

4.3 CPG and decentralized control 

In stick insect locomotion control as modelled in Walknet, a set of local 
influences among single leg controllers, realized through artificial neural 
networks, was used to control the locomotor system, allowing switching 
among different patterns. In this Chapter a new approach has been intro- 
duced: the main features of the Walknet model have been implemented by 
using dynamical systems to realize the leg controllers. This allows us to 
conclude that local influences can be a suitable way to model stick insect 
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Fig. 4.20 Step pattern of the gait produced by the IF controller: tripod gait. 

gait, even when the dynamics of each cell changes completely. In our case 
the single cell dynamics are much more complex than in the previous de- 
centralized control scheme. The results obtained allow us to  state that the 
self-organized dynamics that regulate insect gait depend on the connections 
among the cells more than on the single cell dynamics. 

The results obtained also open up the way to  model other, more com- 
plex, local dynamics that could be useful to represent joint motions, while 
assuring an overall organized spatio-temporal dynamics in the form of a 
general motion pattern. 

The CPG and the decentralized locomotion control presented in this 
book share two important features: 

the approach is distributed; 
they were implemented by using arrays of nonlinear circuits. 

However, the role that feedback plays in the two schemes is very differ- 
ent. The CPG is able to control the robot in absence of feedback, whereas 
in decentralized locomotion control without feedback there is no coordi- 
nation among legs (in the CNN-based model) or within a step movement 
(in the IF-based model). The so-called body instantiation problem [Gal- 
lagher et. al. (1996)l is therefore quite different in the two schemes. It has 
been shown that the decentralized model has some recovery capability that 
makes it robust to noise on the sensors, but of course correct coordination 
requires, for instance, reliable ground contact sensors. This was also clear 
in HexaDyn experiments in which interlimb coordination is lost when the 
ground contact feedback is not correct. 



Chapter 5 

A gallery of bio-inspired robots 

In this part of the book several examples of bio-inspired robots are shown. 
The first example is a lamprey-like robot driven by an RD-CNN. Then 
several prototypes of hexapod robots are illustrated. The first one, called 
MTA hexbot I, is an example of an autonomous robot implementing the 
methodology based on MTA introduced in Chap. 2. This robot has two 
degrees of freedom for each leg. The second example is a hexapod robot with 
a more complicate leg design; each leg has now three degrees of freedom. 
Moreover, the robot is remote-controlled and the direction control discussed 
on Chap. 3 is implemented. The last example shows a hexapod robot 
controlled by the CNN-based CPG VLSI chip. 

5.1 Lampbot: A lamprey robot controlled by RD-CNN 

The lamprey is an eel-like fish that swims by rhythmic undulations of its 
body, which can be divided into a Cerebral Trunk (CT) and a number of 
Spinal Cord Segments (SCS). Like other fish, a lamprey swims by progres- 
sively contracting its muscles via undulatory, wavelike motions from head 
to tail. Swimming involves coordinated sequences of muscle contractions 
regulated by the nervous system. The neural control system for swim- 
ming in the lamprey spinal cord has been efficiently unravelled by Grillner 
[Grillner et. al. (1991)l. The circuit is quite complicated, but the overall 
organization can be schematized and a simplified realization is possible. In 
Grillner’s description each segment of the lamprey has its own CPG, which 
is locally connected via intersegmental connections to the neighboring ones 
and to the reticulospinal circuits that initiate locomotion. They involve a 
sequence of activity in consecutive spinal segments. In particular, the speed 
of motion depends on the phase lag between the consecutive activation of 
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adjacent segments. Each segment is itself a CPG since it is able to gener- 
ate bursting activity in the local motor-neurons. In other words locomotion 
can be initiated at the level of each segment in response to certain sensory 
inputs. The overall biological systems is therefore a complex activator- 
inhibitor system, in which organized activity in the reticulospinal circuits 
directly generates motion patterns which drive the animal segments. 

The swimming system as a whole thus represents a complex reaction- 
diffusion system, which has similar characteristics in a lot of biological cases, 
among which the examples presented before. Starting from the point that 
we consider the neuron dynamics as “always active”, we can model it as 
a nonlinear oscillator locally connected to  other equals cells by diffusion 
rules. As a consequence the model can be once again described by using 
a RD-CNN as in Eq. (2.16). Each SCS is made up of a number of locally 
connected neurons. Therefore the whole scheme can be represented as in 
Fig. 5.1. 

Fig. 5.1 A scheme for implementing the slow swimming CPG. 

If suitable initial conditions are imposed, an autowave front will onset: 
this front will consecutively “visit” all or a fraction of the neurons in each 
SCS of the ring generating the signals needed to make the lamprey robot 
swim. In this condition an undulatory motion is caused along the lamprey 
body and modulated in its speed. In fact, following the connection shown 
in Fig. 5.1, since all the neurons are connected into the ring, the frequency 
of the wavefront is the least possible. If some neurons are cut from the 
ring faster undulatory motion can be easily realized. For instance Fig. 5 .2  
shows the same configuration, but now there are some particular neurons 
that also propagate their signals to the first neuron in the following and 
previous SCS. In this condition the autowave front will visit a fraction of all 
the neurons in the SCS; therefore the time the wavefront takes to get back 
to the first SCS will be shorter. Of course the fastest speed is achieved in 
Fig. 5.3,  where only one neuron per SCS is able to fire. In such a way the 
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speed is increased simply by decreasing the neuron number involved in the 
progressing firing. 

Fig. 5.2 A scheme for implementing the medium swimming scheme. 

scs loo 

C I 

Fig. 5.3 A scheme for implementing the fast swimming scheme. 

The lamprey robot, as already outlined, is made up of four actuated 
segments plus the head and the tail. The material chosen is aluminium. 
The structure of the robot, called Lampbot, is shown in Fig. 5.4. 

It roughly consists of an aluminium backbone, made up of four verte- 
brae having elliptical shape of axes 16cm and 12cm long and 2 mm thick, 
and rods (each 20 cm long and 1 cm in diameter) inserted in the centre 
of each vertebra to realize the whole structure. Motion in each segment is 
realized by means of pneumatic valves which drive some pneumatic mus- 
cles. Each segment is able to perform horizontal motion, since two muscles 
work as a flexor-extensor couple. Each muscle is directly controlled by a 
pneumatic valve, whose driving signal comes from the state variable of a 
particular CNN motor-neuron, exhibiting oscillatory dynamics, coupled by 
a diffusion template in the ring already discussed. Each vertebra, which 
accommodates the valves, is also able to rotate, in order to allow spiral 
motions for downward and upward swimming, as shown in Fig. 5.5. 

The rotation of each vertebra with respect to the rod is achieved via a 
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Fig. 5.4 The lamprey robot structure. 

Fig. 5.5 
tion. 

Particular of a Lampbot vertebra: McKibben muscles are used for the actua- 

ball bearing. The rods are connected with each other via joints that allow 
axial movements. The head of the lamprey robot is built up of plastic pipes, 
suitably arranged so as to be waterproof. The RD-CNN for the swimming 
pattern generation is placed inside the head, together with other circuitry 
that drives the actuators according to the CNN state variables (Fig. 5.6). 
The lamprey tail is also made of aluminium although it may be made 
of plastic material so as to produce smoother swimming. The robot was 
covered with waterproof elastic material typically used by skin-divers. The 
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sheet was modelled, glued and stitched to allow axial and spiral movements 
due to its natural elasticity, but to prevent slipping along the vertebrae. 
Finally, a thin plastic film was placed between the mechanical structure 
and the artificial skin, to further isolate the structure from unavoidable 
perspiration. 

Fig. 5.6 
the robot. 

A particular of Larnpbot: the electronic circuits are placed inside the head of 

Swimming was actuated by using a pneumatic approach, consisting of 
Air Muscles driven by electrical valves. In particular, we used McKibben 
pneumatic artificial air muscles (Fig. 5 . 5 ) .  They consist of an internal 
rubber tube supported by braided cords that are attached at both ends to 
realize a tendon-like structure. When the air goes inside the rubber tube, 
the high pressure pushes against the external shell, and tends to  increase its 
volume. Given the non extensibility (or very high longitudinal stiffness) of 
the threads in the braided mesh shell, the actuator shortens in relation to its 
volume increase and produces tension to the applied mechanical load. This 
physical configuration causes McKibben muscles t,o have a variable-stiffness 
spring-like characteristics, nonlinear passive elasticity, physical flexibility, 
and very light weight compared to other kinds of artificial actuators. To 
realize our prototype 20 mm muscles were used; they are able to contract, 
under a pressure of 6 bars and a load of 5 Kg, by 34% of their length. Each 
muscle is driven by a digital pneumatic valve. 

The lamprey-robot is autonomous as regard the electronics, while the 
power supply is provided from the outside. Figure 5.7 shows Lampbot while 
swimming in a pool. 
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Pis. 5.7 Lampbot while swimming in 8 pool. 

5.2 MTA hexbot: a hexapod robot controlled by MTA- 
CNN 

The MTA has been implemented on a discrete components board and used 
to control a six-legged w a l l t i  robot d e d  MTA k b o t .  The structure of 
the MTA hexbot consists of a body made of aluminum and six legs, each 
one with 2 DOF, actuated by twelve servomotor8 (Hitec high torque S~TY(YJ 
HS-945MC with metal gears). A photo of the hexapod robot is shown in 
Fig. 5.8. The robot is completely autonomou8: all the electronics and power 
supply (three pa& of five NCMh batteries 2300mAh, each pack containing 
five batteries, so that the voltage supply is 6V = 5x1.2V) are on board. 
With this power supply the robot is able to carry a payload of 4kg and 
has an autonomy of about Ih  without payload. Some characteristicsof the 
hexapod robot are given in Table 5.1. 
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The electronic part consists of 8 diserent circuits. A brief description 
of each board is given below (boards are labelled 88 in Fig. 5.8). 

Fig. 5.8 The auwnomuu six-:-legged wdking mbot driven by the CNN-baed MTA 
contml system. 

A - The CNN neurons. Each six mnd-order dynamical system is real id  
with OPAMPs. This circuit implements Fq. (2.5) according to the 
design presented in Appendix B. 

B - Output saturation. For each leg of the robot the two joints (Gj-joint 
and &joint &9 in Fig. Z,?) 84 controlled by signals generated 
from the outputs of the motor-neuron i j  associated with the leg 
as in Fig. 2.6. More precisely, the relationship between the motor- 
neuron outputs and the motor control signal8 can be described by 
the foUawiog equation: 

(5.11 
{ ;Y _= aa.i5 * va,a,ij + $.ij 

v - 0l.u * fb$.ij) + bi,ij 

where a3j and pij are used to control the joint pasitinn and f(.) is 
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the following: 

y i f y > k  
f ( Y )  = { k i f y 5 k  

where k can be regulated by a trimmer from -1 to  0. This fur- 
ther saturation of the control signal prolongs the duration of the 
stance phase (corresponding to  the low control signal saturation 
value) and thus enhances the stability of the locomotion. Board B 
implements this nonlinearity f(.). 

C - Motor settings. This circuit implements terms al , i j ,  az,ij,  b l , i j ,  b2,ij in 
Eq. (5.1) arid thus provides the gains arid offsets used to modify the 
output variables for proper control of-the legs. The setup is made 
by using two groups of 12 trimmers (two for each DOF of each leg). 
These components set the parameters for suitable control of the leg 
motion. 

D - Connections between CNN neurons (i.e. templates in Table 2.2) used 
to obtain fast, medium and slow gait. Analog switches (MAX394) 
driven by digital signals are used to  choose the given set of tem- 
plates. 

In order to  generate the Pulse Width Modu- 
lated (PWM) signals needed to  drive the servomotors, a CPLD 
(XC9572) is used. The CPLD with an external DAC (DAC800) 
generates a suitable digital ramp and provides the PWM signals by 
comparing this ramp with the analog signals aij and ,&j coming 
from the motor-neuron outputs. In this way PWM signals (i.e. sig- 
nal with duty cycle proportional to  the analog control signals) are 
generated to  drive the robot servomotors. VHDL language is used 
to  program the XC9572 that generates the pulses and controls the 
maximum range of the duty cycle. It is worth remarking that the 
design of this board is strictly connected with the choice of the 
motors used to  actuate the robot. The use of a microcontroller to  
generate PWM signals does not alter the generality of the analog 
approach. Moreover, a simple low-cost microcontroller can be used 
for this purpose since the effective computation takes place in the 
analog CNN. 

F - Power supply. In order to  obtain suitable dual power supply (+5V, 
-5V), two DC-DC converters (ST755, ST777) are used. The first 
is an inverter used to  generate the negative voltage (-5V),  while 
the second is a step-up converter. The positive power supply is 

E - Servomotor control. 

(5.2)
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first decreased to 4.W by two diodes, and then pet to +5V by the 
step-up converter. In this way, if the b a t a y  voltage decreases the 
power supply remains stable. 

G - Infrared remote control (4-bit encoder M145026 on the remote wm- 
mand and decoder M145027) to pilot the robot. Thii allows 
to switch between the three different locomotion patteras and to 
change the motion direction, turning left or right. 

and power supply. 
H - Printed circuit board for mnnections between batteries, servomotors 

The application of MTA-CNN to the hexapcd robot offers the advantage 
of a simple circuitry and flexibility, thus allowing for the implementation of 
new locomotion patterns. 

MTA hexbot wag tested indoor on a flat surface with good performance: 
all three gaits work correctly. Other experiments were carried out outdoors 
on irregular terrain. The robot was able to work correctly on sloped sur- 
f- in the presence of many small irregularities (such as small rocks). AU 
three gaits work properly, w does direction control. The high ratio pay- 
load/weight for this type of legged autonomous robot is remarkable. Some 
pictures taken in nutdoor experiments are shown in Fig. 5.9, 

These tests were carried out controlling the direction of MTA hexbot by 
using the infrared remote control. Of the robot may be equipped 
with sensors making it able to interact with the environment. A simple 
application is to  use the direction wntrol to avoid obstacles detected via 
distance sensors endowed in the front part of the robot. 
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5.3 MTA hexbot 11: a remote-controlled hexapod robot 

The mechanical structure of MTA hexbot I1 is similar to that of MTA 
hexbot I: the main difference is that each leg has three degrees of freedom 
in contrast with the two of the first prototype. Another hexapod robot 
prototype with three degrees of freedom for leg and its attitude control are 
discussed in Chap. 6. 

Referring to Fig. 2.7 adding a further degree of freedom in each leg of 
the hexapod robot is equivalent to actuate the y-joint. This joint can be 
controlled in two ways. A simple solution is just to use yij = -& for 
each leg of the robot so that the leg tibia remains perpendicular to the 
ground. This is the case of MTA hexbot 11. The second solution is shown 
in Chap. 6 and consists of a new CPG design to generate an independent 
signal controlling the y-joint. 

The control system of MTA hexbot I1 was implemented by using the ap- 
proach based on CNNLab and described in details in Appendix A. Briefly, 
the control system is implemented on a PC communicating with the robot, 
while the circuitry carried on the robot only deals with the joint motor 
control (i.e. the generation of PWM signals), the measurement system and 
the modules for communicating with the PC. The aim of this approach is 
twofold: it allows us to develop a platform for testing new control strategies 
and to build a remote-controlled robot. 

