Peter Smid

LM
LUSTOM

MeCros

I’rogramming resources
Fanuc I}ustom Macro B users

Library of Congress Cataloging-in-Publication Data

Smud, Peter.
Fanuc¢ custom macros: programming resources for Fanuc Custom Macro B Users / Peter Simd.

p. cm
Includes index
ISBN 0-8311-3157-8
1. Machine-tools--Numerical control--Programming--Handbooks, manual, etc. 2.
Macro instructions (Electronic computers)--Handbooks, manuals, etc. I. Title.

TJ1189.85925 2004

621.9°023--dc22
2004056987

Industrial Press Inc.
200 Madison Avenue
New York, New York 10016

Coppyright © 2005. Printed in the United States of America.
All rights reserved. This book or parts thereof may not be reproduced,
stored in a retrieval system or transmitted in any form without the
permission of the publisher.

Cover Design: Janet Romano
Managing Editor: John Carleo

10 9 8 7 6 6 4 3 2 1

1- FANUC MACROS

TABLE OF CONTENTS

el

Geaneral Intraduction

Review of G-codes, M- EUdES ancl Subpruqrams

System Parameters

Data Setting

Custom Macros

Probing Applications .

Overall Vieww

Macro Programming

Macro Option Check .

What is a Macro Programming? .

Typical Features .

Main Program with M-‘:’ICFID FEEturES ;

Using Macros .

Groups of Similar Parts

Qffset Control.

Custom Fixed Cycles .

NMonstandard Tool Motions

Special G-codes and M-codes

Alarm and Message Generalion .

Replacing Contro! Options

Hiding and Protecting Macro F’rngrams

Probing and Gauging.

Various Shorteuts and Utilities

Skills Requirements

—h
O OO 00| 0| D~ M | & & & Kl LRI IR L

2 - BASIC PROGRAM CODES 11
Preparatory Commands 11
Default Settings . . 11
ModalValues . . . P T PR, a“_a. A
Programming Format 12
Miscellancous Functions . 12
Programming Format . 12
M-cades with a Motion . 12
Custam M-codes 12
Reference Tables 13
G-codes for Milling., 13
Three-Digit G-codes. 15
M-codes for Milling 16
G-codes for Turning 16
M-codes for Turning 19
Standard Program Codes. 20
Optional Program Codes . 20

Xi

_}_di Table of Contents

3 - REVIEW OF SUBPROGRAMS 21
SubprogramExample - MM L. 0 0 L h w . s e e s e R

RUNS O SUDDIOEERIIIE o o 4 x o o n & o s w m & e s e o e e s
Subprogram Repetition L L . 4 e e s e s e x s s 4 .27
Subprogram Nesting . . o s i e v ok v a6 v s e s w b e a e e e v B
Subprogram Documentation+ . .+ 29
Subprograms vs. Macros. 0. e e e 30
UGS FONUIINES.: . -+ « & & 5 v s o v e wm w w s w x w w w2k
CNCLathe Applications + . « v « 4o v s o 5 s o« 5 o« o ¢ » 3
Subprogram Development 32

4 - SYSTEM PARAMETERS 33

SavingParameters. v s s x s w s s s s 4 e w s s 4 . . 38
BackingUpParameters + « o v & & s & « s « « 34
Paramataridentification oo . . a4 s oa s owo.o.o.o. 0. . 3B
Numbering of Parameters ¢ ¢ & s « & s« s e s s s . 20O
Parameter Classification o 4 . i 4 e e e ey e e ., . 35
Parameters GIOUDING . . . v « v o v o o b e a4 e e e s e s WD
ParameterDisplay Soresn « & o o o o & o 2 & = « = 2 » 3
ParameterData TYDRe8. . . . + + ¢ o ¢ o o o o s o o s & o o s o s o 3
Bit-TypeData Type . . . & « + &+ « o o & s 3 & o o o o o« + 32
Relationship of Parameters.« .+ « . .+« . . 40
Byl Datd TYD® . i ¢ < v v s e s ow v 6w s b e w & @ s e)
Word DMaTypl. . « « &+ & i s« % & % & 2 & % & & ® & o A

S WordDaA TV . . & + v 5 o % % s % & w @ % o w @ & w &g
AxDOtRIvEe . . . < i & i 6 o5 i e ¥ o @ v v Fow v RS
Important Observations.+ . « « .« o+ W 4 44
B N 5 5 o« v 5 % koA e B fen % e cm om deE B . ook, m % g 3 N
Setting and Changing Parameters+ . + .+ . . @
Protectionof Paremeters+ 46
Battery Backup+ . « . ¢ a4 s s e a4 w . a . . AB
ChangingParameters ¢ + « &« & o o s s « «» @
SystemDefaulls i 4 i e e s w6 s v e e s a2 B
Default Values Settings « « +« 4w 4w 4 « .+ 4 . ., 4B
5 - DATA SETTING 49
InputofOffsets+« . . + 4 . 4 4 « « .« 48
DateSeftingCommand < + + « « ¢« o v s 0 e 0w o« o« s . B0
Absohta Mods L e g e g, ., . B0
IncrementalMode s s v e . s s s s s s OO
WorkOffsets. & o 2 o 3 s s 5 5 5 5 s s 5 » s = s » s s » Qi
Standard WorkOffsetlnput.+« + .« « « « « . « Bl

Additional Work Offsetinput « + & « « 5 « s 1 « + o« 2
External Work Offsetlbnput .« . «+ + « « &+ &« s + « » « 22