This robot allows us to test the direction control illustrated in Chap. 3. 
The hcxapod robot is equipped with two “antennae” detecting possible 
obstacles. The outputs of these sensors are connected to the motor-neurons 
R2 and L2 by means of the values of bias 22. The left sensor is connected 
to the motor-neuron controlling the right middle leg (R2), while the right 
sensor with L2. When one of these sensors, for instance the left sensor, 
detects an obstacle, the value of the bias 22 of the corresponding motor 
neuron (R2) changes from 22 = -0.3 to 22 = -0.5. This parameter variation 
induces a bifurcation on the dynamical behavior of R2 which, from a limit 
cycle, collapses into a stable equilibrium point. This stops the oscillations of 
motor-neuron R2; thus the movement of the corresponding leg is inhibited 
and the robot turns right. 

The two “antennae” detecting the presence of obstacles to be avoided are 
implemented by two pairs of contact switches. The switches are connected 
by a thin rubber pipe and the sensor output is the logical O R  of the two 
switch outputs. This allows obstacles to be detected in a 180” orientation 
range. When one sensor is activated, the corresponding leg is stopped 
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for a fixed short time interval, allowing the robot to avoid the obstacle. 
Figure 5.10 shows the trajectory obtained while the robot is walking on 
a corridor (the wall on the right side and the wooden panels on the left 
constitute the obstacles). These experimental results confirm the suitability 
of the remote-controlled approach for real-time control. 
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Fia. 5.10 Direction control of the robot: traiectorv of the robot 
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and control signals for - I -  

the swing motor of each leg (for legs R2 and L2 the sensor outputs are also shown in the 
right panel). 

Another interesting test that has been carried out using MTA hexbot I1 
is experimental evaluation of the speed of the robot. Measuring the actual 
speed of a walking robot is a hard task, because of the nature of legged 
locomotion and since legged robots are subject to large accelerations. A 
simply strategy based on recordings from a video camera fixed on the ceiling 
of the laboratory and the processing of successive frames has the advantage 
of ease of implementation, but cannot be adopted for an autonomous robot. 
The strategy we propose is based on allowing the robot move on a patterned 
floor, and therefore does not require external measurement. On the other 
hand it cannot be applied to measure the walking speed on uneven terrain: 
this is still an open problem. The hexapod robot moves on a floor with 
alternating black and white stripes. The widths of black and white stripes 
are 5.6 cm and 7.1 cm, respectively. A diode/photoresistance pair is used 
to detect reflection of an infrared signal and to distinguish the color of 
the stripes. The sensor is located on the bottom of the robot, and an 



112 Bio-Inspired Emergent Control of Locomotion Systems 

average speed is measured. As the algorithm is based on transition between 
the two colors, it is quite robust. The algorithm was tested on the three 
different gaits implemented on the robot. Figure 5.11 shows the hexapod 
robot walking on the floor and the data acquired for the three locomotion 
patterns. Table 5.2 gives the speeds measured in the three cases. 

Fig. 5.11 Measured average speed for different locomotion gaits 

Table 5.2 
gaits. 

Speed measured for the three 

Fast eait I Medium gait I Slow eait - ,  " 1  - 
5.13 cm/s I 4.18 cm/s 1 3.53 cm/s 

5.4 MTA hexbot 111: a robot driven by the CNN-based 
CPG VLSI chip 

The last example of bio-inspired robot is a hexapod robot controlled by 
the CNN-based CPG VLSI chip. A photograph of the robot, called MTA 
hexbot 111, is shown in Fig. 5.12. An electronic board was designed to 
provide the control signals to the chip. For instance as regards the clock, a 
circuit included in the board is devoted to the generation of a square wave 
signal with an adjustable frequency. This circuit provides the chip with the 
clock and allows us to test the speed control discussed in Chap. 3. 
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Fig. 5.12 The electronic bovd containing the CNN-based CPG VLSl chip mounted on 
MTA hmbot 111. 

The outputs of the chip, namely the state variablee of the CNN motor- 
neurons, are used to generate the PWM signals driving the servomotors. 
An electronic board is devoted to the generation of PWM signals. The 
experimentd setup thus consists of only two electronic boar& carried on 
the robot. 

The first t a t s  have shown the suitability of the chip, which works per- 
fectly on MTA hexbot III. Fad gait, turning and speed control were BUCC~SB- 

fully tested. For inBtanm, ~8 regards s p e d  control, by tuning the frequency 
of the clock it is possible to change the speed of the robot. Moreuver, this 
appr& can be immediately extended to include fsedbaolr signals regu- 
l a t i  the clock frequency in an automatic way. Figure 5.13 shows one of 
the tarts carried out for speed control. The waveform8 of the chip outputs 
are alao visible: the frequency of their DBdllations L regulated by the dock 
Frequency tuned through B trimmer. 

In Fig. 5.14 a photograph of MTA hexbot 111 while walking with f& 
gait is shown. 
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Fig. 5.13 Experimental setup for speed mdml teat. Waveforms of the C N N - b d  
CPG VLSI chip are r h w n  on the mcillasmpe. 

Fig. 5.14 A photograph of MTA hexbot Ill  walking with b t  gait. 



Chapter 6 

High-level analog control: attitude 
control and Motor Maps 

Even if animals deprived of commands from high-level neural centres are 
still able to locomote, in many cases posture control is lost. This is clear 
evidence of the fact that posture control is a complex form of behavior 
involving high-level control and feedback from the visual system, vestibular 
system, and so on. In the motor system the role played by high-level 
control centers, also called command neurons, can be very complex. In this 
and in the next Chapter we will give some examples of bio-inspired high- 
level control. In particular, this Chapter deals with the important issue 
of attitude control for the hexapod robot approached with two different 
strategies. The first one is based on distributed control through CNNs; the 
second, based on Motor Maps, introduces a more general framework for 
the control of nonlinear systems in which self-organization and unsupervised 
learning play a fundamental role in realizing an adaptive controller inspired 
by the motor cortex of the human brain. 

6.1 CNN-based attitude control 

This Section focuses on a biologically inspired analog control system to 
solve the task of attitude stabilization and locomotion control in a hexapod 
robot. Attitude control of a rigid body in three-dimensional space consists 
of leading the object to a desired orientation with respect to a fixed reference 
frame by computing a suitable control law (for a survey on the attitude 
control problem see [Kreutz-Delgado and Wen (1991)l). Of course this 
issue is fundamental in hexapod robots when walking on uneven terrain. 

In [Uchida et.  al. (2000)] attitude control in a hexapod robot is ad- 
dressed by using both feedforward and feedback controllers, but it is based 
on a specific locomotion pattern in which the robot is always supported by 
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five legs. In [Barnes (1998)l bio-inspired hexapod robot control is achieved 
using six controlled coupled nonlinear oscillators obtaining a dynamically 
variable gait. However, the overall control is implemented on a digital 
controller. This strategy is typical of general control strategies that are de- 
veloped at a very high-level, completely discarding implementation issues. 
This approach may be convenient for controlling systems with a relatively 
low number of controlled joints, but it loses its efficiency when this num- 
ber grows. The strategy introduced here focuses on the attitude control 
problem from a space distributed point of view looking directly a t  systems 
with several joints distributed in space. Moreover, the control problem is 
formulated considering above all the hardware realization, through CNN 
structures. Therefore, CNNs are considered here as an emerging paradigm 
both for the generation and the control of motion in space-distributed non- 
linear systems. Attitude control is implemented by using distributed control 
via CNNs. 

The need for posture control led to an upgraded structure of the robot. 
The robot, called Rexbot 11, has 3 DOF for each leg and has a structure 
similar to  that of MTA hexbot I1 and I11 (see Chap. 5 and Fig. 6.1). A 
further CNN structure, able to control the robot attitude in real time during 
any type of locomotion, was designed. 

Considering an added degree of freedom for each leg is a mandatory 
step for the attitude control problem and offers further advantages. In fact, 
the structure strictly mimics the biological case and therefore a number 
of different locomotion patterns shown by insects, crustaceans and other 
sophisticated moving creatures [Orlovsky et. al. (1999); Waldron and Song 
(1989)] can be implemented. The added degree of freedom for each leg 
enables us to consider a more realistic and efficient trajectory in the stance 
phase. On the other hand, the weight of the whole system grows, mainly 
due to the presence of six further servomotors actuating the third degree 
of freedom for each leg. 

Rexbot I1 has a carrying structure in aluminium and servomotors as 
actuators. The structure of each leg has three rotational joints orthogonally 
displaced as shown in Fig. 6.l(a). Figure 6.l(b) sketches the structure of 
the whole robot, together with the reference system, rigidly connected to 
the body, in which the Euler angles [Siciliano and Sciavicco (1989)l used 
for posture control are highlighted. The mechanical structure, similar to 
that used for MTA hexbot, was designed to be totally autonomous. 

For the attitude control task a 2-axis acceleration sensor, ADXL202, 
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was used to measure the inclination of the robot. This low-cost sensor 
integrates two analog measurements on one chip. The two signals revealing 
the orientation of the robot with respect to the Earth plane are used as error 
signals, detecting the error on the roll (0) and pitch ( c p )  angles (Fig. 6.1(b)). 
The sensor is located on the centre of the underside of the aluminium 
carrying structure. 

Fig. 6.1 (a) Leg model (three actuated joints). (b) Structure of the  robot Rexbot 11. 

The bio-inspired control system of Rexbot I1 consists of a CNN-based 
CPG and a distributed network for posture stabilization. These two struc- 
tures are described in the following Sections. 

6.1.1 

In this Section it is shown how the reformulation of the problem in terms 
of a legged structure with 3 DOF for leg requires a new design of the 
CPG for the locomotion generation task. Unlike in the robots shown in 
Chap. 5 the third joint is in fact actuated by an independent signal that 
has to be generated by the leg controller, that now consists of two motor- 
neurons (2.5). The design of this cell is addressed by following the guidelines 
discussed in Chap. 2. 

The configuration assumed for the leg is that of the well-known anthro- 
pomorphic manipulator [Siciliano and Sciavicco (1989)l. This allows us to 
find the trajectories of the joint variables for a reference trajectory of the 
leg tip in the operating space by using closed formulae for the inversion of 
the kinematics matrix for this manipulator. 

The CNN for gait control 



118 Bio-Inspired Emergent Control of Locomotion Systems 

The leg controller is a CNN generating the joint variables and then 
driving the servomotors using a Pulse Width Modulation scheme. This 
CNN-based CPG is designed to drive the leg joints so as to follow a given 
leg tip trajectory in the operating space. 

In other words, the actual problem was, given a leg trajectory suitable 
for correct movement of the whole hexapod, to design a network of CNN 
neurons able to generate the signals for the given trajectory. This is ac- 
complished following the principles of Chap. 2. Clearly, this is a hard task, 
especially if the given trajectory is assumed to  be arbitrary. 

The strategy adopted was to consider only a few constraints on the leg 
trajectory and to design a CNN-based leg controller whose outputs can gen- 
erate a trajectory satisfying these constraints. In our case the constraints 
refer mainly to the stance phase, while some arbitrary assumptions can 
be made on the swing phase, in which the dynamic constraints are less 
strong. A trial and error procedure led to a leg controller with two CNN 
neurons [Arena et. al. (2002b)l. Each CNN neuron is described by Eq. 
(2.5). The parameter values of the first CNN neuron are those given in 
Table 2.1, while those of the second are: 

Obviously, both sets of parameters are such that system (2.5) is charac- 
terized by a globally stable limit cycle with a slow-fast dynamics, usually 
encountered in biological neurons [Shepherd (1997)]. The first neuron ex- 
cites and is inhibited by the second neuron. yl,I and y2,1 being the outputs 
of the first neuron and yl,rI and y2,11 those of the second, the inhibitory 
synapse is realized by adding the output y1,II to the second equation of 
(2.5) for the first neuron, while the excitatory one is accomplished by adding 
the output y 2 , ~  to the first equation of the second neuron. Both synaptic 
weights are E = 1. The leg controller is indicated in Fig. 6.2 with a dashed 
box. Each leg controller generates four outputs, from which the signals to 
drive the joints are drawn using the following relations: 

41 = Y2,I/2 

43 = % , I / 5  - 0.9 
42 = YIJI + 0.5 

where ql, q2 and q3 are the driving signals for the a-joint, p-joint and 
y-joint, respectively (Fig. 6.1(a)). 

(6.2)(6.2)
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Fig. 6.2 The CPG for the alternating tripod gait: (a) scheme of the pattern (black 
areas indicate the stance phase, white areas indicate the swing phase); (b) the structure 
of the CNN-based CPG (the arrows indicate excitation, the dots indicate inhibition). 

Interaction among leg controllers is achieved by creating synaptic con- 
nections between each pair of neurons controlling each leg. These synapses 
guarantee the generation of a given locomotion pattern. Thus, they de- 
pend on the desired pattern. Among the possible locomotion patterns the 
alternating tripod gait was implemented. The neurons of the leg controllers 
are therefore connected into pairs of mutually inhibited neurons. As can 
be noticed in Fig. 6.2, these connections are established only between the 
“first” neurons of each leg controller cell. Each leg controller now includes 
a fourth-order circuit able to drive the joints of the leg and is locally con- 
nected to the neighbors in the classical CNN paradigm. This is clearly 
a generalization of the approach presented in Chap. 2 and therefore can 
be applied to implement other gaits. In Fig. 6.2 the leg controllers are 
indicated with dashed boxes together with the leg that they control. 

6.1.2 The attitude control CNN 

The attitude control task has to guarantee that the robot keeps its body 
in a horizontal position when it is walking on sloping planes. Clearly, this 
means a strong increase in the stability of the robot during locomotion. 
The solution proposed to solve this task is to use traditional controllers 
such as PIDs. The current position of the body is revealed by using the 
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accelerometer sensor. This device provides two signals indicating the roll 
and pitch rotations of the body. These signals are filtered and integrated 
and then used as measures of the robot attitude position error. A PID 
for each leg is then used to generate signals to correct the attitude error. 
These signals, merged to those from the CPG, are used to control the joint 
variables. 

It has been found that for the purpose of stability control only a 
proportional-integrative action is needed. This solution, as discussed below, 
can be formulated as a CNN, whose inputs are the sensor signals and whose 
outputs, together with those from the CNN-based CPG, constitute the joint 
variables. This aspect makes the approach particularly appealing, since the 
CNN paradigm can be used to generate and control the whole locomotion 
phase. Moreover, although the control strategy has been designed to work 
in the linear range, the use of piece-wise linear nonlinearities, that come 
with the CNN implementation, has a number of advantages, including the 
avoidance of motor current overloads and the rise of emergent behavior as 
discussed below. 

The 3 DOF leg allows us to achieve attitude control by applying very 
intuitive principles. Each leg will make different use of the information 
from the sensor to stabilize the posture of the robot. The pattern of the 
control actions required in the event of given stimuli can be found with the 
following guidelines. 

If the robot has to go up a slope, maintaining a horizontal attitude, 
the front legs have to be lowered, while the hind legs have to be raised; 
the middle legs can be maintained at a constant distance from the ground. 
These results can be achieved by suitably controlling the p-joints and y- 
joints of the front and hind legs. For the ,&joints of the front legs the angle 
,B between the femur (link u l )  and the vertical line is increased, while the 
angle y of the y-joint between the femur and the tibia (link u2) is decreased 
by the same quantity. For the hind legs the opposite holds: the angle p is 
decreased and the angle y increased. No action is performed on the middle 
legs. This pattern of action can be summarized in a matrix Po: 

Po;[,, -1 -1 ] 
+1+1 

in which the signs of the action for each leg (’+’ increase the height, ’-’ 
decrease the height) are indicated. The legs are displaced as in Fig. 6.2. 
The effect of the pitch correction is described in Fig. 6.3(a) with the help 
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of a simplified robot model emphasizing the angles of correction, while in 
Fig. 6.3(b) a photo of the robot when the control is acting is shown. I t  can 
be seen that the body of the robot is kept horizontal against the slope of 
the ground plane. 

Fig. 6.3 Attitude control of Rexabot 11. (a) Ideal Pitch. (b) Actual Pitch. 

Equivalently, for roll control, the action has to be performed in opposite 
directions for the contralateral legs, thus resulting in the pattern expressed 
by the matrix Rp: 

$1 -1 

Notice that the middle terms of Rp reflect the scheme shown in Fig. 6.2. 
In Fig. 6.4 both the robot prototype model and a photo of the robot are 
shown when the roll control is performed. 

In Fig. 6.5 the attitude control system is illustrated. The signals 9 and 
0 indicate pitch and roll angular velocities measured by the accelerometer 
sensor, respectively. By applying the integrative action the position error 
signals eij can be obtained according to the following formula: 

eij = -reij + (k,pijp + k,rijO) (6.5) 

The error signals eij are added to the signal q 2  from the CNN-based CPG 
and used to drive the p-joint, and subtracted from the signal 43 driving the 
y-joint, due to  the fact that opposite actions have to  be performed on the 
femur-tibia (7-joint) and femur-coxa joints @-joint). 7 is the pole of the 
integrative action. 
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Fig. 6.4 Attitude control of Rexabot 11. (a) Ideal Roll. (b) Actual Roll. 

J$'J- ATTITUDE 
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Fig. 6.5 Scheme of the attitude controller for each leg 

In this way an analog distributed system for both locomotion pattern 
generation and attitude control is used. In particular, the approach used for 
hexapod attitude control makes use of a network of distributed proportional 
integral linear controllers, one for each leg. The control signal for each leg 
depends on global information on the robot attitude, with respect to a 
virtual horizontal plane. This is in agreement with the biological case, in 
which central feedback signals affect local control. Of course, in biology a 
fundamental role is also taken by local stimuli, which in our case are still 
under investigation. 
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The hexapod locomotion pattern was generated by a CNN-based CPG, 
and the analog distributed attitude control could also be formulated in 
terms of CNN structures. If a saturation block is inserted in cascade with 
the integrator in Fig. 6.7, Eq. (6.5), written for each of the six legs, can be 
viewed in terms of a space-invariant CNN with the following templates: 

1 -1/2 0 -k,Q -k,' 

where U is the input pattern that depends on the roll and pitch angles. 
As the terms of the feedback template A are all zero with the exception 

of the central term, the stability study is straightforward. In fact, when the 
dynamics lies in the linear region, each cell is characterized by a negative 
eigenvalue ( X i j  = -T) ;  when the state of the cell enters the saturation 
region X i j  = -1 holds. In these conditions the stability of the control 
law is assured. The CNN formulation is particularly suitable for practical 
reasons: output saturation corresponds to  motor saturation, which cannot 
be neglected in the control loop. 

Therefore, the whole motion generator and control system for the hexa- 
pod robot is provided by CNNs. 

It should be remarked that the nonlinear control scheme represented by 
the CNN includes a saturation block in the control loop, preventing the 
motors from reaching the joint limits due to the mechanical configuration 
of the hexapod robot. This prevents the motors from entering the current 
saturation region. However, the control system discussed cannot prevent 
this from occurring in other cases, for example when unforeseen situations 
cause overloading in one leg. In the following Section a result which emerged 
in experimental tests of the prototype is discussed. 

6.1.3 Experimental tests 

The whole control system was implemented on Rexbot I1 by considering a 
simplified version of the CPG illustrated in Fig. 6.2. To build the CPG for 
the alternating tripod only one pair of leg controller cells was considered. 
Each one is connected to three legs, thus the first one is the controller of 
the first tripod (legs L1, R2 and L3) and the second one is the controller 
of the other tripod (legs R1, L2 and R3). These cells will be referred to 
using the subscript indexes 11 and 12, respectively. This pair of mutually 
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inhibited fourth-order cells, with a suitable choice of synaptic weights, is 
characterized by anti-phase synchronization of the activities of the two cells. 

The design of the leg controller circuit follows the considerations dis- 
cussed in Appendix B. The two cells controlling the two tripods are con- 
nected by two inhibitory synapses using inverting amplifiers. The weights 
of these synapses are E = -0.6. The outputs of the CPG circuit are added 
to the signals from the attitude controller and then converted into Pulse 
Width Modulated signals and used to drive the servomotors of the leg 
joints. The circuitry for the attitude control was designed in a similar fash- 
ion. The whole control system was implemented on a discrete-component 
board using TL084 operational amplifiers. 

The stability of the whole control approach was investigated by a huge 
number of experiments performed on the prototype built in our laboratory. 
The tests performed showed the suitability of the methodology: the attitude 
control takes place in real time, assuring dynamical stabilization of the 
whole structure when walking over rough terrain. It is also surprising to 
note how efficiently the structure can escape from situations in which some 
points, typically the y-joints, undergo unforeseen conditions of saturation. 
Since these conditions come together with perturbations in the attitude, the 
feedback signal and the analog structure work efficiently to quickly recover 
normal conditions. 

One of the experimental tests revealing the capabilities of the robot to 
escape from a situation in which the load capability of a motor is exceeded 
is presented in Fig. 6.6, which shows some frames from a video taken in 
our laboratory. In frame 039 the y-joints of the left legs are saturated: 
this results in unnatural locomotion by the hexapod. This situation is 
characterized by a non-zero value of the attitude error signals. Thus, this 
situation is not stable. Self-organization makes the hexapod able to escape 
from such a condition. In particular, as can be seen in frame 056, the 
roll body orientation situation is reversed; in fact, this situation is also 
unstable. These oscillations of the roll orientation, together with the action 
of gait generation, allow the robot to avoid a static stalling situation, by 
continuously perturbing the whole system. In frame 118 the robot achieves 
its natural attitude. This is an emerging property due to both attitude 
control and gait generation. 

Obviously, the attitude control discussed in this Chapter can be applied 
also on the prototypes (MTA hexbot I1 and 111) previously shown. 
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Fig. 6.6 
the  y-joints of the left legs undergo overloading current saturation. 

Video frames showing robot capability for recovery from a situation in which 

6.2 Motor Maps and attitude control 

6.2.1 Motor Maps 

The importance of topology-preserving maps in the brain relies on both 
the representation of sensory input signals and the ability to perform an 
action in response to a given stimulus. Indeed, neurons in the brain are 
organized in local assemblies able to perform a given task such as sending 
appropriate signals to muscles. These neural assemblies constitute two- 
dimensional layers in which the locations of the excitation are mapped into 
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movements. 
Topology-preserving structures able to  classify input signals inspired the 

paradigm of Kohonen’s Neural Networks [Kohonen (1972)]. These artificial 
neural networks formalize the self-organizing process in which a topographic 
map is created. Neighboring neurons are thus excited by similar inputs. 
Successful applications of these maps have been found in the field of pattern 
recognition, clustering and so on [Kohonen (1989)l. 

An extension of these neural structures is represented by Motor 
Maps [Ritter et. al. (1992)l. These are networks able to react to  local- 
ized excitation by triggering a movement (like are the motor cortex or the 
superior colliculus in the brain). 

To this end Motor Maps, unlike Kohonen’s networks, should include 
the storage of an output specific to  each neuron site. This is achieved by 
considering two layers: one devoted to the storage of input weights and the 
other one for the output weights. The plastic characteristics of the input 
layer should also be preserved in the assignment of output values, so the 
learning phase deals with updating both the input and the output weights. 
This allows the map to  perform tasks such as motor control. These consid- 
erations led to  the idea of using Motor Maps as an adaptive self-organizing 
controller for nonlinear systems. The main difficulties of this approach are 
due to  the fact tha t  the learning phase rriay be long and especially in the 
transient phase the random initial values of the control law may be very 
inefficient. Moreover, the feasibility of a hardware implementation is seri- 
ously conditioned by the size of the map. It  is possible to  overcome these 
difficulties by adopting a control scheme in which the Motor Map acts at a 
higher level: for instance, one can consider inner feedback loops to  stabilize 
the system and thus reduce the number of neurons needed by the Motor 
Maps as well as the effects of the initial learning phase. 

With this idea, Motor Maps can constitute an adaptive controller: they 
have been successfully applied to  control chaotic circuits [Arena et. al. 
(2002a)l. In this Chapter, after a brief review of this result, the scheme 
is applied to  control the attitude of the hexapod robot. 

Formally, a Motor Map can be defined as an array of neurons mapping 
the space V of the input patterns onto the space U of’the output actions: 

@ : V + l J  (6.6) 

The learning algorithm is the key to obtain a spatial arrangement of 
both the input and output weight values of the map. This is achieved by 
considering an extension of the winner-take-all algorithm. At each learning 
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step, when a pattern is given as input, the winner neuron is identified: this 
is the neuron that best matches the input pattern. Then, a neighborhood 
of the winner neuron is considered and an updating involving both the 
input and output weights for neurons belonging to this neighborhood is 
performed. Both supervised and unsupervised learning can be applied. 
However, in order to investigate an autonomous self-organizing system for 
nonlinear control, unsupervised learning was considered. In this case there 
is no a priori information on the appropriate control action and no teacher is 
available. The algorithm has to find the correct control action by itself. The 
only source of information is provided by the so-called R e w a r d  Function, 
introduced below, which indicates how well the control is being performed. 

In this .^  case (unsupervised learning), weight updating only takes place if 
the corresponding control action leads to an improvement in the controlled 
system; otherwise, the neuron weights are not updated. In this framework 
a fundamental role is taken by the Reward Function. The definition of 
this function is perhaps the most crucial point in the whole network design. 
Since the target signal is not directly available, some information is required 
on the effect of a given control action on the system being controlled. This 
information has to be formalized in the form of a function of the controlled 
variable, the Reward Function. This has to be defined so that decreasing 
values lead to better control performance. 

More precisely, the unsupervised learning algorithm of the Motor Map 
can be described in the following steps. 

S t e p  1. In the first step the topology of the network is established. The 
number of neurons is chosen and the Reward Function is established. The 
number of neurons needed for a given task is chosen by a trial and error 
strategy, thus once numerical results indicate that the number of neurons 
is too low, one must return to this step and modify the dimensions of the 
map. At this step the weights of the map are randomly fixed. 

An input pattern is presented and the neuron whose input 
weight best matches the input pattern is established as the winner. There- 
fore, to establish the winner neuron, the distance between the neuron input 
weight and the input pattern is computed for each neuron, considering the 
absolute value of the difference between these two vectors. 

S t e p  3. Once the winner neuron has been chosen, its output weight is 
used to perform the control action f ( t ) .  This is not used directly, but a 
random variable is added to the value to guarantee a random search for 

S t e p  2. 
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possible solutions, as follows: 

where ~ ~ i ~ ~ ~ ~ , ~ ~ ~  is the output weight of the winner neuron, as is a param- 
eter determining the mean value of the search step for the neuron s, and 
X is a Gaussian random variable with a zero mean. Then the increase A R  
in the Reward Function is computed and, if this value exceeds the average 
increase b, gained at the neuron s, the next step (updating of the neuron 
weights) is performed; otherwise this step is skipped. The mean increase 
in the Reward Function is updated as follows: 

where e is a positive value. Moreover, a, is decreased as more experience is 
gained (this holds for the winner neuron and for the neighboring neurons), 
according to the following rule: 

anevr = a:zd + qata(a - ai 01 d ) 

where i indicates the generic neuron to be updated (the winner and its 
neighbors), a is a threshold the search step should converge to, and qa is 
the learning rate, while la takes into account the fact that the parameters 
of the neurons to be updated are varied by different amounts, defining the 
extent and the shape of the neighborhood. 

Step 4 .  If AR > b,, the weights of the winner neuron and those of its 
neighbors are updated following the rule: 

where q is the learning rate, 5, v, win and wout are the neighborhood 
function, the input pattern, the input weights and the output weights, re- 
spectively, and the index i takes into account the neighborhood of the win- 
ner neuron. In supervised learning f ( t )  is the target, while in unsupervised 
learning it is varied, as discussed above. 

Step 5. Steps 2-4 are repeated. If one wishes to preserve a residual 
plasticity for a later readaptation, by choosing a # 0 in step 3, the learning 
is always active and so steps 2-4 are always repeated. Otherwise, by setting 
a = 0, the learning phase stops when the weights converge. 

winner,out
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6.2.2 

A brief example of the suitability of Motor Maps to control nonlinear sys- 
tems is given below, referring to the nonlinear control of a chaotic system. 

The advantage of using Motor Maps for chaotic system control lies in the 
unsupervised learning of a nonlinear time-varying feedback gain, leading to 
a control architecture suitable for hardware implementation in an analog 
circuit. In this Section the scheme of the Motor Map Controller (MMC) is 
described with application to the control of chaotic systems. In particular, 
the example given deals with the well-known Chua’s circuit. 

For chaos control, a feedback entrainment scheme is adopted. The pur- 
pose of this control is to entrain a nonlinear system to a given trajectory. 
The system to be controlled is chaotic and the reference system is the same 
as the controlled one, but with a different parameter set, in order for exam- 
ple to  generate a periodic orbit, i.e. a cycle limit. However, other reference 
trajectories (even not properly entrainment trajectories) can be considered. 
The whole control scheme is illustrated in Fig. 6.7. The MMC acts on the 
system to be controlled by setting the value of the feedback gain. This 
time-varying adaptive gain, represented by the value of the output weight 
of the winner neuron of the Motor Map, modulates the error signal between 
the reference trajectory and the actual one and is fed back into the system 
to be controlled. 

Motor Maps for Chaos Control 

adaptive 

I State variables 

Fig. 6.7 The Motor Map controls the 
time-varying adaptive gain multiplying the error signal exclusively on the basis of the 
information of the Reward Function that is established taking into account the difference 
between reference system and the controlled system. 

Scheme of the Motor Map based controller. 

Instead of controlling the whole state space, only two variables have 
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been considered in the feedback. So they constitute the inputs of the MMC. 
Of course, the possibility of achieving good performance with this reduced 
state space control is not a general conclusion, but it holds for this specific 
chaotic attractor. However the Motor Map based control scheme is a general 
one and can include feedback from the whole state space. 

The equations of the Chua's circuit [Madan (1993)] are the following: 

i = a ( y  - h(x) )  

(6.11) 

With the feedback the model becomes: 

where x r e f ,  yref and zTef are the state variables of the reference system. 
As previously outlined, only two variables have been fed back, i.e. in our 
simulations k ,  was set to zero. 

The Reward F'unction was chosen as the square of the Euclidean distance 
between the two controlled state variables and the corresponding reference 
ones as follows: 

Two schemes were used to perform the control. In the first one a generic 
case is assumed: a Motor Map is built for each variable to be controlled. 
In the second scheme a single Motor Map acts on the system controlling 
the variable having the larger error. In the former scheme, the two Motor 
Maps act independently on the two state variables x and y, storing (in the 
input layer) the values of the corresponding input pattern and the values 
of the corresponding adaptive feedback gain k,  for the first map or k, for 
the second map (in the output layer). In the second scheme a single Motor 
Map is devoted to controlling both variables, at each step controlling the 
one having the largest error. 