Table of Contents xiii
Offset Mamory Types ~-MIIING « v o « + o o v s v « » « b3
GeometryOffset+ . .+ - v 53
Wear Offset . . T S R e e e e i T
Which Offset to Update? b w E ke e o
MmOty TVDB A, v v o+ s s e s v % s s % s a « DB
MemorvyTypeB. e s e w w s s e e wm s e & a8
MO TYER L : & o & o & 4 ¢ § w & @ v s o & % & w w wn 57
Memory Typesnd Macros « « v + + o » 4 s s s = a1 o« 87
Offset Memory Types-Turning. + +« « 4 « +« . +« + . . 58
AdjustingOffsetValues « . « +, 589
Absolte Wlode BB
IncrementalMege . ., L . A S VRN S PR
Taool Offset Program Entry T TN e
L-Address . . — = PER O SR - . |
G10 Oftset Data Settmgs Mlllmg Ew aples T
Valid InputRange BT RN R TR T
Lathe Offsets, N R S T VR T T R T R S R S, -
P-Offset Number . . P TR : 63
Tip NumberQ . . i @ B om= o= g o g s us R
(10 Oftset Data Settmgs Turmng Exarnp . 4 i G ok % o B O F H R . ok
DataSetting Check M MDI . . . &« & ¢ 4 v v o o & « o s o 5 o s +» o+ o OB
Programmable ParameterEntry 4+ 4w « + . . b5
Madal G‘ID e il Let |10 S - -
N-address iInGI0OLSOMode L L. B2
P-address in G10 | 50 Mode PR R T R SR S R R . 67
R-address n G101S0OModes &7
Frogram Portability . . . e k% E G om A T G B R e B B E B o b B B AR
Setting Machine Axes to Zern e B = o, o8 oo a5 e o S ae g Ve BE o 2 S S
Bit Tvpe ParameterExample v o + +« « . - 10
Differences Between ControlModels 12
Effectof BlockNumbers L e . . D
Block Skip . . . e B GE B F G BA g @ A H.F 5 g8
6 - MACRO STRUCTURE 73
T NR e D AR I B - T R i B R - T i - T R R T A -
Variables. . . S R . |
Functions and Cﬂnstants R T T T T .
LOGICA FUNCHIOMB. . . . &« . &+ % + o & % 4« s o 4 o 2 5 s o 24
DefiningandCallingMacros. « . « « v v . ., 75
MacroDefinitony . .15
e O S S P S Y R S T O
Arguments . . o W@ e 8w W W% % e W i @ m @ w g m W
Visual Hepresentatmn G W @ e Ey W s & R % i w w w w @ a 48
MacroFrogramNUmbers « . « « +« s s s« s s = s s s s s s s 18
Macra ProgramProtection 79
SoningDenniioNe . . . v . o« v e s v w e x s s e s s s s 19
Program Numbers - Range Q00010 Q7999 B0
Program Numbers - Range O8000t0 08899 + . . . B0
Program Numbers - Range O8000to Q9989, , &
Program Numbers - Range OS000 to 09049 i e e % & % & 3 He

anferenceBetweentheOBUDﬂandDQO{}DPrugramNumberﬂ i % v % & % ¢ a3 N

Xiv Table of Contents

7 - CONCEPT OF VARIABLES g3
Tvpes OTMBCTO VANRBDIEE « . « « « + s« o 5 « =« = = + « B8
Definition of Variables, . RE— 84
Calculator Analogy « v & s .« . = x s s 1 s« 4 . B4
Nadabla D&t . . o o o oo o o e oo o o o e oo o oo B
RealNumbersandintegers. « + v « 4+ « + s « +» . 85
VariableasanExpression <, Bb
UJsageof Variables & i 4 i i e e e s e s . . BB
Dacimal Polint Usage+ « + v « 2 4+ « o s s+ + « B2
MetricandEnglishUnits & +« « + « +« + « + . 88
Least Ingrement ., . . o m e % Wk G % m a w a w BN
Positive and Negative Vanables i % R G E e § B R 3 . ow o oa o
SN EITOrE .. i s v 6 & s & N w3 % 0 e & W @ 3 @ & = W
Restrictions . : ‘ . s = . - . : : ik e gl = . . . S0
Custom Machine FFalures S S P R A S S P S N S SRR 7
8 - ASSIGNING VARIABLES 93
HOSTR el 1 P S S R S O S R R S T T R A R S ST |
DefiningVarlables v v s+ s & s+ v 2 « 2 » =« 2 93
Clearing Local Variables - U T S - = S - W - - N~ R S
Assigninglocal Variables + i . 4 s s v w4 a4 o« 94
Assignment List 1-Method+ . .+ . . . 94
Assignment List2-Method2+ . .+ . . . 85
Miasing Addresses+« « s o« o« e 3 % » w » 2 W
Disallowed Addresses, 98
SimpleandModalMacro Calls « ¢« & s i s s s o . 98
Selection of Variahles . . P S T R S S © S S S R T TR |
Main Program and Local Variablas CE e om B e e O B B E w3 OB o4 woE e
Local Variables and Nestinglevels« .« . . 105
Common Variables R S R R S N S AR S SR RS | |
Volatile and Nonvolatile Memory Grﬂups i & o ¥ o ¥ oam owm & % 5 o % 108
Input Rangeof Variables . 107
Qut-of-RangeValues + + « + v « o« o« 4 . .07
Calculator Analogy. . e T T |
Set Variable Name Function SEWN s e W OB B W i % W w s ¥ s w e 108
Protectionof CommonVariables + + .+ 108
9 - MACRO FUNCTIONS 109
FunctionGroups + « + « + e 4 4 4w e e e e .. 109
Referencing Variables+ 110
Vacant or Empty Variables . G & @ % % @ % 5% = # @mm # ¥V
Axis Motion Commands and Null Varlablaa G % % & W B ow % % W o =% x
Terminology - « . « « + & 5§ s e % ow v ow o ow s oa s s 3 12
ArithmeticFunctions. + +« « « + « 4« 4 4+« w4« o+ .+ . M3
Nesting. . . T T
Arithmetic Operatlnns and Vacant Vanables e W o W s ® & w @ w ow VIl

DivisionbyZero + .+ + +« « + .« +« <« . M5

Table of Contents XV
Trigonometric Functions . 116
Conversion to Decimal Degrees 116
Available Functions 116
Rounding Functions . : . . 117
Rounding to a Fixed Number r::f Dec:mal Places ; 119
FUP and FIX Functions 121
Miscellaneous Functions . 122
SQRT and ABS Functions . 122
LN, EXP and ADP Functions 124
Logical Functions . 124
Boolean Functions . 124
Binary Numbers Functions 125
Boolean and Binary Examples. 125
Conversion Functions ; : 126
Evaluation of Functions - Special Tast 126
Order of Function Evaluation . 128
Approach to Practical Applications 129
Using Local Variables . 129
Using Common Variables . 133
Speeds and Feeds Calculation 134
10 - SYSTEM VARIABLES 137
ldentifying System Variables 137
System Variables Groups 138
n ite Variabl . 138
Displaying System Variables . 138
Systemn Variables for Fanuc Series 0 . . 139
Fanuc Model 0 Compared to Other Models 140
System Variables for Fanuc Series 10/11/15 . 140
System Variables for Fanuc Senes 16/18/21 . 141
Organization of System Variables, 144
Resetting Program Zero. 145
11 - TOOL OFFSET VARIABLES 147
System Vanables and Tool Offsets 147
Tool Offset Memory Groups 148
Togl Offset Memory - Type A . 148
Tool Offset Memory - Type B . 149
Tool Offset Memory - Type C . 149
Tool Offset Variables - Fanuc 0 Controls 150
Milling Control FS-OM . 150
Turning Control - FS-0T . . 151
Tool Offset Vanables - FS 10/11/15/ 15’1 BJ21 fu:ir Mllllng 152
Assignments tor 200 Offsets or Less - Memory Type A . 152
Assignments for 200 Offsets or Less - Memory Type B . 163
Assignments for 200 Offsets or Less - Memory Type C . . 154
Assignments for More than 200 Offsets - Memory Type A . 155
Assignments for More Than 200 Offsets - Memory Typa B . 156
Assignments for Mare than 200 Offsets - Memory Type C 157

xvi | - N B Table of Contents

Tool Offset Vaniables - FS 10/11/15/16/1821forTurning ., 158
Tool Setting . . e e e 158
Assignments for 64 Offsets or Less Memmry Type A i s owe g e a e & ct: SRR
Assignments for 64 Offsets or Less -Memory TypeB 160
Assignments for More than 64 Offsets - Memory Type A 181
Assignments for More than 64 Offsets - Memory TypeB 182