In both cases the winner-take-all law establishes which neuron has the 
most suitable gain value. Moreover, only the weights of the winner neuron 
are updated. This assumption leads to a simpler hardware implementation 
than is the case when a neighborhood of the winner neuron is also updated. 
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Moreover, this assumption is in some sense justified by the low number of 
neurons needed for the task. 

In the Motor Map implemented the learning rate was kept constant. 
In fact, while in supervised learning schemes the learning rates, 7 in Eqs. 
(6.10), can be gradually decreased to stop the learning phase, in unsuper- 
vised learning schemes the learning rate is usually kept constant. Keeping 
the learning rate constant enables continuous learning for the Motor Map 
and makes it able to deal with changes in the reference trajectory. On 
the other hand, this can lead to instabilities in the value of the feedback 
gain. In fact, simulations carried out reveal ever-increasing values for the 
feedback gain k. To eliminate this drawback an error performance goal 
is introduced in the Motor Map: that is, when the error is below a given 
bound, the learning is stopped. This avoids dependence on the time of the 
learning rate ~ ( t )  and also provides a mechanism to restar t  the learning 
when the error exceeds the given bounds. Moreover, the achievement of 
this goal constitutes a performance parameter for the Motor Map. 

To reduce hardware requirements, by exploiting the noise-like behavior 
and the broad-band spectrum of a chaotic attractor, it can be assumed 
that the stochastic term X is implemented by a chaotic signal from an ana- 
log circuit. In particular, a zero-mean variable can be chosen, for example 
variable y of another Chua’s circuit. In order for the hypothesis of broad- 
band spectrum to make sense, this chaos generator Chua’s circuit should 
have time constants smaller than those of the one being controlled. Simu- 
lation results emphasize the role played by the variance of this signal. The 
settling time depends on this variance: small increases in the variance, by 
multiplying this signal by a gain factor, lead to smaller settling time values. 
This consideration can be useful to decrease the settling time, considering 
parameter a ,  in Eq. (6.7) as a function of the actual error, and providing a 
high value when the error is large and a low value when the error is small. 
Thus a, is not updated as in (6.9), but is a function of the actual error. 

As an example, the results of control of a Chua’s circuit using the scheme 
with two Motor Maps, here called the 2 Motor Maps Controller (2MMC), 
are illustrated. The controlled system is the double scroll Chua attractor 
in Eqs. (6.12) with the following parameter values: 

CY = 9; p = 14.286; mo = - f ;  ml = 2 7 (6.14) 

As discussed above, an Error Bound (EB) on the steady state error 
between the reference and controlled systems for each of the variables being 
controlled was considered as a performance specification to establish the end 
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of the learning phase. 
A limit cycle was chosen as the entrainment trajectory for system (6.12). 

This limit cycle is generated by choosing the parameters of system (6.11) 
as follows: 

Two maps, each having four neurons, were trained for 390 epochs to 
achieve the performance specifications EB, = 0.08 (error bound for the 
variable x) and EB, = 0.04 (error bound for the variable y). Figure 6.8(a) 
shows the trends for the variable z of the controlled system and the variable 
xTef  of the reference system, while the phase planes x - y for both systems 
are shown in Fig. 6.8(b). Figure 6.8(c) shows the error and the EB for the 
variable z. 

From these results it is clear that the Motor Map efficiently learns the 
control action to be performed on the system being controlled. 

Many other examples emphasizing the capabilities of the Motor Map to 
learn by itself the control action by itself even when the reference attractor 
is switched to another one are given in [Arena et. al. (2002a)l. 

The performance of the scheme based on two Motor Maps (each acting 
on a state variable) and that of the scheme based on a single Motor Map 
(acting on the variable having the largest error) are comparable. In the 
second case the neurons cluster to deal with the two state variables, but a 
longer learning phase is required. 

The approach is suitable for hardware implementation, since the simu- 
lation results indicate that a low number of neurons is needed to perform 
chaos control [Arena et. al. (2002a)l. Moreover, the experimental results 
agree with simulations, confirming that the application of Motor Maps to 
chaotic system control give very efficient results. The Motor Map learns the 
adaptive control law in a unsupervised manner without any information on 
the structure of the controlled system. 

6.2.3 

Motor Maps provide suitable bio-inspired control for attitude stabilization. 
They can be applied to stabilize the posture of the hexapod robot pos- 
ture according to the principles underlying attitude control introduced in 
Sec. 6.1. 

The scheme adopted for Motor Map-based attitude control is shown in 
Fig. 6.9, which refers to a single joint. The inner feedback loop is regulated 

Motor Maps for attitude control 
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Fig. 6.8 Tracking of a limit cycle with 2 MMCs (each MMC acts independently on a 
variable of the controlled system): (a) trend for the variable x of the controlled system 
and the variable z,,, of the reference system; (b) limit cycle of the controlled system 
(solid line) and the reference system (dashed line) ; (c) errors and error bounds for 
the variables z and y. The errors are within the admissible error bounds after a short 
transient phase in which the MMCs learn the control actions. 

by an integral controller, while the Motor Map provides the adaptive time- 
varying gain for this controller. Since the aim of the control is to keep & = 0 
and 6 d  = 0, the MMC learns the correct value of the gain parameter on the 
basis of the following Reward Function: 

R = -(42 + e2)  (6.16) 

Several examples of attitude control are given below. In these examples 
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I I 

Fig. 6.9 Motor Map for attitude control in the hexapod robot. 

the MMC has been applied to the dynamic hexapod model HexaDyn and 
acts parallel to the CPG-based locomotion control. The MMC consists of 
either two Motor Maps for independent, parallel control of roll and pitch, 
or a single Motor Map controlling the variable with the largest error. The 
results for the two cases are similar, so below we will only refer to the single 
MMC scheme, given the advantages related to the use of only one Motor 
Map. In all the example the MMC consists of 16 neurons. 

In the first example, the HexaDyn robot walked on a rough terrain until 
it reached a position characterized by large roll and pitch errors. At this 
point HexaDyn stops walking and begins controlling its attitude. Therefore, 
in this first example the CPG control is not active, while the attitude 
control is turned on. This example allows us to  evaluate the performance 
of the MMC in two distinct cases. In the first case only an integrative 
action is taken, while in the second case an integrative-proportional action 
is performed. This latter case makes use of two distinct Motor Maps, one 
giving the value of the proportional action, the other that of the integral 
action. Figure 6.10 shows the pitch and roll errors for both cases. As can 
be noticed, when the proportional action is present, oscillations are damped 
out. 

In the second example the MMC automatically activates when the error 
exceeds a fixed threshold: here again the robot stops walking and then 
controls its posture. Figure 6.11 deals with a simulation in which HexaDyn 
walks on a flat terrain until it reaches an upward slant. The pitch error due 
to the slope can be appreciated in Fig. 6.11(a), where the attitude control is 
off. Fig. 6.11(b) shows how, when HexaDyn approaches the upward slope, 
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time (t.u) 

(4 

Fig. 6.10 Attitude control of HexaDyn through Motor Maps: (a) pitch error e4(") 
(integrative action); (b) pitch error e4 (proportional-integrative action); ( c )  roll error 
ee( " )  (integrative action); (d) roll error e.9 (proportional-integrative action). 

a large (over the threshold) pitch error appears; the posture is rapidly 
controlled and then HexaDyn continues walking. 

In the third case the robot controls its attitude while walking. Fig- 
ure 6.11(c) refers to this case. As can bc noticed, the pitch error never 
reaches the values shown in Fig. 6.11(a). 

The behavior of HexaDyn on rough terrain is further investigated in 
the most interesting case, in which the MMC is always active. Figure 6.12 
shows the pitch and roll error and the winner neurons. As can be noticed 
this is maintained at low values by the MMC. At each simulation step the 
MMC controls either the roll or the pitch of the robot model, choosing to 
control the variable with the largest error. To distinguish between neurons 
activated for roll control and pitch control, a variable has been stored; this 
allows us to plot the winner neuron for roll and pitch control in separate 
graphs, as in Fig. 6.12(c)-(d). The corresponding waveforms of the driving 
signal for the 0-joint of legs R1 and L1 are shown in Fig. 6.13. 

A further example deals with an environment in which flat terrain is 
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time (t u.) 

(b) 

time (1.u.) 

( c )  

Fig. 6.11 Pitch error em(") of HexaDyn walking on an upward slant (the sloped plane 
is approached at t = 300(t.u.)): (a) no attitude control; (b) MMC with threshold; (c) 
MMC always active. 

followed by an upward slant, then by flat terrain and a downward slope. 
In the absence of attitude control walking on this terrain causes the pitch 
errors shown in Fig. 6.14(a). Figure 6.14(b) shows the effect of the attitude 
control. The corresponding waveforms of the driving signal for the p-joint 
of legs R1 and L1 are illustrated in Fig. 6.15. 

6.2.4 Motor  Map-based attitude control in a simplified 
biped model 

The results presented in Sec. 6.2.3 refer to the use of the MMC as an 
adaptive controller establishing the gain of the integrative action of the 
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Fig. 6.12 
roll winner neuron; (d) pitch winner neuron. 

HexaDyn walking on rough terrain: (a) roll error ee;  (b) pitch error e4;  (c) 

inner feedback loop: in this case the objective of the control is fixed (& = 0 
and 6 d  = 0). In this Section a case study is presented in which it is the 
MMC that gives the reference signals for a stabilizing inner feedback loop, 
while the parameters of the PID of the inner loop are kept constant. The 
case study is represented by a simplified model of a biped robot. The biped 
is in the single-leg support phase, therefore one leg is on the ground, while 
the other is a disturbance for the system. The support leg has two links and 
can only move on the sagittal plane. The knee and the hip of the support 
leg are actuated, while the ankle joint acts as a source of disturbance for 
the system. 

According to the Lagrange formulation [Siciliano and Sciavicco (1989)], 
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Fig. 6.13 
(a) and L1 (b). 

HexaDyn walking on rough terrain: driving signals of the 0-joint of legs R1 

the model of the biped, shown in Fig. 6.16, can be described by the following 
equations: 

B(q)ii + C(S, ;1) + F";1 + g(q) = 7 (6.17) 

where q = 6knee , 7 Tknee , B(q), c(q,dl), FV and g(q) are, 

respectively, the 3x1 vector of joint positions, the 3x1 vector of torques of 
joint actuators, the 3x3 positive definite joint space inertia matrix, the 3x1 
vector of centrifugal and Coriolis effects, the 3x3 diagonal matrix of viscous 
friction and the 3x1 vector accounting for the effects due to gravity. 

The joint torques are given by the inner feedback loop (consisting of a 
PD controller) and are therefore: 

[ ::rkZe] [ I I k Z e ]  
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Fig. 6.14 Attitude control of HexaDyn walking in an environment with an upward slope, 
followed by a flat stretch and a downward slope. Pitch error ed: (a) attitude control off 

(b) attitude control on. 

where K, and Kd are 3x3 diagonal matrices of proportional or deriva- 
tive gains. 

Given a desired joint position qd, the inner feedback loop makes the 
biped able to assume this configuration. Of course, this kind of control 
does not assure the stability of the biped. For this purpose the MMC has 
been introduced. Of course, the two feedback loops illustrated in Fig. 6.17 
have different bandwidths. 

The stability of the biped can be tracked by the Zero Moment Point 
(ZMP)[Park and Chung (1999)]. When the projection of the ZMP is on 
the foot the biped is stable. However, for sake of simplicity the projection 
of the center of gravity (XCOG) has been taken into account here. This 
parameter defines the Reward Function. Since the objective of Motor Map- 
based control is, given a disturbance, to maintain the COG projection inside 
the foot and in particular at x = 0 (see Fig. 6.16), the Reward Function 
has been defined as follows: 

R = - 5 2  COG (6.19) 

The ankle joint position is a disturbance that can lead to a XCOG outside 
the supporting polygon: the MMC allows the supporting leg to reconfigure 
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Fig. 6.15 Attitude control of HexaDyn walking in an environment with an upward 
slope, followed by a flat stretch and a downward slope: driving signals of the 0-joint of 
legs R1 (a) and L1 (b). 

T 

Fig. 6.16 The biped model. 

itself to bring XCOG back to stable values. 
Figures 6.18 and 6.19 illustrate a simulation example. The value of the 

disturbance leg angle was fixed at  @ankle,d = i n ,  while &ip,d and @knee,d are 
given by the MMC to minimize the Reward Function (6.19). Figure 6.18 
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Fig. 6.17 The  biped control scheme 

shows the waveforms of the joint variables (desired and actual): these are 
almost indistinguishable except for the transient phase when the reference 
changes according to  the MMC output. The different bandwidths of the two 
feedback loops arc evident in the panels in Fig. 6.18. As can be noticed in 
Fig. 6.19, ZCOG converges to  zero as the Motor Map learns the appropriate 
control law. 

Fig. 6.18 
(continuous line) joint variables. (a) $hip. (b) $knee.  

Attitude control of the biped: trends of the desired (dashed line) and actual 

The example discussed here may resemble the inverted pendulum con- 
trol reported in [Ritter e t .  al. (1992)]. However, in [Ritter et.  al. (1992)] 
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Fig. 6.19 Trend of ZCOG. 

the Motor Map directly controls the force to  be applied to  the inverted 
pendulum, thus leading to  a huge number of neurons and a long learning 
phase. The scheme presented here, making use of an inner feedback loop, 
allows the number of neurons needed for the task to be reduced. This is an 
important condition for the feasibility of the hardware implementation. 

6.3 Learning with Motor Maps 

There is no intelligence without learning. All the examples reported here 
highlight the importance of learning in bio-inspired control. On the other 
hand, learning is a challenge for mobile robots for two reasons: firstly, the 
learning times should be acceptable, and secondly learning has to  avoid 
situations which are dangerous for the robot. Despite the great interest in 
these topics, there are few works implementing real-time learning for robots. 
For example Kirchner [Kirchner (1997)l proposes a hierarchical algorithm 
for learning complex behavior based on reinforcement. 

Motor Maps provide a suitable way to implement reinforcement-based 
learning. This is an important concept that opens up the way to  new ap- 
plications. For instance as regards attitude control, it should be noted that 
posture control in insects is a very complex form of behavior. Experimental 
data, illustrated in [Watson et. al. (ZOOZ)], show that the cockroach adopts 
different types of behavior to  overcome obstacles along its path according 
to the height of the barrier. If the barrier is small it does not change its 
posture, while if the barrier is high, it heightens the middle leg to overcome 
the obstacle. Of course, this complex behavior involves vision and high- 
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level centers to determine the height of the obstacle although the actual 
mechanism is still unclear. However, this is very interesting behavior in 
which the MMC can be useful to build up an efficient bio-inspired robot 
able to learn how to overcome obstacles with different strategies. 

An example of learning with Motor Maps is discussed in the following. 
In Chap. 2 the value of E for a given gait was found by using numerical 
simulations. Motor Maps can be used to build an adaptive system able to 
find the appropriate value of E for a given locomotion gait without any prior 
information. This problem is clearly a problem of learning, the Motor Map 
makes the system able to self-organize itself passing from an unorganized 
to an organized behavior. 