12 - MODAL DATA 163

System Variables forModalCommands, . . 163
Fanuc 0/16/18/21 Modal Infermation 1863
Fanuc 10/11/15 Modal Information, . . L L . 163
Preceding and ExecutingBlocks, 164

MoSH G-COBE . & & & v owoa e a e a g o o o o o ¥
Fanuc 0/16/18/217o o1es
Fanue WOV S. . L e R

oavingandRestoring Datd« + & s+ s o« o+ e 2 s 4 s s« = 2 = 187
savingModalData,. 167
RestoringModalData+ 168

Other Modal Functions. 168
FanUC QA VBN 2 . e m
FanUC TO/1T/IB. . . . v c i et e s e e e e a4 e e . e O

13 - BRANCHES AND LOOPS 171

Decision MakinginMBEros. &+ « v« v s 2 4 v v « v v « s .1

|F Function . . A S-S - S T W T~ A -~ W - 172
Conditional Branchlng G M W @ & % e @ ai om _wi o 6 ve & w @ Vi
UnconditionalBranching 1713
IF-THEN Option i TR T T S T T T A |
Single Conditional Expressmns v % @ e @ e ® 9w & @ ow % 9w & @ % Y5
Combined Conditional Expressions 178

LONCBDEOFLOOBE : -« a2 3 6 . 5 b W G 4 W B i wea R E A G b e . BT
SN Process . . .« .« « s 2 a4 s s e s v s s e e v e w » Y7
MR FIOCoR8 . . v v o e s e e w w w % w e % w w w w VBE

WHILE LOOD SAruchure 2 s o+ % 4 s+ & s 4 2 s x a2 = = a2 a = = 109
Single Level Nestingloop. 179
Double Levelloop. 180
Triplelevelloop . 180
General Considerations . O 1 S S S S S N Y VS S ST RS |
Hestnictions of the WHILE Lmop o @ m e w my ® w ® wm w u e w w w38

Conditional Expressions and Null Variables, . . . 182

Formmuia Based Macro-oneSieve . . . L . L Lo oo.ooo. . 184

ClearingCommon Variableg« . + « ¢« v + s o 3 o« « + o« « - 188

14 - ALARMS AND TIMERS 187

Alarms in Macros e w187
A NUmMDEE, . s s v s e wx s s w & s s s & = i = JBI
RIBNIVIOBSIOE & v & & & % & & & & v % % ‘& % &« & &« = 187
Alarm Format . R R R R R - R S - -
Embedding Alarm in a Maﬂrn . B O E o B % B o3 e e owm o ow %= ImH
Resetting an Alarm . . T T R N R R |

Message Variable - Warning, Nutanmarm. R T e

Table of Cnntents_)

xvii

IimersinMacros ., FARETRIRE I | |
Time Information . 191
Timing an Event 191
Dwell as a Macro 192

15 - AXIS POSITION DATA 193
Axis Position Terms . 193
Position Information . 194

16 - AUTO MODE OPERATIONS 195

Controlling Autumatm Operations 185
Single Block Control . 185
M-S-T Functions Control . . 196
Feedhold, Feedrate, and Exact Check Cﬂntrml 197
Example of Special Tapping Operation 168
Systems Settings : 199

Mirror Image Status Check. . . . 199
Interpreting System Variable #300? ‘ 200

Controlling the Number of Machined Parts. 202

17 - EDITING MACROS 203

Editing Units 203

Program Comments . . . 203

Abbreviations of Macro Functmns 204

18 - PARAMETRIC PROGRAMMING 205

What is a Parametric Programming ? 205

Benefils of Parametric Programming 206
When to Program Parametrically . 206

Planned Approach to Macro Development. 207

19 - FAMILY OF SIMILAR PARTS 209

Macro Development in Depth - Location Pin 209
Drawing Evaluation 210
Objective of the Macro . . . 210
Part Setup, Tooling and Machi nlng Methnd . 210
Drawing Sketch 211
Standard Program . 211
Identify Variable Data . 212
Creating Arquments 215
Using Variables 216
Writing the Macro . 217
Final Yersion 218
Macro Improvements . 220

20 - MACROS FOR MACHINING 221

Angular Hole Pattern - Version1 . . . 221
Variable Data for Angular Hole Pattern 223

Angular Hole Pattern - Version 2 . 224

xvii_i | o | | Table of Contents

FIAMMa HOI8 PRSI . o« : o 5 2 o w s e a & & i & a a4 g = = . I8
Variahle Dala for Frame Hale Pattern .~ .~ .. e 227
Variable Data for Bolt Hula Clrcle Paﬂarn i 4 & B % B & £ 3 E a3 4+ a Am

Arc Hole Pattern . . A R S R . .
!ﬂlﬁlllﬂ_ﬂﬂLalQLB_G_ﬂQluHEm R T T T R S T A -

Circular Pocket Roughing . . . e U T e 0 oot o Sa B e et ooat . o S
Variable Data for Circular Pocket Hnughmg R T T R R T T T ¢
AmountofStock Leet L . e e, 238

Circular Pocket Finishing e, R S B & TR ow R aarwmos . D
Variable Data for Circular Pocket leshlnq P © 1

Siot Machining Macro . . . W EEE E B EFE T e e |
Vartable Data for Slot Machmmq T B - T B T SR |

Circular Groove with MultipleDepth. 247
From SubprogramstoMacros 248
Macra Version Development w 249

RoectangularPocketFinishing + « « + +« & « s + s « s s« » «» 401

21 - CUSTOM CYCLES 255

DOBEIOVEIE . i ¢ v v i v i & e e w e % w F w & W a & e w6 v e
OptionsAvailable+ + + « ¢+ « o« o &« « + « - 2050

S-cooeMNacroCall s e e e e e s s s oaoao.o. o . £08

M-functions Macro Call e, 258

Gi13CircleCultingOveld, . . . v ¢ « ¢ v ¢ v e v v i s v v s a s s « 280
Macro Call - Normal . . 5 ¥ % B @ 4 & @& & @ & 3 & F 4 &
Macro Call - as a Special Cwle v x mr w m v om aw B ok & s o oa wm = B2
Detailed Evaluation of Offset Valye o & & o e e e . . 264
Counterboring Application+« + . « . . . 6B

22 - EXTERNAL OUTPUT 267

Port OpenandPortCloseCommands+ . + « . . . 267
DataQutput Functions + « + « 4+ + % 4« + & &+ 4« + .+ . 208

BPRNT FunctionDescniption+ + .+ + 4+ + .+ . . 268
DPRNT Function Description . . R T
Parameter Settings - Fanuc 10!11f12!15 SR B OE B B W O3 R % % O A Wmia o 288
Metric vs. lnch Format, . . N Y S W S R VR . ; | |
Parameter Settings - Fanuc 16!1&21 MR R R EE R T EE
Structure of External Qutput Functions u i a e . 272
O ExBMPIes . . .« « ¢ ¢« v 4 i d s w e e & s e s v e« &1
BlankQutputline+ « .« + « 4w o« 4w w w a . ., 274
Columns Formatting + +« + « « 4+ o« . . . 274
DPRNT Practical Examples. + +« « « v « w v v « w « + . 274
DME . s & 5 s owm o= o o B % ue % s & o o omu owm o o# ue a AEE
Time . dOE e w8 W % W m ok % @ & @ 0w W % & e a &l

WurkOﬁsel...........,.........2?4

Table of Contents XiXx

23 - PROBING WITH MACROS 275
WhatisProbing 7. 5 o & 4+ « 4 « & 5 o 5 o 3 s s o s o+ o £I5
Tauch Probhes | | i ———— — ki ——it
Probing Technology Tnday W L W W e e e e
Probe Calibration 217
Feedrate and Probing ACCUTEEY v v o & & « s « o « o 277
Probing Deviceson CNC Machines 278
In-Process GaugingBenefits, . .,, ., 278
TSR OFPFIaDBE « & &« 5 ' & % & % % % & 9% 5 . % § ¢ & 4 & ¢ % & 3 298
e s e - P ¥ i "
Prmoba Salsction Cotenay ., e e 48
Machined Part . . . “H R S R R N - >
Control System Capabllltles RS SN~ S S < S-S . . |
Expected Tolerances . . e gn o5 2% L o o A o sh Df o L oo GO
Additional and Optional Features e | - |
Associated Costs . . . A T O S Ty S .. 280
CNC Machine Probe Technnlngy s & O % 3 Wk e m G b ow a3 A a e
Optical Signal Transmission v v w287
Inductive Signal Transmission+ . .+ « .+ . . . 282
Radio Signal Transmission+ . . .+ .« . . 282
IN-Process GaUGING & v 4 v e e s e v e e e s e e . o« 282
EeaturestobeMeasured o . . e, 288
Center Location Measurement+ .+ . +« + . . . 28B4
Measuring External or InternalWidth. 286
Measuring Depth e e e e s s e e s e s . 287
Measuring External Diameter ., 287
Measuring Internal Diameter 287
MeasuringAngles.+ . . . +« .+ . . . 1288
ChangingofSetValues 1288
CalibrationDevices « +« + +« v « 4 4w + v « « . . 288
Calibrating device-Typet, 288
Calibrating device -Type2 + « +« +w '« 4« 4w +w . . 288
Checking the CalibratiocnDevice, 289
Centering MacroExample W W 289
Probe Length Calibration + . « « « v . .. MN
SkipCommandG31 + .+ v v v e e e e, 293
24 - ADDITIONAL RESQURCES 295
Limitations During Macro Execution. W v w4 295
SOOIk SIING o« i v s s i F e % e & % E s s § % 3 49
HBlock Number Search L : 2895
BIoCk SKIDFURCHION v v v s e i e e e e e e e e . aBb
MIRCIDRIBEON . @ = & « « & i w s % & & » 3 4 3 4 & & i 498
Te 8 e A R R A R R N R - R - -
(ontrol Reset . . . 296

teedholdSwiteh, 296

XX

Knowledge for Macro Programming.

General Skills . :

Manual Programming Expenenca

Math Applications .

Setup Practices

Machining Practices .

Control and Machine Operatmn
Complementary Resources.

Industrial Press, Inc.
Internet.

Practical Prograrnmmg Appmach
Macro Programming Tips .

25 - MACRO COURSE OUTLINE

Macro Course Outiine
Closing Comments

Index

WHAT'S ON THE CD-ROM ?

Table of Contants

297

297
298
298
298
298
298
299

299
299

299
300

301

301
306

. 307

313

FANUC MACROS

L

This handbook has been developed as a resource material for CNC programming at its highest
level, using Fanuc and compatible Computer Numerical Control systems (CNC systems). Tech-
niques described in the handbook are still part of the manual programming process, in the sense
that no external CAD/CAM software or hardware is required. Although the main topic of this
handbook is application of Fanuc Custom Macros in CNC programming (known as Fanuc Custom
Macro B), several related topics have been added, mainly for coherence and comparison, but
mainly as a refresher of some basic CNC programming skills required as a prerequisite.

The subject matters deal with several major topics, and the handbook 1s organized in the sug-
gested order of learning. More experienced users can start at any section within the handbook:

General Introduction
Review of G-codes and M-codes
Review of subprograms

g
3
:
%

Probing applications

Numerous examples and sample programs are used throughout the handbook. Their purpose is
to serve not only as practical applications of the techniques explained, but - for many of them - as
the basis for ready-to-run macro programs.

Although all the topics covered in the handbook are critical, they are discussed here for the sin-
gle purpose of learning one subject, commonly known as Custom Macros, User Macros, Fanuc

Macros, Macro B, or - just Macros. Several non-Fanuc controls also offer their version of mac-
ros, for example Fadal and Okuma, but only Fanuc macros are covered in this handbook.

General Introduction

This is the general introduction to the subject of macros. Its purpose is to make you aware of
what macros are, what related subjects are important, and to identify several other helpful items to
get you started in this important, exiting and often underestimated, field of CNC programming.

Knowledge of macros is becoming more and more essential, as companties large and small look
towards more efficient ways of CNC program development, particularly for certain type of parts.
Although CAD/CAM programming systems have become very popular and are on the rise, they
do not and cannot always replace macro programming, for various reasons. Macros often serve as
a special solution to special requirements.

The following brief descriptions provide some ideas of major subjects covered in the handbook.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

FANUC MACROS

Typical Features

Typical features found in Fanuc macros are:

Trigonometric caiculations
Variable data storage
Logical operations
Branching

Looping

Error detection

Alarm generation

Input and Qutput

S W S R Sy SR S Ry Sy &

Arithmetic and algebraic calculations

... and many other features

A macro program resembles a standard CNC program to a certain extent, but includes many
features not found in regular programming. Essentially, a macro program is structured as a
regular subprogram. It is stored under its own program number (0-), and it is called by the main
program or by another macro, using a G-code (typically G65). However, in a very simple form,
macro features can be used in a single program as well, without the macro call command.

Main Program with Macro Features

Here is a simple example of a normal part program that cuts four slots (roughing cuts only):

N1l G21
N2 G17 G40 G880

N3 G90 GO0 G54 X25.0 Y30.0 S1200 MO3

N4 G43 Z2.0 HO1 MO8
N5 GO1 Z2-5.0 F100.0
N6é ¥Y80.0 F200.0

N7 GO0 22.0

N8 X36.0

N9 GO1 Z-5.0 F100.0
N10 ¥Y30.0 F200.0

N1l GO0 22.0

N12 X47.0

N13 GO1 2-5.0 F100.0
Nl14 Y80.0 F200.0
N15 GO0 22.0

N16 X58.0

N17 GO1 Z2-5.0 F100.0
N18 Y30.0 F200.0
N19 GO0 22.0 MO9S
N20 G28 Z2.0 MO5

N21 M30

Note the repetitive use of the two feedrates:
F100.0 for plunging and F200.0 for slot cutting.