The block scheme of the control loop is shown in Fig. 6.20. The CNN- 
based CPG generates the locomotion gait for the robot: this gait is now 
adaptive, and its characterizing parameter ( E )  is varied by the MMC. Let 
us for instance focus on fast gait and let us suppose that the parameter 
E = -Ef is unknown. The Motor Map output weight directly maps the 
value of this parameter. 

In order to find the appropriate value of the parameter, the Reward 
Function has to be defined. It takes into account the error between the 
reference speed v,,f and the actual speed v of the robot as follows: 

R = - ( ~ , , f  - u ) ~  (6.20) 

Of course, the objective of the control is to maximize the Reward Func- 
tion. The definition of speed for a walking machine has to be clarified: in 
fact while it is unambiguous for a wheeled robot, the same does not hold 
for a legged robot. Walking robots do not move at  a constant speed, but 
are subjected to accelerations due to  the nature of step locomotion. An 
average of the speed over three complete cycle times was therefore taken 
into account. 

Some simulation results using HexaDyn are shown in Fig. 6.21(a), where 
the trend of the parameter E is reported. It should be pointed out that, as  
learning is always active, small fluctuations around the average value are 
present. Moreover, the average value is similar to the value ~f = -0.6 given 
in Table 2.2. The robot starts from unorganized leg movements and learns 
how to synchronize the legs in order to achieve a pattern of coordinated 
movements. 

Figure 6.21(b) illustrates the winning neuron. In this case two neurons 
have been trained for the fast gait. This is not a general result, since in 
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Fig. 6.20 Block scheme of hierarchical control of the robot. The locomotion is generated 
at the CPG level, the MMC controls the parameters of the CPG on the basis of speed 
feedback. 

most cases only one neuron is trained. However, this redundancy is due to 
the fact that only one reference input is presented to the system, so further 
learning steps can lead to a higher specialization. The approach based on 
Motor Map can be extended to control the generalized continuous gait. 

Fig. 6.21 
(b) winning neuron. 

Learning a given locomotion gait (fast gait): (a) trend of the parameter E ;  



Chapter 7 

High-level analog control: Turing 
patterns and autowaves 

This Chapter deals with navigation control from the perspective of analog 
computation. Two approaches are introduced: the first is based on Turing 
patterns and the second on autowaves. The two paradigms, Turing Patterns 
and autowaves, are solutions of a Reaction-Diffusion (RD) equation and are 
both implemented on a CNN. Therefore the first Section of the Chapter is 
devoted to a brief introduction to RD-CNNs. 

The common idea underlying the two approaches is the use of a RD 
medium as an analog processor for robot navigation. The analog processor 
plays the role of a high-level control center or a pool of commands neurons, 
providing the robot with high-level capabilities for obstacle avoidance and 
trajectory planning. 

The first example concerns the implementation of reactive behavior in 
an array of locally coupled command neurons through Turing patterns. The 
behavior of the robot is regulated by the status (the pattern) of the whole 
neuron ensemble rather than that of single neurons. In the second case, 
wave computing, an emerging paradigm of nonlinear science, is applied to 
the problem of robot navigation in a complex environment with obstacles. 

As regards practical issues, the two approaches can be used to control 
the locomotion of the robots introduced in Chap. 5. However, for the sake of 
simplicity the experimental examples given in this Chapter deal with simple 
roving robots implemented using LEG0 MindStormsTMwhich are gaining 
increasing interest in robotics as low-cost, easy-to-build and re-configurable 
mobile robot kits for educational and research objectives [Greenwald and 
Kopena (2003); Klassner and Anderson (2003)l. 

145 
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7.1 Reaction-Diffusion CNN 

The two control strategies that will be discussed in this Chapter are both 
based on RD equations in a two dimensional field. The general RD equation 
is here recalled: 

% = f ( U )  + v 2 u  (7.1) 

Like the discretized Laplacian introduced in Sec. 2.4.1 the following 
discretization of the diffusive term in a 2D array can be assumed: 

Taking into account this assumption and a reactive part similar to Eq. 
(2.5) the following equations for a single generic cell Cij of the RD-CNN 
can be written: 

f l ; i j  = -51;zj + (1 + P + ~ ) ~ l ; z j  - s1y2;ij + D l ( ~ ~ ; z + l , j +  

+ Y I ; ~ - I , ~  + ~ l ; i , j + l  + Yl;i,j-l - 4yl,i,j) 
(7.2) x2;ij + (1 + P - ~ ) y 2 ; i j  + ~ 2 ~ 1 . .  923 ' + D2(92.. ,2+1,j+ 

+yz;i-l,j + YZ;i,j+l + ~ ~ ; i , j - l  - 4 ~ ~ ; i j )  

where i = l . .M,  j = 1.N and yh;%j = 0.5(lxh;ij + 11 - /zh;ij - 11) with 

According to how the parameters are chosen, the RD-CNN (7.2) can 
show either Turing patterns or autowaves. 

Turing patterns are steady-state solution of the evolution of differen- 
tiated dynamic behavior arising from local interactions between identical 
elements. The emergence of these patterns has been observed in a large va- 
riety of phenomena (biological cells, particles, chemical reactions) and was 
demonstrated in arrays of locally coupled circuits in [Gorag et. al. (1995a); 
GoraS and Chua (1995); Gorag et. al. (1995b); Arena et. al. (1998)l. 

The shape of the pattern depends on the initial conditions, boundary 
conditions and the dimensions of the spatial domain. For instance, if the 
parameters of the RD-CNN are chosen according to Table 7.l(a), a non- 
homogeneous steady-state emerges. Figure 7.l(a) shows an example of a 
Turing pattern arising from a 25x25 RD-CNN (7.2) with zero flux boundary 
conditions and the following initial conditions: 

h = {l,2}. 
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p E ~1 ~2 il i p  D1 
CASE (a) (Turing patterns) -0.6 1.82 2 2.5 0 0 0.01 

CASE (b) (Autowaves) 0.7 0 1 1 -0.3 0.3 0.1 

1 if 6 5 z , j  5 11 
-1 otherwise 
-1 if 6 5 i , j  511 
1 otherwise 

X l , % j ( O )  = 

~ 2 , i j ( O )  = 

D2 
1 

0.1 

(7.3) 

Adopting the same convention of Fig. 7.1, these initial conditions are 
a black square near the top left corner of the image representing the first 
layer of the RD-CNN. 

The same RD-CNN is also able to generate autowaves. If the parameters 
are chosen according to Table 7.l(b), the RD-CNN reproduces the behavior 
of a nonlinear medium in which autowaves propagate. It is worth remarking 
that in this case the reactive part is practically the same one implementing 
the CNN neuron dynamics. Figure 7.l(b) shows an example of RD-CNN 
generating autowaves. Zero flux boundary conditions have been chosen. 
The following initial conditions have been assumed: 

[ 1 if j = 3 
0.4980 if j = 4 
-0.5059 if j = 4 X I , i j ( O )  = 

1 otherwise 
0.4980 if j = 4 
-0.5059 if j = 5 
-1 if 6 5 j < 7 i 1 otherwise 

x Z , i j ( O )  = 

(7.4) 

These initial conditions represent a vertical black line giving rise to 
autowave propagation. 

Figure 7.1 also shows an important difference of the single cell behavior 
in the two cases. In the case of autowaves the single cell dynamics is a 
stable limit cycle, while in the case of Turing patterns the trajectory of 
each cell state variable converges into an equilibrium point. 

Table 7.1 Parameter values of the  RD-CNN. 
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Fig. 7.1 
pixels -1). (b) Example of RD-CNN generating autowaves. 

(a) Example of RD-CNN generating Turing patterns (black pixels +1, white 

7.2 Navigation control based on Turing patterns 

In order to design a robot that has to move in a complex environment, 
it seems mandatory to deal with terms, concepts and ideas from various 
disciplines: ethology, neurology and psychology. The concept of behavior 
by itself is rich in different meanings and is strictly related to the animal 
world. A broad picture of the robot control system spectrum is given in 
[Arkin (1998)] and adapted in Fig. 7.2. Deliberative reasoning and purely 
reactive behavior constitute the extremes of this diagram. Most advantages 
in terms of speed of response are achieved by adopting a purely reactive 
control strategy, while predictive capabilities grow if deliberative systems 
are used. Most of the literature describing robot behavior, however, is 
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based on traditional software architectures that suffer when the number of 
sensors is high. 

This Section focuses on an analog implementation of reactive behavior, 
which is located as shown in Fig. 7.2. The proposed implementation is based 
on a system of analog dynamical nonlinear units, locally coupled. These 
constitute a pool of neurons implementing fixed-action patterns for a robot. 
Fixed-action patterns are time-extended response patterns triggered by a 
sensor stimulus persisting for longer than the stimulus itself [Arkin (1998)l: 
unlike reflexes, they can be motivated and therefore can be stimulated by 
the internal state of the animal. The robot wanders in the environment 
and the status of its sensors is processed by the network of neurons. As a 
result of the evolution of these neurons a pattern emerges, and drives the 
robot through a series of actions. 

The behavior of the robot is, therefore, determined by the sensor data. 
Obviously, this is only an easy task if the number of sensors is low. When 
the number of sources grows, it requires more and more computational 
resources. This is not the case of the information processing that takes place 
in the nervous system of animals and humans, where the high processing 
capabilities arise from the complexity of the whole system and not from 
a powerful computational unit. Taking inspiration from this principle the 
approach proposed here is fully analog, based on simple neural cells, able 
to perform parallel data processing. The importance of an analog approach 
lies in the fact that it is independent of the number and kind of sensors: 
data fusion is performed in an analog, fully parallel way. Moreover, the 
topological information coming from the displacement of the sensors can 
be preserved in the spatially extended neural system. 

The network of neurons is implemented by a RD-CNN generating Tur- 
ing patterns. This system of locally coupled units starts from an initial 
condition reflecting the sensor status and the previous pattern and evolves 
towards a new pattern that will establish the action of the robot. 

This Section introduces the CNN controlling the robot and presents the 
experiments carried out on a small roving robot. 

7.2.1 T u r i n g  p a t t e r n s  a n d  CNNs 

The key mechanism of pattern formation thoroughly discussed in [Goraq 
et.  al. (1995a)I is based on two considerations: each isolated cell should 
have a unique stable equilibrium point; moreover, this equilibrium should 
also be an equilibrium point for the whole interconnected array, but un- 
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Fig. 7.2 Spectrum of robot behavioral control 

stable in order to give rise to the evolution of a pattern corresponding to 
other equilibrium points of the array. From these conditions an analytical 
approach can be used to derive the parameters of the two-layer RD-CNN 
[Goraa and Chua (1995)l. 

The technique developed in [Goraa and Chua (1995)l allows us to de- 
rive analytical formulas to satisfy the conditions for pattern formation and 
is based on decoupling the linearized state equations of the whole array 
by looking for a particular kind of solution in the form of a sum of spa- 
tial eigenfunctions. The temporal eigenvalues associated to these spatial 
eigenfunctions cannot all have a negative real part, since in this case the 
homogeneous equilibrium point will be stable and no pattern can evolve. At 
least one eigenvalue should have positive real part. The spatial eigenfunc- 
tion associated to this unstable eigenvalue and the effect of the nonlinearity 
of the system will lead to a stable evolved spatial pattern. 

In order to satisfy this condition the so-called dispersion curve is exam- 
ined. This curve represents the relation between temporal eigenvalues and 
spatial eigenvalues and allows us to obtain the band of unstable modes of 
the system. The parameters of the RD-CNN should be chosen in order to 
have at least one spatial mode in this band. 

However, this linear theory can only predict how the pattern begins 
to evolve and does not exclude the possibility of other patterns arising. In 
other words nonlinearity plays a fundamental role in these systems to deter- 
mine the final pattern. In fact, when more than one unstable eigenfunction 
is present, nonlinearity is fundamental to establish which of the unstable 
modes will win the competition between the possible patterns. 
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7.2.2 

The idea underlying the approach presented here is that the pool of neu- 
rons, represented by the CNN generating Turing patterns, evolves towards 
a pattern that is a function of the sensor status revealed by the roving 
robot: a pattern is generated each time the sensor status changes. This 
pattern constitutes the motion instructions for the robot to respond to the 
perceived situation. To this end it is necessary to take into account the 
sensor status in the CNN evolution: this has been done by acting on the 
initial conditions of the network. Only the initial conditions of a few cells 
were related to  the sensor status (one for each sensor). Moreover, to  fur- 
ther simplify the algorithm in view of the hardware implementation it was 
decided to set the initial conditions of these cells not analogically but only 
to two different values indicating two distinct states of the sensor. In this 
Section the choice of the CNN parameters (cell parameters, dimension and 
boundary conditions) is illustrated. 

The key point in designing the CNN is to guarantee that given a certain 
pattern at  a discrete time k and given the sensor status a t  time k ,  the CNN 
will evolve towards a new pattern which on the basis of the sensor status 
indicates to  the robot the direction to  be pursued. Therefore, the CNN 
initial conditions are fixed by taking the previous pattern as the initial 
condition for all the cells except those connected to  the sensors. 

The example given in this Chapter deals with a small roving robot 
equipped with only three sensors (see Fig. 7.3). The aim of the control 
system is to generate fixed-action patterns to enable the robot to  avoid 
obstacles. The small number of sensors makes the fusion of data from these 
sensors an easy task if pursued with traditional methods. However, this 
simple example demonstrates the validity of the proposed approach, the 
advantages of which with a high number of data sources are evident. 

The parameters of the RD-CNN (7.2) have to be chosen so as to sat- 
isfy the pattern formation conditions. They were chosen according to Ta- 
ble 7.l(a). 

The dimensions of the array and the boundary conditions are chosen so 
as to satisfy the following considerations. First of all, the network should 
be able to generate enough stable patterns to  provide the robot with a 
sufficient number of strategies. Each pattern, in fact, constitutes a fixed- 
action pattern for the robot. Therefore the number of unstable modes is a 
key factor in choosing the CNN. The unstable modes also depend on the 
boundary conditions. Moreover, the actual pattern (at time k )  evolves from 

From CNN patterns to action patterns 
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Fig. 7.3 Correspondence between sensors on the robot and CNN cells. 

initial conditions obtained by merging the pattern at  time k - 1 and the 
sensor status and has to  be effective to implement the obstacle avoidance 
behavior. 

The low number of sensors implies the possibility of choosing a small 
CNN. A 3x3 CNN with cyclic boundary conditions proved to be satisfactory 
to obtain the desired performance. 

The eigenfunctions satisfying the cyclic boundary conditions are the 
following [GoraS and Chua (1995)]: 

while the corresponding eigenvalues are given by: 

(7.6) K,, 2 = 4 sin2 + 4 sin2 

For a 3x3 CNN the matrix of unstable modes is the following: 

K =  [!::I (7.7) 

The dispersion curve is shown in Fig. 7.4. 
lcg = 115.77, eight modes are in the unstable band. 

Since kf = 1.83 and 
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Fig. 7.4 Dispersion curve for cell (7.2). 