(SLOT 1)

(SLOT 2)

{SLOT 3)

(SLOT 4)

+-

X25.0

50

SLOT DEPTH = 5 mm

Figure 1
Simple job to illustrate feedrate as a macro function

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

FANUC MACROS 9

Replacing Control Options

Fanuc controls offer many special features that are only available as an option. Typical optional
features are Scaling Function, Coordinate System Rotation, Polar Coordinates, Additional Off-
sets, etc. With macros, you can develop a program performing exactly the same function what
these options offer, without the extra cost, which often is quite high,

Hiding and Protecting Macro Programs

There will be macro programs that you create, than use them over and over again. After all, that
1s the main reason for their development in the first place. If something goes wrong with the
macro in the control system, for example, an accidental deletion, its loss would cause a significant
problem to the production process at that point. Macros can be protected within the control
software, so they cannot be accidentally deleted or changed without forced additional steps.
Macros with sensitive contents can also be hidden from the directory display.

Probing and Gauging

Probing and gauging are a very important areas of using custom macros. A section on probing,
with examples, is also a significant part of this handbook. Using probes and similar devices,
custom macros can be utilized as an ‘on-machine mspection station’, using a method commonly
known as in-process gauging. Measured values (actual values) can be compared with the expected
values (drawing values), and various offsets can be automatically adjusted.

Custom macros used in probing can be applied to different types of drawing specifications, such
as corner locations, center locations, angles, diameters, depths, widths, automatic centering, bor-
ing measurements, and many others,

Various Shortcuts and Utilities

Many small utlity programs can also be written into a macro form, to make the programming
job (and the operator's job) easier and safer. Utilities are usually small programs that do not actu-
ally machine a part, but are used for certain common operations. Typical applications may include
safe tool call, 1able or pallet indexing, management of tool life for unmanned operations, detection
of worn out or broken tools, redefining the program zero (origin) for uneven castings, boring jaws
on a lathe, counting the parts already machined, automating part-off operations on a CNC lathe,

automatic tool changing, and many other possibilities. All these programs share a common feature
- they are very effective shortcuts for repeatable activities that occur in CNC programming.

The field of macro applications is very extensive. In addition to the many possibilities already
described, macros can be used to check spindle speeds, feedrates, and tool numbers, they can con-
trol the 1/O (input and output) of data, check and register the active G-code command in a particu-
lar group, and disable the feedhold feature, spindle and feedrate overrides and a single block
operation. The applications are virtually endless, and depend not only on your particular needs but
your skills as well,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

BASIC PROGRAM CODES 13

Reference Tables

The following tables list the typical preparaiory commands (G-codes) and miscellaneous func-
tions (M-codes). Both milling and tuming applications are included and the typical default prepa-
ratory commands are marked with the ¢ symbol (subject to change by the vendor or the user).

In case of discrepancy between the included tables and the CNC machine tool manual,
always use the codes listed by the machine tool manufacturer

G-codes for Milling

The following table is a fairly comprehensive reference listing of all standard as well as the most
common G-codes (preparatory commands) used for CNC milling programs (CNC milling ma-
chines and machining centers). All inter-dependent G-codes belong to the same group number and
are modal, unless they belong to the Group 00, which identifies all non-modal commands:

G-code Group Description
GO0 01 Rapid positioning mode
Go1 01 Linear interpolation mode &
G02 01 Circular interpolation mode - clnEkwi's-c'd_irectinn
G03 01 Circular interpolation mode - counterclockwise direction
| GO4 00 Dwell function (programmed as a separate block)
GO7 00 Hypothetical axis interpolation
G09 | 00 Exact stop check for one block
o G10 J 00 Data setting mode (programmable data input)
61 | 00 | Data setting mode cancel -
G15 17 Polar coordinate mode cancel ¢
. G16 17 i Polar coordinate mode
G17 02 XY plane designation L
G18 02 ZX plane designation
G19 02 YZ plane designation
G20 06 English units of input
G21 06 Metric units of input
G22 04 Stored stroke check ON &
G23 04 Stored stroke check OFF
G25 25 Spindle speed fluctuation detection ON
G6 | 25 | Spindle speed fluctuation detection OFF &

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

BASIC PROGRAM CODES

17

| G-code types cannot be mixed ! I

Rapid positioning mode

G01 GO1 GO1 01 | Linear interpolation mode L

G02 G02 G02 01 | Circular interpolation mode - clockwise direction

G03 G02 G03 01 | Circular interpolation mode - counterclockwise direction

G04 G04 G04 00 | Dwell function (programmed as a separate block)

G09 G09 G09 00 l

G10 G10 G10 00 | Data setting mode (programmable data input)

G11 G11 G11 00 | Data setting mode cancel

G18 G18 G18 16 | ZX plane designation 4

G20 G20 G70 06 @ English units of input
. G21 G21 G71 06 | Meitric units of input

G22 G22 G22 09 | Stored stroke check ON &
F G23 G23 G23 09 | Stored stroke check OFF

G25 G235 G25 08 | Spindle speed fluctuation detection ON

G26 G26 G26 08 | Spindle speed fluctuation detection OFF b
| 627 | G2 | G21 | 00 | Machine zero return position check

G28 G28 G28 00 | Machine zero return - primary reference point

G29 G29 G29 00 | Return from machine zero

G30 G30 | G30 | 00 | Machine zero return - secondary reference point

G31 G31 G31 00 | Skip function)

G32 G33 G33 01 | Threading function - constant lead thread

G34 G34 G4 01 | Threading function - variable lead thread

G35 G35 G35 01 | Circular threading CW

G36 G36 G3i6 01 Circular threading CCW or:

G36 G36 G36 00 | Automatic tool compensation for the X-axis

G37 G37 G37 00 | Automatic tool compensation for the Z-axis

G40 G40 G40 07 | Tool nose radius compensation mode cancel ¢

G41 G41 G41 07 | Tool nose radius compensation mode to the left

G42 G42 G42 07 | Tool nose radius compensation mode to the right

G50 G92 G92 00 | Coordinate system setting (tool position register) and / or:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

REVIEW OF SUBPROGRAMS

To review the subject of subprograms, you have to understand first what a subprogram is, what
it can be used for and what are its benefits. Comprehensive knowledge of subprograms is essential
for macro program development.

In CNC programming, a subprogram is very similar in structure to a conventional program.
What makes it different is its content, Typically, a subprogram is a separate program containing
only unique repetitive tasks, such as a common contouring toolpath, a hole pattern or similar ma-
chining operations. For example, the task is to program a certain pattern of holes, in which the
holes have to be spot-drilied, dnilled and tapped. In standard part programming, the XY point co-
ordinates for each hole will have to be calculated and repeated for each tool, using the appropriate
fixed cycle. In a subprogram, the hole locations can be calculated only once, then stored in a sepa-
rate program (subprogram) and retrieved many times, as needed, for different operations using
different fixed cycles.

A subprogram is always called by another program (main program or another subprogram).

| Subprogram must only contain data common to all parts or operations I

Subprogram Example - Mill

To illustrate the concept of subprograms with a practical example, a very simple pattern of five
holes is shown in the following illustration - Figure 2:

et = w '
M6 TAP 16 16 ‘-.._B.—| Figure 2
_\ Sample drawing for subprogram
b exampie - mill application
O
H4 H3

19

19

21

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

REVIEW OF SUBPROGRAMS 25

01002 (5 HOLE LOCATIONS SUBPROGRAM - VERSION 2)

N101l X7.0 ¥7.0 (H1)

N102 X38.0 (H2)

N103 Y45.0 (H3)

N104 X7.0 (H4)

N105 X23.0 ¥26.0 (H5)

N106 GBO GO0 Z25.0 MDS (CANCEL CYCLE AND CLEAR)
N107 G28 2Z25.0 MOS (Z-AXIS HOME RETURN)
N108 MSS (SUBPROGRAM END)

&

Do you like the program better than the previous version? In a strict technical definition, there
is nothing wrong with the program - it will work well as is. Yet, there is a problem of different
kind - the program uses a structure that many experienced programmers should and will avoid.
Although the program itself is somewhat shorter, it is also much harder to interpret. Look at the
reasons. When the subprogram is completed, the processing returns to the main program. Study
the main program and you will see that it is impossible to tell whether the fixed cycle had been
canceled or not. Also difficult is to see what other data may have been passed to the main program
from the subprogram. You have look deep into the subprogram to find out these important details,
which may be many printed pages away from the main program. In conclusion, while the shown
Example 3 is correct, it is definitely nof recommended to be used, because of its poor structure.

Rules of Subprograms

From the last two examples for the five holes, you can see how a subprogram is defined, how it
is ended and how it is called from another program. In a summary, tucre are two miscellaneous
functions associated with subprograms:

Subprogram call (followed by the subprogram number)

Subprogram end

The M98 function must always be followed by the subprogram number, for example,
MS8 P1001

The subprogram must be stored in the control system under the assigned number, for example,
as Q1001. The miscellaneous function M99 1s usually programmed as a separate block - and also
as the last block in the subprogram. This function will cause the transfer of the processing from
the subprogram back to the program it originated from. That may be the main program or another
subprogram.

The end of record symbol (the % sign) follows the M99 function, the same way it follows the
M30 function in the main program. The % symbol represents a flag to stop transmission of the pro-
gram, typically in DNC mode. When the processing returns to the program of origin, it will al-
ways be to the block immediately following the program call. For instance, look at the earlier
Example 2.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

REVIEW OF SUBPROGRAMS 29

START _—
! ™ —3
00001 01001 01002 01003 :::M subprogram
(MAIN) (SUB) (SUB) (SUB) ng
[M98P1001}- l l
| M98P 1003}
l M98P1002 [—
Mo | T Lk
M99 % MO9S
+ % -
END
START —
' v [3 —3
00001 01001 01002 01003 01004 | Fourlevel subprogram

(MAIN) (SUB) (SUB) (SUB) (SUB) nesting

I
lmsapl1 003 l

MS8P 1001 -
| M88P 1004
I [mgsP1002H I——— .
M30 l v MS9 +
. — M99 L pmog % — M99
v % % %

END

Subprogram Documentation

Any complex part program (subprograms and macros included) should always be well docu-
mented. Documenting CNC programs has been largely ignored by many users, often because of
the perceived need to do a job fast. Although somewhat forgivable for simple and easy programs,
the practice of nor documenting programs is definitely not acceptable for subprograms and is also
not acceptable for macros. Good program documentation is the key part of any CNC program de-
velopment, Look at the schematic drawings of the four levels of subprogram nesting and you will
sece how complex the program can become with each increasing level of nesting. A good docu-
mentation will help the user in orientation and program 'decoding’, therefore becomes a manda-

tory part of the programming process.

For both, the subprograms and macros, the program documentation should be internal as much
as possible. This can be achieved by including important comments in the program body (main
program, subprogram, or a macro). Program comments are typically enclosed in parentheses, for
example, as (DRILLING HOLE NUMBER 5) . Provide only those comments that are relevant.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4 SYSTEM PARAMETERS

The machine related information that establishes the connection between the CNC system and
the machine tool, is stored as special data in internal control system registers, called the system
parameters, or control parameiers, or just CNC parameters. As an English word, its meaning is
oriented towards mathematics, and is defined in a rather fancy sentence - ‘A parameter is a quan-
tity which may have various values, each fixed within the limits of a stated case’. The sentence
shows that the dictionary definition is right on for the purpose of defining parameters for a CNC
system. Do not confuse parameters of the control system with the method of programming called
parametric programming - except linguistically, they are not related. If you are a part program-
mer with limited experience, you should not be concerned about system parameters too much.
Their original factory settings are generally quite sufficient for most work.

For specialized work like macro development, with all its related activities, such as probing and
gauging, automatic offset changes, special methods of input and output, etc., a good in-depth
knowledge of the system parameters is extremely important. There are hundreds of parameters
available for any control system, and the majority of them you will never use.

Parameters are critical to the CNC machine operation - be careful when working with them |

What are Parameters 7

When the machine tool manufacturers design a CNC machine, they have to connect it with the
CNC system, mostly designed by a differens manufacturer. For example, a Makino™ CNC ma-
chining center should be connected with a Fanuc CNC system - two independent manufacturers of
two different products are involved in the process. The process of connection and configuration is
often known as interfacing. The control system of Fanuc units has been designed with great inter-
nal flexibility and many parameters have to be set before the CNC machine tool is operational.
Normally, it is the machine tool manufacturer (often called the vendor) who supplies the end user
with all settings - the inferfacing - a typical user seldom makes any changes. Even when a system
parameter 1s changed by the program (standard or macro), the change is ofien only a temporary
one, designed for a particular purpose. When the purpose is achieved, the program (or macro)
normally resets the parameter to its original contents. Parameters are often changed intentionally,
in order to optimize the performance of the machine tool.

The majority of control parameters relate to the specifics of a particular CNC machine tool,
known to the machine tool manufacturer or vendor as various defaults. They include such items as
all machine tool specifications, functions and characteristics that are in the exclusive domain of
the manufacturer. Typical examples include rapid traverse rate, spindle speed ranges, length of
axis motions, rapid or cutting feedrate ranges, clearances, various timers, data transfer baud
rates, and many others. These parameters do not change and any attempt to make any changes
severally endangers smooth machine operation.