The CNN was simulated with different initial conditions on the first 
layer (variable zl,ij), while they were kept constant for the second layer. 
The number of patterns obtained in simulation is greater than that pre- 
dicted by the linear theory. However, by restricting the analysis to the 
different initial conditions that can be obtained by considering only the 
cells related to sensors (the correspondence was fixed in order to repro- 
duce the displacement of sensors as shown in Fig. 7.3) eight patterns were 
obtained. These are shown in the middle column of Fig. 7.5. Each pat- 
tern corresponds to the fixed-action pattern shown in the right column of 
Fig. 7.5, and is the result of the evolution of the previous pattern merged 
with the initial conditions from the obstacle position depicted in the left 
column of the Figure. 

7.2.3 Experimental Setup 

As is known, CNNs are suitable for VLSI realization, so the whole approach 
is suitable for implementation on an autonomous robot. However, in this 
work the experimental setup is provided by simplified hardware. A rov- 
ing robot was built using LEGO MINDSTORMSTM [Mindstorms webpage] , 
while the CNN was implemented on a PC. They communicate through an 
infrared device, included in the LEGO toolbox. A routine in the CNN 
software allows the action pattern for the roving robot to  be downloaded 
as a program, written using nqc language [Baum (2002)]. A scheme of the 
experimental setup is shown in Fig. 7.6: the roving robot, equipped with 
three light sensors, is able to detect black obstacles. This experiment shows 



154 Bio-Inspired Emergent Control of Locomotion Systems 

Qbs t ac I e 

Position Pattern 

CNN Fixed-action 

pattern 

Rotate by 180° 

Rotate by - 9 O O  

(clockwise) 

Rotate by +90° 

(counterclockwise) 

Rotate by -135- 

(clockwise) 

Rotate by +135O 

(counterclockwise) 

Go straight on 

Rotate by 180° 

Go straight on 

Fig. 7.5 
refer to the first layer (black indicates low saturation levels, white high values). 

Obstacle position, CNN patterns and fixed-action patterns. CNN patterns 

the suitability of the technique which, of course, can be applied to the other 
bio-inspired robots introduced previously. 

7.2.4 To probe further 

The approach described here consists of a CNN devoted to processing in- 
formation from an arbitrary high number of sensors to control the reactive 
behavior of a roving robot. The analog, fully parallel processing capabili- 
ties of the CNN are exploited to obtain a stable Turing pattern representing 
the fixed-action pattern of the robot in order to obtain obstacle avoidance 
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Fig. 7.6 The experimental setup for the navigation control based on Turing patterns. 

behavior. The analog solution to the problem of data fusion allows us to 
obtain fast responses, independently of the number of sensors, at the same 
time maintaining the topological information from the displacement of the 
data sources. 

The decision to use CNN to implement the network of neurons con- 
trolling the behavior of the robot is motivated by the growing number of 
integrated chips presented in literature and opens up the way to implemen- 
tation of the whole control system on an autonomous robot. A possible 
direction for future developments is indicated in Fig. 7.2: the possibility 
of including learning and considering high-level internal state motivations 
(or objectives) is particularly appealing. Another important point to be 
addressed is how Turing patterns are associated with a given action. This 
process should be the result of the dynamic evolution of the controller, 
thus learning should be included in the control scheme. A possible way to 
address this issue is the use of Motor Maps: on the basis of the Reward 
Function they can provide the system with adaptability and flexibility, en- 
abling it to learn the correspondence between Turing patterns and robot 
actions. 

Another strategy for navigation control based on wave computation in 
analog processors will be described in the following Section. The interesting 
point is that the basic cell can be kept the same. Thus CNNs provide a 
general framework for navigation control based on analog techniques. 
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7.3 Navigation control based on autowaves 

In robotics a very common approach to  the problem of navigation control 
is the use of artificial potential fields [Arkin (1998)], where the whole exper- 
imental arena is mapped onto the computational architecture of the robot 
navigator: obstacles generate repulsive fields and targets generate attrac- 
tive fields. However the computational resources required by this approach 
are quite large, and therefore real-time adaptation to  moving obstacles is 
difficult to  achieve. 

On the other hand there exist a large amount of literature on chemical 
controllers applied to calculate the optimal path for a robot moving in an 
obstacle-filled environment. These controllers are analog processors mostly 
based on the excitation wave dynamics in the Belousov-Zhabotinsky (BZ) 
medium [Agladze et. al. (1997)]. Their intrinsic parallel capabilities allow 
the limits of the potential field approach to  be overcome, but their main 
drawback is the limited speed of diffusion of the wavefronts in chemical 
reactions. For instance when chemical excitable media are used to  control 
phototaxis-based navigation of a mobile robot as in [Adamatzky et. al. 
(1998)], the idea is to  excite the medium according to a light source, let 
the waves propagate in the medium and let the robot follow the gradient 
to reach some target or to avoid obstacles. 

Starting from these considerations, we propose a scheme using an analog 
processors based on CNN applied to  generate autowaves for the navigation 
control of a robot, thus overcoming the limits of chemical processors by 
keeping the peculiarities of the paradigm. The basic idea is to  use RD 
equations that can be implemented in CNNs and reflect the nature of the 
BZ medium. 

In our approach the RD medium is devoted to  control the trajectory 
of a robot in an environment with obstacles, where a target point for the 
robot to reach can also be fixed. Both obstacles and target are mapped onto 
the nonlinear medium as autowave sources, stimulating different, regions or 
cells. A key characteristic of autowaves is that they annihilate when they 
collide [Krinsky (1984)]; in such a way they intrinsically determine the path 
of points equidistant from the obstacles. 

Therefore autowaves are very important for the navigation control, since 
the trajectory computation can be easily computed through their genera- 
tion, propagation and interaction. From this perspective nonlinear media 
represent a class of parallel computers with unique features: parallel input 
of data, parallel information processing and parallel outputs [Adamatzky 
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et. al. (2004)l. 
More specifically, the robot arena is mapped on a CNN: its role is to 

select obstacles (or the target) and identify them as sources of repulsive (or 
attractive) autowaves. Subsequently a RD-CNN generates autowave fronts. 
The robot is allowed to move freely within the arena. A simple AND opera- 
tion reveals the wavefront collisions with the robot, and a steering command 
is sent to the robot for the generation of highly adaptive trajectories. In 
Fig. 7.7 a schematic view of this approach is shown. This methodology 
allows the optimal robot trajectory in dynamically changing environment 
to be selected in an extremely short time: the algorithm, which solves a 
complex task, is in several cases even faster than the robot typical reaction 
times. 

Obsiacle Traje&ory 
of the robot 

Fig. 7.7 Autowaves to  control the navigation of a robot. (a) Trajectory of the robot 
and position of obstacles (the target, not shown, is on the upper right hand-side corner). 
(b) A frame of the autowaves propagating in the CNN medium (only the autowaves 
generated by the obstacles are shown). 

7.3.1 The CNN algorithm 

The algorithm for navigation control consists of two parts: target/obstacle 
recognition and wave computation based on RD Eqs. (7.2). Thanks to the 
universal computing properties of a CNN, a huge number of algorithms can 
be used, making them able to perform additional complex image filtering 
routines, which are needed to have a complete and really working algorithm 
for robot trajectory planning. In fact, a first, essential step that has to be 
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performed a priori, is target/obstacle recognition. In our case, the input 
is provided by a video camera taking a motion picture of the environment 
where the robot moves. By taking into account the peculiar characteristics 
of the obstacles (i.e. their shape), several algorithms, already implemented 
and tested on VLSI CNN chips, can be adapted to the features of the 
environment and applied to  provide an image containing only the obstacles 
surrounding the robot, whose position is assumed to be known at  any given 
time. This image is processed by the RD-CNN (the analog processor) in 
which autowaves propagate. 

The CNN cells corresponding to the position of obstacles are stimulated 
by setting initial conditions for the first layer of the CNN to xij = $1. 
Waves, generated at the obstacle positions, propagate until they collide with 
the robot. Depending on the kind of source generating the wave (obstacle 
or target) and on the particular compass direction the wavefront comes 
from, the new direction for the robot can be directly determined. Thus 
the trajectory planning is not performed before the robot starts moving, 
but step by step while the robot is moving, soon after each wave-robot 
collision. After the completion of a robot movement, one can decide whether 
to process another frame or not, i.e. one can decide either to reset the 
RD-CNN and start with a new configuration of obstacles and target, or 
to continue with the previously acquired configuration. This also allows 
moving obstacles to be taken into account or makes it possible to speed up 
the algorithm. 

Two complementary RD-CNNs are used: one is the medium for prop- 
agation of waves generated by obstacles, while the second deals with the 
target. The flow diagram of the algorithm as regards the case of autowaves 
generated by obstacles is shown in Fig. 7.8. The robot is viewed as a four 
active pixel object with a given orientation according to Fig. 7.8. After 
a threshold operation an AND operation is performed between the snap- 
shot of wave propagation, represented by the state of the first layer of the 
RD-CNN, and the image containing the robot. Depending on which of the 
robot pixels is first reached by the wavefront, a particular motion instruc- 
tion is given to the robot. The parameters of the RD-CNN (7.2) are chosen 
according to Table 7.l(b). 

Simulation results have been obtained by using a dedicated framework, 
written in C++, for the simulation of the robot and of the CNN algorithm. 
A 50 x 50 CNN was simulated. Figure 7.9 shows several examples of sim- 
ulation results. In this case, instead of a target to reach, the robot focuses 
on proceedings in a pre-specified direction (in this case north). Similar re- 
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Robot 

I 

Fig. 7.8 
obstacles is shown). 

Flow diagram of the C N N  algorithm (the case of autowaves generated by 

sults have been obtained in the case in which the target is also taken into 
account. 

As can be seen from the simulation results, the algorithm presented 
is really effective. However, there may be cases in which the robot gets 
trapped in a local minimum, for example when target and obstacles are in 
particular symmetrical points with respect to the robot. In such cases the 
robot moves alternatively between the same two positions. To overcome 
such a condition, a random perturbation on the robot trajectory is added. 
Moreover, in view of a real implementation, it is not necessary for the video 
feedback to refer to the whole robot arena, but it can be assumed that 
the processing takes place only on a certain region surrounding the robot. 
Due to the adaptive characteristics of the methodology, the environment 
focused by the camera can vary as the robot moves. So for example, at the 
beginning, when the target could be out of the captured area, the robot 
is made to move only in the direction of the target. Its first task could 
therefore be to avoid obstacles while moving in a particular direction. As 
the robot position approaches the target, the final focus could be taken into 
consideration. Moreover, taking limited, next-to-robot frames improves the 
computational efficiency, since distant obstacles do not generate wavefronts; 
so the local trajectory is influenced only by obstacles in the immediate 
vicinity of the robot. These aspects are extremely important, in view of a 
real implementation on the RD-CNN chip. 
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Fig. 7.9 
The target for the robot is to proceed in the northbound direction. 

Simulation results of wave-based navigation control: case with only obstacles. 

7.3.2 Implementa t ion  o n  a roving robot and  experimental 
results 

The algorithm discussed previously is quite general and can be implemented 
with two different installations of the camera: on the ceiling of the labo- 
ratory (as was assumed in the simulations) or on board, taking a picture 
of a small planar space in front of the robot. Thus, a world-centered per- 
ception, or a robot-centered perception can be implemented by using the 
general paradigm of RD navigation control. The robot-centered case is par- 
ticulary appealing for the implementation of high-level analog control of 
autonomous robots. 

The experimental set-up is provided by a real environment, where a 
roving robot is required to move in a pre-specified direction, in this case 
southwards: so no particular target positions are given. The camera is 
connected to a PC simulating the RD-CNN algorithm. 

In the first experiment the world-centered perception case is reproduced. 
At each step the robot camera takes a picture of the environment: obstacles 
are used as initial conditions for the RD-CNN. When the wavefronts reach 
the robot, depending on the direction the wavefront comes from, the robot 
executes the proper command. The robot succeeds in going in the pre- 



specified direction avoiding two obstacles, as can he appreciated in Fig. 7.10. 
Here the positions s u m i v e l y  occupied by the robot ate reportad through 
red points. From the analysis of the Figure it emerges that the robot is 
indeed able to  avoid both the obstacles, but it pssses much closer to  the one 
than the other. This potential problem can be explained as follows. Since 
autowave fronts annihilate while colliding, if the robot moves in a direction 
where a wavefront has just been annihilated, it will “sense” the subzequent 
front when the robot will be next to its source, i.e. the obstacle. A suitable 
synchronization between the robot motion and the wave generation avoids 
this problem. 

Fig. 7.10 
camera w p l d  OG the ceiling of the laboratory. 

Example of a typical trajectory of the mbot while avoiding an obstacle. The 

The second experiment refers to the robot-centered perreption strategy 
the camera is placed on the robot via a vertical pole whose height is shout 
lm. The camera is positioned in such a way that the focal plane is al- 
most parallel to %he ground and the robot is situated in the central bottom 
position within the frames. In this condition the frames refer to the enviton- 
m a t  in the forward motion direction of the robot. The whole experiment 
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is iUustrate3 in the snapshots in Fig. 7.11. As can be noticed, the robot 
is able to avoid both the obstacles, while proceeding in the prespecilied 
direction. 

Fig. 7.11 Example of robot-centered nbvi-tation sodml bssed on RDCNN. Several 
snapshots of a video are bh-. The 0MatIe gbsitim is indlcared In the Rrsl kame by 
two arluws. 

This example shows the advantages of the mdog approbch. With re- 
spect to traditional algorithms for the path phning, for instsnce the PO 
tential field 8pprOach, where the wre is calculation, For each environment 
state, of the potential function for each point in the robot arena, the analog 
approach b w d  on wave computing relies 00 massively pardel  computing. 
Each element of the excitable medium acts as a very primitive computing 
device. The medium's sites take on ideally continuous  value^ and the site 
interacts locally; therefore the path planning problem is solved through an 
analog and massively parallel computation, aiso allowing for a real-time 
control of the robot's trajectory. In the case of moving obstacles or dy- 
namically changing situations, the advantages of the approach based on nn 
analog processor are appatent: in our case each obstacie/tnrget is a wave 
source independently on its position. Another advaotage of the approach is 

wn
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the adaptability of the parallel computation to a vast class of optimization 
problems. 

The interested reader is referred to [Adamatzky et. al. (2004)], where 
experimental results carried out using a VLSI CNN Chip implementing 
wave-based navigation control are detailed. 

A final remark regards the consideration that as the same model for 
the RD-CNN (7.2) was also successfully used as the basic neuron model for 
bio-inspired locomotion control in Chap. 2, it derives that the class of CNN 
discussed in this Chapter represents a unifying paradigm for the solution 
of locomotion control, from the low level of the motion pattern generation, 
to the very high level of the trajectory planning. 

This last Chapter close the loop: CNN-based control systems allow to 
establish a new paradigm for bio-inspired robots from low level to super- 
vised control. The reported studies, even if establish new well-posed control 
concepts, open a new way towards innovation robot control strategies. 
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Chapter 8 

Conclusions 

Walking robots offer a large spectrum of potential advantages over wheeled 
structures, due to their superior adaptability capabilities on rough terrain 
and in environments with obstacles, but their control is a challenge be- 
cause they have a large number of interconnected degrees of freedom. On 
the other hand, in nature there exist numberless examples of walking crea- 
tures which move on unstructured terrain in an efficient and elegant way. 
Therefore, many robot designers look to biological inspiration to build effi- 
cient walking robots. Two key points emerge from the study of the neural 
control of locomotion in many living creatures: 

0 the motor system is hierarchically organized; 
0 a network of neurons, called CPG, is able to generate the rhythm 

of locomotion independently of sensory feedback and signals from 
higher centres. 