33

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

SYSTEM PARAMETERS 37

Parameter Display Screen

A brief look at a typical display of parameter screen on a CNC unit (using the SYSTEM/PARAM
menus of the keyboard), many display screen pages will be available. The screen pages can be
quickly scrolled through, forward or backward. A particular parameter can be called by its num-
ber (see Parameter Manual), in order to speed up the search. The screen cursor (display indica-
tor) will be positioned at the parameter number and the parameter data will be displayed in reverse
colors (highlighted). For the purpose of this handbook, the actual procedures of the keyboarding
is not important - the control system manual describes all necessary steps.

Parameter Data Types

The classification of parameters in the brief section listed on the previous page has only shown
the description of the parameters by funcrion. In a control system, the actual parameter values are
entered for each parameter number, as needed. Depending on the individual parameter applica-
tion, the parameters are also classified by their data type. Each data type group uses a different
range of valid parameter data entry.

On all Fanuc controls, there are four data type groups available. They are listed here with ap-
propriate data ranges for each group:

Parameter Data Type Available Data Range
Bit or Bit axis 0 or1
Byte or Byte axis 0 fo +127 (byte) or 0 fo 255 (byte axis)
Word or Word axis 0 fo +32767
Two-word or Two-word axis 0 fo + 99999999
Bit-Type Data Type

Bits and bvtes are common computer terms and should not be confused with each other. A bir is
the smallest unit of a parameter mnput. Only fwe mput values are allowed - the digit zero (0) and
the digit one (1). The word bif i1s an abbreviation, derived from the full version of the words bi-
nary digit, as in binary digit. The English word binary has its origin in the Latin word binarius,
meaning something consisting of two parts. Based on this definition, the two possible input values
0 and 1 represent a certain option, selected from no more than two conditions. Such a condition
can be either true or false. True or False conditions can also be interpreted as Yes and No, On or
Off, Done or Not Done, and so on. In the bit type entry, the selection represents one of only two
possible alternatives.

A byte (described later) is a sequence of several adjacent bits (typically eight), that represents
one alphanumerical character of data that is processed as a single unit of instruction.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

SYSTEM PARAMETERS 41

Fanuc controls allow the use of any increment of the block numbers, in any order, so the possi-
bilities are quite extensive. From the point of view of the software designer, no high end software
should contain assumed (or preset) values, Such an approach would limit the user and make the
software weak as a result. Fanuc engineers respect that view and allow settings of the block num-
ber increment by individual users. In fact, it is not enough just to say ‘Ser awtomatic insertion of
sequence numbers’ - we also have to say "Set automatic insertion of sequence numbers with a par-
ticular increment’.

Parameter #0000 and bit #5, do not allow this setting at all. A related parameter, a parameter
that 1s related 1o the #0000 and its bit #5 has to be used - and this parameter must contain the
block increment amount. In the case of Fanuc 16/18/21 controls, the parameter is #3216, and is
described in the Fanuc Parameter Manual as:

#3216

Increment in sequence numbers inserted automatically

In the above example, the block number increment can be set within the following limitations:

Data Type: Word
Valid Data Range: 0 to 9999

The value of this parameter is the actual increment for the automatic block sequencing, within
the range of 0 to 9999, defined as a word fype entry. The word type entry will be discussed
shortly. The selected amount will only be applied, if the bit #5 of parameter #0000 is setto 1,
otherwise it will be ignored. This is a typical example of one parameter setting that is related 10 the
setting of another system parameter. For different control systems (controls that claim Fanuc
compatibility), the principle of setting will be the same, but the parameter numbers and the bit
register numbers may be different. Always check the instructions for your control system.

Byte Data Type

The computer terms 'bit" and 'byte’ have been already described somewhat briefly. These two
words used in computing can be easily confused because the look similar. True, these words are
similar, but they are nof the same - they are unique words defined as bir and byte. Relating to the
system parameters, the bit fype parameter has already been described. The other type, the byte
type system parameter accepts a range of values - from -127 to +127 for entries that require a
signed value (plus and minus values), and the integer range from 0 to 255 for entries that do not
require signed numbers. These ranges cover all eight bit entries, where each byte digit is the bit.

For example, many modern CNC machining centers are capable of the so called rigid tapping,
rather than tapping using the floating tap tool holder. Most control systems will require a specific
M-code for this function. This specific rigid tapping M-code is normally provided by the machine
tool builder and must be interfaced to the control system - yes, you guessed it - vig a parameter
setting. The machine tool builder does all that. On Fanuc 16/18/21 controls for milling, the
M-code for rigid tapping is specified by the parameter #5210:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

SYSTEM PARAMETERS 45

Binary Numbers

In the preceding topics, the application of 0 and 1 entries was explained as a very common
method of setting system parameter values. These are called the bit settings and are based on the
system of binary numbers. Although many programmers have heard this term, not all understand
its concept. In any CNC training program, binarvy numbers are not exactly the most appealing sub-
ject and are not generally covered. Strictly speaking, there 1s no need to know the binary numbers
and how they work, but the knowledge does help in several special applications. Also, the subject
of binary numbers may be interesting to those who would like to know more about it. The detailed
description of binary numbers is beyond the scope of this handbook, but there are many excellent
computer books describing the subject in detatl. This section will only cover their main essence.

In everyday life, we use the decimal number system, which means we have ten digits available,
from O to 9. The base of the decimal system is 10, In the decimal system, a number can be ex-
panded, using the base of 10. For example, number 2763 can be represented as:

2x<10° + 7x10° + 6x 10" + 3 x10° = 2763

The base of binary system is not 10 but 2, For the purposes of a macro beginner, the binary sys-
tem uses only the digits € and / (one choice out of two). The prefix bi- means ‘of tiwo'. Each sym-
bol is known as a bir (Binary digIT). Many CNC system parameters are of the binary type. In
computing, various components can only have two states - ON or OFF, Open or Closed, Active or
Inactive, and several others. These ON-OFF states are represented by the digits 0 and 7, in the
system parameters of the bit type. In one of the earlier examples, a typical setting of such a param-
eter was shown. For example, in the following parameter, the 8-bit value is

00001010

which can be represented as:

0 0 0 0 1 0 1 0

#7 #5 #5 e #3 #2 #1 20
2’ 26 25 24 o 2 2! 20
128 o4 32 16 8 4 2 1

Note how each bit in the above example is represented by its own number (#0 to #7), its own
exponential representation and its bit value. The sum of the bits is simple to calculate:

In the chapter ‘Awromatic Operations’, an actual application of the binary numbers is shown in
detail, relating to the subject of mirror image status check.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING

In smaller machine shops, job shops or any other environment where stand alone CNC ma-
chines are used, the machine operator typically sets all offset values that have to be input into the
control during the job setup, manually by simply typing them in the proper registers. This com-
mon method is very useful when the programmer does not know the setting values - in fact, this is
the normal situation in most shops that the programmer or machine operator does not know the
actual values of various offsets at the ume of programming or machine setup.

| Understanding the subject of offset data setting is important for many macro programs '

Input of Offsets

In a manufacturing environment that has to be very tightly controlled during production, for ex-
ample in agile and automatic manufacturing, or manufacturing of the same parts in very large vol-
umes, the manual offset data entry during setup i1s very costly and inefficient. Also, this method
does not provide and efficient means of adjusting the offsets values, for example, for tool wear.
An agile or large volume manufacturing uses modern tools such as CAD/CAM systems for design
and toolpath development, concept of multiple machine cells, robots, preset tools, automatic tool
changing and tool life management, tool breakage detection, pallets, programmable auxiliary
equipment, machine automation, and so on. Unknown elements cannot exist in such environment
- relationships of all reference positions must always be known, and the need for offsets to be es-
tablished and set at each individual machine is eliminated. All the initial offset values are - and
must be - always known to the CNC programmer, well before the actual setup takes place on the
CNC machine.