The problem of locomotion control has already been dealt with us- 
ing bio-inspired approaches in many works. The approaches and the de- 
grees of inspiration in these works vary. In some cases [Arkin (1998); 
Brooks (1991)], the biological inspiration is not a key point and the an- 
imal is often considered a s  a term of comparison to define what Artificial 
Intelligence means and to build software architectures able to show complex 
(or intelligent) behavior. 

A very impressive synergy between biology and engineering is, instead, 
represented by the work of Quinn (for a review see [Webb and Consi 
(2001)]), where biological data are used for a very accurate design of a 
bio-mimetic robot with cockroach kinematics. However, the control of the 
architecture is performed using a traditional approach, while greater ef- 
fort is directed towards the study of an actuation system that can achieve 
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performance similar to that of the cockroach. 
Our work focuses mainly 02 locomotion control. This has been treated 

in several papers [Golubtisky et. al. (1998); Waldron and Song (1989); 
Lewis et. al. (1998); Saranli et. al. (ZOOO)]. A number of engi- 
neering projects for walking machines consider a hierarchical organiza- 
tion of the control systems [Klaassen et. al. (2002); Brooks (1991); 
Zielinska and Heng (2002)] and some exploit the CPG paradigm to gen- 
erate a locomotion control algorithm. 

(1998); Beer et. al. 
(1992a); Beer et. al. (1992b); Kodjabachian and Meyer (1998)l. However, 
these works stop at the software level, whereas bio-inspired robotics [Webb 
(200l)] highlights the importance of the implementation on the robot be- 
cause of the role of the environment and mechanics in the control. The 
importance of the mechanical system in bio-inspired control is almost uni- 
versally recognized [Raibert and Hodgins (1993); Chiel and Beer (1997); 
Kubow and Full (1999)]. For instance in [Kubow and Full (1999)] the role 
of the mechanical characteristics of the animal’s (or robot’s) body is inves- 
tigated and shown to be useful to stabilize locomotion. However, this is a 
quite open field and still requires further investigation. 

Another interesting example of synergy between engineering and biology 
is given in [Ayers et. al. (1998)]. The lobster-robot makes use of nitinol- 
based actuators and biomimetic sensors. Behavioral modules observed in 
real lobsters are implemented in the robot. However, the CPG is a finite- 
state machine and implemented on a small board computer. 

Among CPG-based controllers, [Lewis et. al. (1998)] focuses on a system 
suitable for hardware implementation and, at the same time, presents a 
strong degree of biological inspiration. It relies on coupled integrate-and- 
fire neurons and is able to control gait generation for a pair of legs. This 
CPG for biped locomotion is not easily extendable to control other robotic 
systems. 

On the contrary, in [Golubtisky et. al. (1998)] and in many other re- 
lated works [Collins and Stewart (1993a); Collins and Stewart (1994)] the 
focus is on providing a general framework for modelling CPGs, but imple- 
mentation issues are not dealt with. These studies show how dynamical 
systems constitute a “natural” way to model the CPG. Our work on CPG 
is related to these works sharing with them the use of dynamic nonlinear 
units to model CPGs, but the focus here is more on implementation issues 
and therefore important topics such as the inclusion of sensory feedback and 
reflex implementation have been treated. These are fundamental to achieve 

CPG approaches are discussed in [Chiel et. al. 
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good performance on rough terrain, when legged machines are more effec- 
tive than wheeled robots. Moreover, the so-called group-theoretic approach 
introduced in these papers can lead to some drawbacks when hardwaie 
constraints are considered. For instance the switching among locomotion 
patterns is there addressed by exploiting a bifurcation which involves the 
parameters of the CPG cells. This presents some undesiderable aspects. 
First, if (as in our case) it is assumed that the dynamics of the cell directly 
controls the movements of a leg, one would avoid to change it when the 
locomotion pattern changes (indeed switching among locomotion patterns 
more often affects the re-organization only in the duration of the stance 
phase). Moreover, the hardware realization of this scheme requires the 
possibility to change these parameters, whereas a mechanism involving a 
change of the connections among cells with fixed parameters seems of more 
immediate feasibility. 

These ideas and objectives also directed our work on decentralized lo- 
comotion. This approach to locomotion control relies on very different hy- 
potheses. The suitability of this scheme as originally formulated by Cruse 
is shown in [Pfeiffer et. al. (2000)l. The locomotion control is totally based 
on reflexes. These regulates both the alternating of swing and stance and 
the coordination of all the legs. Of course here sensory feedback plays a 
fundamental role. The decentralized locomotion control introduced in this 
book makes use of dynamical units to build the control system and on an 
optimization strategy to find the parameters of the whole structure. 

Evolutionary based approaches have also been considered in [Gallagher 
et. al. (1996); Chiel et. al. (1998); Beer et. al. (1992a); Kodjabachian and 
Meyer (1998)l. For instance in [Beer et. al. (1992a)l a control system based 
on a Hopfield neural network is evolved to find suitable parameters to make 
a hexapod agent able to walk. There is an important difference between 
artificial neural networks and CNNs. CNNs are locally coupled, therefore 
tailor-made for VLSI implementation, and some chips consisting of large 
arrays of CNN cells (64x64 or 128x128) have already been devised (for a 
deeper discussion the reader is referred to the literature on CNNs [Chua and 
Roska (1993); Manganaro et. al. (1999)]). However, these controllers are 
CPG-based schemes. In any case the use of evolved networks is not massive 
in this work: the structure of the network controlling the leg movements is 
kept constant and only the parameters of the reflex-based connections are 
chosen according to a genetic algorithm strategy. 

The approach takes as a starting point the biological principles of local 
influences as in [Cruse (1990)], whose parameters have to be re-adapted 
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to the leg controller dynamics. Two distinct realizations have been dis- 
cussed. The first shows that CNNs are suitable for both implementing 
central (CPG-based) control and decentralized locomotion control. The 
second, based on integrate-and-fire neurons, extends the application of net- 
works of spiking neurons [Lewis et. al. (1998)] to hexapod walkers. 

However, the main focus of this work is on a CPG scheme based on 
nonlinear coupled circuits (CNNs) to control the locomotion of bio-inspired 
robots. The project starts from the design of the CPG network. This is 
a not trivial task, since few results are available regarding analysis of the 
behavior of coupled nonlinear systems and few of them deal with design 
issues. The design of the CNN-based CPG was accomplished by further 
exploiting the analogy with the biological case: excitatory and inhibitory 
synapses connect the motor-neurons (dynamical second-order nonlinear sys- 
tems). Thus the low level of control of the locomotion system is performed 
by position control of the joints of the articulations, while the CPG level is 
performed by the whole network of interconnected second-order circuits. At 
this level self-organization plays a fundamental role: the dynamical units 
of the CPG properly synchronize to control the locomotion of the robot. 
Thus the result of self-organization is that all the neurons oscillate a t  the 
same frequency despite parameter variations (a  very important point for 
the hardware implementation) and the phase lags between them are those 
required to achieve interlimb coordination for proper walking. Moreover, 
the approach based on CPG implemented by CNN is modular and general 
as the control of the bio-inspired swimming robot demonstrated. 

Even if the CPG is able to generate the rhythmic locomotion pattern by 
itself, sensory feedback and higher level control are fundamental for efficient 
locomotion control. Sensory feedback has been thoroughly investigated and 
several strategies taken into account, leading to suitable low-level direction 
control, feedback from ground contact sensors, and the implementation of 
reflexes and speed control. 

An important advantage of the CNN-based approach to CPG implemen- 
tation is its immediate hardware transposition: a VLSI implementation of 
the CNN-based CPG has been introduced. The experimental results on the 
first chip prototype confirm the suitability of the approach and open up the 
way to low-cost implementation of autonomous walking machines. 

Moreover, the dynamical approach also allows the implementation of 
a locomotion control scheme based only on reflexes. This scheme, in con- 
trast with the CPG, has been proposed by Cruse [Cruse (1990)] and is 
particularly appealing for robotic applications. 



Conclusions 169 

As concerns the high-level of locomotion control, the important issue of 
posture control has been investigated. A scheme based on distributed con- 
trol has been introduced. Moreover, the idea of learning the right posture 
in real time has also been considered by means of the paradigm of Motor 
Maps, self-organizing maps with reinforcement learning. 

Starting from this application, Motor Maps have been shown to be a 
suitable paradigm for implementing learning capabilities in the robot con- 
trol system. An experiment in which the CPG starts from an unorganized 
condition and learns how to synchronize the legs in order to achieve a pat- 
tern of coordinated is an example of the emergence of an adaptive behavior 
(the locomotion gait) from local rules and reinforcement learning. 

Further aspects of high-level control related to navigation issues have 
also been dealt with. The unifying strategy was to use a network of locally 
connected dynamical systems (namely a CNN) for this task as well. This 
is a t  the same time biologically inspired and simple to implement since a 
number of VLSI chips consisting of many cells already exist. In particular, 
two well-known phenomena arising in Reaction-Diffusion systems (Turing 
patterns and autowaves) have been used to  implement analog approaches 
for navigation control. 

The distributed control introduced in this work allows the solution of 
a hard task like the locomotion control by exploiting the self-organizing 
properties of the network of nonlinear circuits. The idea of distributed 
control is investigated in many other works. Among them the work of Quinn 
and collezgues [Quinn et. al. (1998); Espenschied et. al. (1996); Beer et. al. 
(1992b)l shows the effectiveness of the approach. In our work distributed 
control is in effect achieved by an array of analog nonlinear circuits, in 
which complex behavior (either at the low level of gait generation or the 
high level of posture control or obstacle avoidance planning) arises from 
the interaction between these simple nonlinear elements. This allows an 
efficient hardware implementation that intrinsically includes the possibility 
of obtaining adaptive behavior as an emerging property of the nonlinear 
system. The approach presents the further advantage of robustness to 
faults in parts of the control system. As concerns the gait generation for 
instance, if a neuron in the network is not working (as shown in an example 
reported in Appendix A), the robot is still able to move though not in a 
well coordinated way as in the undamaged case. 

Moreover, although the main objective of this work is to provide meth- 
ods to  build up efficient control systems for the locomotion of bio-inspired 
robots, the analog approach allows us to gain further insights into the bi- 
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ological model. These considerations only hold if a degree of accuracy is 
guaranteed by the hardware iinplementation of the proposed strategies. 
This idea has driven all the work discussed in this book in which several 
robot prototypes have been presented. 

These prototypes have been built up bearing in mind the intent of 
gradually presenting the new ideas regarding locomotion control and in- 
troducing them as modules (or bricks) for the design of the complete, fully 
autonomous robot. So direction control, posture stabilization, VLSI im- 
plementation of the CNN-based CPG, analog navigation control can all be 
embedded in an autonomous walking robot with adaptive capabilities. 



Appendix A 

HexaDyn and CNNLab: two tools for 
bio-inspired locomotion control 

Even though the final goal of bio-inspired control is to perform experi- 
ments on robots and to build neuromorphic chips, software tools and gen- 
eral frameworks to validate the approach and the control scheme have been 
developed in order to conceive a development system as a new tool to de- 
sign bio-inspired robots. In this appendix a brief description of a dynamic 
simulator of the hexapod robot, called HexuDyn, and a general framework, 
called CNNLab, in which the bio-inspired control system is implemented 
via software on a PC driving the real robot through the parallel port, is 
given. 

A.l  HexaDyn, a simulator for the hexapod robot 

HexaDyn was developed starting from the libraries of DynaMechs, a soft- 
ware package in C++ including efficient dynamic simulation algorithms 
for multiple chain robotic systems, available as an open source [McMillan 
(1994); McMillan et. ul. (1996)l. Real-time simulation and a realistic 3-D 
graphical display are the great advantages of this software package. On 
the other hand the package, being distributed as an open source, is not 
user-friendly. The main classes of DynaMechs were used to build an effi- 
cient framework in which to simulate the bio-inspired hexapod robot. The 
classes of DynaMechs were been used to design and simulate the mechanical 
part of the system, while new classes have been written for the bio-inspired 
control. The latter include classes for the simulation of the CNN-based 
CPG, the Motor Maps and many of the other control schemes discussed in 
this book. 

HexaDyn allows the possibility of controlling a number of parameters. 
Before executing the main program running the simulation, all the param- 
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eters of the simulation are defined in a file. This file allows us to define the 
environment, the robot structuie and the terrain characteristics. The envi- 
ronment can be specified by choosing the gravity field, fluid density, ground 
friction coefficient (static and kinetic), the spring and damping constant of 
the foot-ground contact and so on. The terrain is defined by a triangular 
grid with a given grid-step and by a matrix whose entries are the height 
values at the grid points. A library of terrains is included in HexaDyn. 

The structure of the hexapod robot, simulated in HexaDyn, is hierar- 
chically defined starting from the body and with the articulation consisting 
of three links. The articulations and links are defined by the Modified 
Denavit-Hartenberg parameters [Siciliano and Sciavicco (1989)]. As re- 
gards the joint control, a PD controller is implemented to model the servo- 
mechanisms used in the robot. Different hexapod configurations can be 
investigated allowing us to compare the advantages and drawbacks of the 
various models, as well as the differences in the control required by the 
different structures. Figure A.l shows three examples: a stick-insect like 
configuration (the one used for the robot), a spider-like configuration and 
a cockroach-like configuration. 

Fig. A. l  
(b) spider-like; (c) cockroach-like. 

Three possible configurations of the HexaDyn hexapod: (a) stick insect-like; 

All the variables of the system (both mechanical and electrical) can 
be tracked and used in the feedback loop (as, for example, in the case of 
attitude control through Motor Maps). 

An example of a simulation using HexaDyn is shown in order to illus- 
trate one of the advantages of the distributed approach. The distributed 
control is robust to faults of parts in the control system. As regards gait 
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generation, for instance, this robustness is illustrated in Fig. A.2, where 
two simulation results for the dynamic robot model HexaDyn walking on 
rough terrain are compared. The first refers to an “intact” CPG, while in 
the second case one neuron (Rl) is not working (its state variables are kept 
constant at their initial values). Leg R1 does not move properly, but Hexa- 
Dyn is still able to locomote. Of course, compared to the case in which the 
fast gait CPG is working correctly, the locomotion is poor and the robot 
deviates quite far from the direction of the motion (axis y). 

1 I 
5 

x (fault) 

‘1, 260 400 660 8bo ,dOO 
Time (to.) 

0 85/ i z(fauit) 

”), 200 400 600 800 ’ 
Time (t.u.) 

(b) 

0 

Fig. A.2 Comparison between the case in which one neuron (Rl) of the CPG for fa s t  
gait is not working and that in which the CPG is working normally. Trends of the 
position of the body center of mass: (a) variables z and y (y is the direction of motion); 
(b) variable z. In the motion direction (axis y) the discontinuous trajectory is due to 
the stepping movements of HexaDyn. 

A.2 CNNLab 

The purposes of CNNLab are to provide a general framework to test bio- 
inspired control on the hexapod robot. The hexapod robot, whose structure 
is that shown in Sec. 5.3, is equipped with sensors, servomotors and a board 
connected to the LPT of a PC; communication between the robot and the 
PC takes place through an 12C bus. Moreover, the board carried on the 
hexapod robot includes a Pulse Width Modulator (PWM) block, able to 
generate the PWM signals driving up to 20 servomotors (this is achieved 
by a pre-programmed PIC, called SD20 [robotelectronics webpage]) and 
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analog to digital (A/D) converters. This allows us to consider any kind of 
sensor and motor, provided small changes are made in the hardware of the 
robot. A block scheme of the framework is given in Fig. A.3. 

LPT/IIC PC 
1 I 

I Sensors I I Motors I 
Fig. A.3 Scheme of the CNNLab framework. 

The bio-inspired control is implemented via software on the PC. 
CNNLab allows control and visualization of all the parameters of the sys- 
tem in a user-friendly interface. For instance, the integration step size of 
the control algorithm, the time step of time-multiplexing for generating the 
motor outputs, all the scaling factors between CNN outputs and motor sig- 
nals, the frequency of the PWM signals and so on can be fixed. Typically 
these are chosen to set the stepping frequency to suitable values. 

CNNLab provides great flexibility in the control algorithm by using 
an intuitively simple script language. The CNN-based CPG is therefore 
defined by this script. Moreover, CNNLkb already implements the atti- 
tude control described in Sec. 6.1. This is an example of the feedback 
loops between the hexapod robot and the PC that can be implemented in 
CNNLab. Moreover, the sensor outputs can be stored and visualized in real 
time. Hence, implementing the decentralized locomotion control outlined 
in Chap. 4 is also possible. To this end and to visualize a gait diagram of 
the robot while walking, six opto-mechanical sensors detecting the ground 
contact of each leg are already carried on the robot. 

An example of the graphic user interface is shown in Fig. A.4, while 
Fig. A.5 is a photograph of the robot controlled by CNNLab. 

Another possibility is to tele-operate the robot instead of using a di- 
rect connection. In this case the whole control system is devoted to the 
tele-operated control of the hexapod robot and is composed of two differ- 
ent parts: a PC hosts the CNN-based CPG, the control feedback laws and 
allows the storage of all the measures, while the circuitry carried on the 



2

robot d& only with thc joint motor control and the measurement. s y s t e m  

The mmunication betwm PC and robot circuitry DEWS through two 
AUREL XTR 434 modules, each one driven by a PIC and with a tram 
mkion protocol ad hac written. Figure A.6 shows a block scheme of the 
whole gystem. 
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Fig. A.6 Scheme of the CNNLab framework when used for tele-operated control. 



Appendix B 

Design of the CNN circuit 

The design of the CNN circuit implementing the CNN motor-neuron 
(2.5) is now introduced. The circuit is based on operational amplifiers 
and RC components. Starting from this circuit and applying standard 
techniques for switched-capacitor design [Gregorian and Temes (1986); 
Johns and Martin (1997)] the switched-capacitor circuit discussed in 
Sec. 3.5 can easily be derived. 

Equations (2.5) are dimensionless. We first consider a model suitable 
for the circuit implementation. The equations of the CPG cell including 
the time-scaling factor are the following: 

with 

and r = RC. In this model the state variables are represented by voltages. 
The core of our circuit is the Miller integrator/adder block [Smith and 

Sedra (1998)] shown in Fig. B.l. The equation it implements is the follow- 
ing: 

where z is the voltage across the capacitor C1. Equation (B.3) perfectly 
matches that of a CNN first-order cell. yi and y j  represent the outputs of 
two generic cells. The piece-wise linear output (B.2) is obtained by con- 
sidering an inverting block and exploiting the saturation of the operational 
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Fig. B.l The  Miller integrator is the  core of the  C N N  circuit. 

amplifier (i.e. choosing the gain to saturate the output). This approach 
leads to saturation points depending on the voltage supply values. These 
saturations axe then scaled to the standard values fl .  Therefore the values 
of the resistances of the CNN circuit depend on the voltage supply. The 
whole CNN implementing the CNN neuron is shown in Fig. B.2. 

In terms of circuit components the neuron parameters are expressed by 
the following relations: 

The values of the CNN circuit components with V,, = k2.5V and the 
parameters in Table 2.1 are shown in Table B.1. 

Table B. l  Values of the  
components of the  CNN cir- 
cuit. 

1MR I 
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P? 

Fig. B.2 The circuit implementing the CNN motor-neuron (B.4). 

In order to design the circuit implementing the whole CNN-based CPG, 
the circuit implementing the CNN chemical synapse of Eq. (2.13) has to be 
discussed. This design can be addressed in a very simple way. In Fig. B.3 
the electrical scheme of an excitatory synapse from the CNN neuron a to 
the CNN neuron b is reported. This has been implemented by an inverting 
operational amplifier whose input is the signal ~ 1 , ~  from the CNN neuron 
a. The synaptic input of the CNN neuron circuit is realized by considering 
a further input in the block of Fig. B.l. The value of the synaptic weight 
E can be set according to the following equation: 
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'1 ,a 
* I 

WO 

h h  0- 

R21 synaptic input a 

OJ 

synaptic input b 

Fig. B.3 
C N N  neuron represents a circuit of Fig. B.l. 

The circuit implementing the CNN chemical synapse. Each block labelled as 



Appendix C 

A chaos-based sensor for bio-inspired 
robots 

Autonomous robots often need a large number of sensors to span the space 
around them. A very common approach is the use of sonar sensors. How- 
ever, complex algorithms are often required to handle sonar sensors in mul- 
tipath fading and in a multi-user scenario. A bio-inspired approach to this 
problem is, on the other hand, appealing because of the fascinating ex- 
amples (bats) present in nature. The solution proposed here exploits the 
principles underlying Chaotic Pulse Position Modulation (CPPM) in order 
to improve the efficiency of a sonar system in multipath fading situations 
and in a multi-user scenario. 

C.l Continuous CPPM 

Collision avoidance is one of the main issues involved when dealing with 
the design and construction of autonomous robots. Truly autonomous 
robot control often implies the ability of free-roaming platforms to travel 
in non-structured environments. The intelligent control of robots involves 
strategies to avoid obstacles and, if necessary, choose alternative routes to 
accomplish a task. This activity is performed on the basis of the informa- 
tion collected by several sensors. Among the most common sensors used 
for collision avoidance, those based on the measurement of the Time of 
Flight (TOF) are perhaps the most common. In particular, sonars, based 
on Ultrasonic TOF ranging allow reliability and precision of measurements 
to be conjugated with low costs and ease of interface, making these sen- 
sors widely used tools for autonomous robot navigation [Everett (1995)l. 
Autonomous robots are often equipped with a large number of ultrasound 
sensors to span the space around them and sense the presence of obstacles 
in their operational space. Moreover, more and more robotics applications 
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require more than one robot to roam in the same environment. Therefore, 
two main issues arise in this context: firstly, the multi-user scenario makes 
it quite hard for each sensor to distinguish its own echo; secondly, the mul- 
tzpath fading phenomenon, arising when the same sound wave comes back 
to the sensor along several paths, deteriorates sensor performance. 

The principles of noncoherent chaotic communications are here used to 
build an effective sonar system able to perform ranging tasks in an envi- 
ronment affected by multipath fading and in a multi-user scenario. Chaotic 
communications exhibit a low probability of detection and interception, as 
the high sensitivity of the chaotic generator to initial conditions and to 
parameter values allows us to establish a great variety of keys in order 
to generate unpredictable sequences. Moreover, the advantages of chaotic 
communication systems lie in their high levels of performance in multipath 
propagation conditions and multi-user scenarios, as cited above [KolumbAn 
et. al. (1997); Kolumb6n et. al. (1998)l. 

In the framework of ultra-wide bandwidth (UWB) communication sys- 
tems, impulse-based schemes open up new perspectives, due to the reduced 
complexity involved, low power consumption, low probability of detection, 
insensitivity to multipath propagation, and multi-user capabilities. In par- 
ticular, Chaotic Pulse Position Modulation (CPPM) [Maggio et. al. (1999)I 
constitutes a promising approach in the field. The main idea underlying 
CPPM is to generate a sequence of pulses in which the duration of the 
time interval between one pulse and the next one is provided by a chaotic 
law. As the information is in the temporal distance between pulses, addi- 
tive noise on the channel does not affect the integrity of the information. 
Moreover, pulses with a small duty cycle are used, thus involving low power 
consumption. 

The principles underlying CPPM are thus applied in order to design and 
implement a reliable sonar system, able to detect distances from targets 
in multipath fading situations and multi-user scenarios. The approach is 
based on the generation of a train of sonar pulses according to the CPPM 
technique. The estimate of the distance is performed by correlation-based 
techniques, rather than on the basis of measurement of the TOF. 

In our CPPM system the chaotic sequence is generated on the basis of 
a continuous chaotic attractor, rather than a chaotic discrete map. This 
modification allows us to  generate an effective chaotic sequence in an en- 
tirely analog fashion, without requiring any digital processor with a word 
of bits large enough to generate numbers with the required precision. 

Continuous CPPM is essentially achieved via a voltage-to-time conver- 
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sion. The block scheme of the continuous modulator is shown in Fig. C.l. 
The chaotic sequence of time intervals 71, is generated in the following way. 
A sample-and-hold circuit performs a S/H operation on a single state vari- 
able of the chaotic circuit. Then, a ramp is generated and stopped when 
its value equals that of the sampled signal. When this occurs, a pulse is 
emitted from the modulator, the ramp is reset and a further S/H operation 
is performed. It is clear that, as the ramp signal is reset when the pulse 
is emitted, it reaches the value of the chaotic sample after a time which is 
proportional to the value itself. More details of the CPPM modulator are 
given in [Fortuna et. al. (2002)l. 

Fig. C.1 Block scheme of the continuous chaotic pulse position modulator. 

The continuous circuit generating chaos is the well-known Chua’s Cir- 
cuit [Madan (1993)]. It is clear that the modulator only works with positive 
continuous chaotic signal values. As the state variables assume both posi- 
tive and negative values in a lot of attractors coming from Chua’s circuit, 
the introduction of a suitable offset may be required to guarantee the gen- 
eration of only positive values. The continuous CPPM approach allows 
us to preserve the chaotic behavior as shown in [Fortuna et. al. (2001); 
Fortuna et. al. (2003)], in which the demodulated signal is compared with 
the original one. 

C.2 The CPPM Sonar 

Distance measurements based on sonars are usually performed by measur- 
ing the t i m e  of flight of an ultrasound wave propagating in air. 

The user can retrieve the distance d by measuring the time i? which has 
elapsed from the time at which the signal is sent to the time at which the 
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echo is received, by performing the simple operation: 

ct d = -  
2 

where c is the speed of propagation of sound in the air. 
I t  is clear that this simple operation mode has strong drawbacks in 

the case of multi-user scenarios. It is worth remarking that even a single 
vehicle is usually equipped with more than one sensor in order to span 
the operational space over a large angle, which makes almost any case a 
multi-user scenario. Although one may think of modulating the pulse train 
at  different frequencies, the multipath fading phenomena in a multi-user 
scenario can lead to relevant errors in the measurement, because of the 
distortion introduced. 

The sonar sensor (Polaroid Series 600) is driven by a continuous CPPM 
modulator. The output of the modulator is fed as input to the power stage 
of the Polaroid 6500 Ranging Module [Polaroid (1995)] in order to provide 
a suitable value of 400 V of amplitude to drive the sensor membrane. 

Exploiting the properties of correlation of chaotic signals, the cross cor- 
relation between the transmitted and the received signal should show a 
relevant peak a t  the TOF of the sound wave. Moreover, as the cross correla- 
tion between different portions of a chaotic signals is ideally zero, multipath 
fading and multi-scenario problems are avoided by adopting this approach. 

The experimental setup was built with a Polaroid series 600 sensor. The 
train of pulses was emitted by continuous CPPM driven by a Chua’s circuit 
evolving according to a double scroll Chua attractor [Madan (1993)I. The 
Chuals circuit has been implemented by using CNNs [Arena et. al. (1995)]. 

Experimental results related to a single measurement experiment are 
given in Fig. C.2, which refers to measurement of the distance of a target 
placed a t  75cm. 

Figure C.Z(a) shows the received signal in a time window lasting 200ms, 
which coincides with the window used for the cross correlation between the 
transmitted and received signals. The received signal is characterized by 
three components: the first is constituted by the highest peaks, correspond- 
ing to the transmitted peaks themselves, also received by the sensor, which 
is not inhibited during transmission. The smaller peaks are related to two 
sources: the first is the real reflected ultrasound wave, while the second is 
a reflected ultrasound wave coming from another sensor driven by CPPM 
relying on a further double scroll Chua attractor with different parameters. 
This last signal source has obviously been introduced to evaluate the per- 

(C.1)
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Fig. C.2 
between the transmitted and received signals. 

Experiment with a target at 75cm. (a) Received signal. (b) Cross correlation 

formance of the sensor in multipath fading conditions and in a two-user 
scenario. Figure C.2(b) shows the cross correlation between the transmit- 
ted and received signals. It clearly shows two large peaks. One of them 
is centered at sample 20000, corresponding to time origin; this refers to 
the fact that  the transmitted signal is entirely enclosed in the received one. 
The other peak refers to the time delay due to the time of flight. Other 
smaller peaks are present, evidently due to the multipath and multi-user 
condition. By evaluating the distance between the two largest peaks, a 
value of 73.48cm is estimated. 

The sensor has been characterized for measurements ranging from 5cm 
to 145cm, in 5cm steps. Three sets of experiments were carried out. The 
first refers to measurements performed using the sonar driven by CPPM, 
in a single-user scenario. The second refers to the same experiment, in the 
presence of another CPPM sensor located close to the sensor to  be charac- 
terized, in order to emulate the two-user scenario. The third, as a reference 
to evaluate the error committed, refers to measurements performed by a 
sensor driven by an original Polaroid 6500-Series Sonar Ranging Module. 
It is worth remarking that in this case, measurements of distances under 
40cm require peculiar techniques to damp the echo of the transmitted sig- 
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Mean 

nal itself which would lead to incorrect measurement. This is prevented 
by the constructor by introducing an interval of 238ms, when the sensor 
is inhibited. Figure C.3(a) and (b) gives the error committed and the dis- 
tance measured, respectively, versus the real distance. Table (3.1 gives the 
average measurement error committed in the three cases. To make a com- 
parison, the table has been worked out considering the range 40cm-145cm. 
As can be noticed, the error committed in the three cases is not affected 
by the modification introduced in the modulation scheme. This leads us 
to conclude that the CPPM approach allows distance measurements to be 
performed with an error comparable with that obtained through traditional 
modulation, despite the presence of another user, thus obtaining a better 
overall performance. Moreover, the CPPM approach allows us to perform 
measurements under 40cm without adopting any particular technique to 
damp the echo of the transmitted signal. 

Polaroid Ranging Module CPPM Multi-user CPPM 

2.29% 1.87% 1.84% 

1 6 0  .o 
1 4 0 . 0  

120 .o 
t 00 a 

60 .o 
60 .O 

4 0  .o 
20 .o 

Fig. C.3 
Measurement performed. 

Characterization of the sensor from 5cm to 145cm. (a) Error committed. (b) 
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The characterization of this type of sensor based on Chua’s circuit (im- 
plemented by CNN) chaotic encryption system is a further proof of the fact 
that CNN techniques are used in the bio-inspired approach from low level 
to high level control but not only: CNNs are introduced also for sensor 
implementation. 
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