There 15 a great advantage in such information being known and used properly - the initial offset
data can be included in the part program and be channeled into appropriate offset registers through
the program flow. There 1s no operator's interference and the machining process is fully auto-
mated, including the maintenance of tools and related offsets. All offset settings are under the pro-
gram control, including their updates required for position change, or a tool length change, or a
radius change and other similar changes. The offsets are adjusted and updated from the informa-
ton provided by an in-process gauging system that must be installed on the machine and inter-
faced with the control system.

All this automation is possible with several programming aids, often available as an optional
feature of the control system. The main aid is the use of user macros and a feature called Data Set-
ring. Before you can handle macros for the purpose of offset setting and adjustment, vou have to
understand the concept of the data setting. As a matter of fact, the control unit may have the data
setting feature without even having the macro option. Don't get discouraged without trying it first.
Even a small machine shop with a single stand alone CNC machine can benefit from this feature,
if it is available. Fanuc control systems use a special preparatory command for data setting - G10.

49

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING 53

This program entry will place X-10.0 into the external work coordinate offset, while retaining
all other settings (the Y-axis, the Z-axis, and any additional axes as well). As a result of this up-
date, each work coordinate system used in the active CNC program will be shifted by 10 mm into
the X-negative direction,

The other two offset groups, one for the tool length, the other for the cutter radius, can also be
set by the G10 command. However, there is an additional subject you have to fully understand,
before using the 610 command for those two offset groups. The subject covers the memory types.

Offset Memory Types - Milling

During the development of more advanced CNC technology, Fanuc controls have introduced
three, progressively more advanced, types of memory to store tool length and tool radius offsets.
The three stages are known as the Memory Type A, Memory Type B, and Memory Type C, refer-
ring to the type of offset memory.

They have these characteristics on the display screen of the control system:

| Memory Type Characteristics

One display column, shared by the length and radius offsets
Two display columns, one for the length offset and one for the radius offset

Four display columns, two for the length offset and two for the radius offset

In offsets are applied in macro programs, we deal with two important criteria - the size of the
tool (length or radius) and the amount of wear on the tool (length change or a radius change). The
terms Geometry Offset and Wear Offset are used frequently in this application, and may require
some clarification.

Geometry Offset

For the tool length, the geometry offset stores the actual preset length of the tool, or the actual
amount measured during setup. In a program, the length offset is called with the address H.

For the tool radius, the geometry offset stores the known (nominal) radius of the cutter (typi-
cally one half of the specified diameter). In a program, the radius offset is called with the address
D but can also be called with the address H.

Wear Offset

As the name suggests, the wear offset is the amount of deviation from the measured value (i.e.,
from the geometry offset). Do not take the name literally. Wear means tool wear, yes, but it also
means an amount of deviation for any other reason, for example, a deviation due to resharpening
of the tool or due to cutting pressures.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING 57

Memory Type C

The latest (and the greatest) type of offset memory 18 the Type C. It is a much improved input
method, based on Type B - it offers extreme programming control and flexibility during machine
operation. Type C offset memory contains geometry and wear offset registers that are independent
of each other - they are different for the tool length offset and the tool radius offset data. In normal
practice, that means the total of four display columns on the control system screen - Figure 12,

— : ———— | Figure 12
OFFSET H D . -
NUMBER |geoMETRY| WEAR |GEOMETRY| WEAR | ’
01 0000 | 0000 | 0000 | 0.000 Geometry and Wear offsets are
02 0.000 | 0000 | 0000 | 0.000 Separated
03 | 0000 | 0000 | 0000 | 0.000 [T wooumsioresh ofsetiype
04 0.000 | 0000 | 0000 | 0.000 ool m’“’ tool radius may use the
05 | 0000 | 0000 | 0000 | 0.000 same offset numbers.
« Example:
Tool T04 uses HO4 for tool length and D04 for the tool radius offset {both H and D can be
used):

G43 22.0 HO4 Offset number 04 used for tool length - H address

GOl G41 X123.0 D04 F275.0 Offset number 04 used for tool radius - D address

This is the most advanced method of CNC programming of length and radius offsets, because
the control systems that support it - offer convenience and flexibility to both, the CNC program-
mer and the CNC machine tool operator. There is no need to shift one offset number by 25 or 50
numbers - they are both the same, both using s own offset register. There is no need to worry
whether 10 use the H-address or the D-address - in Type C offset memory, the H-address will al-
ways be used for the ool length offset, the D-address will always be used for the radius offset -
and can both have the same offset number,

Memory Type and Macros

It is very important to understand the offset memory types, because when writing a custom
macro program that uses either the tool length or the tool radius offset (or both), the macro will
have to reflect the differences of each offset type. That also means a particular macro will not be
transferrable to a different machine control system, unless 1t also includes a multiple choice that

covers the avallable offset memory types.

| Offset memory type determines the macro structure for length and radius offsets I

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING 61

G10 Offset Data Settings - Milling Examples

This section 1llustrates some of the common examples of G10 offset data settings used in a pro-
gram (standard or macro) for CNC machining centers. Block numbers are used for convenience.

® Example 1:

Block N50 will input the amount of negative 468.0 mm into the tool length offset register 5:

N50 G90 G10 L10 P5 R-468B.0

& Example 2:

If this offset needs an adjustment to cut 0.5 mm less depth, using the tool length offset 5, the
G10 block will have to be changed to incremental mode:

N60 G91 G10 L10 P5 RO.5

Note the G91 incremental mode - if the blocks N50 and N60 are used in the listed order, then
the registered amount of offset number 5 will be -467.5 mm.

® Example 3:

For memory Type C, the cutter radius value D may be passed to the selected offset register from
the CNC program, using the G10 command with L12 (geometry) and L13 (wear) offset groups:

N70 G90 G10 L12 P7 RS.0 ... Inputs 5.0 mm radius amount into the geomefry offset register 7

N80 G90 G10 L13 P7 R~0.03 ... inputs -0.03 mm radius amount into the wear offset register 7

The combined effect of the two entries will be the equivalent of cutter radius 4,97 mm,

® Example 4:

To increase or decrease a stored offset amount, use the incremental programming mode G91.
The example in block N80 will be updated, by adding 0.01 mm to the current wear offset amount:

N90 G991 G100 L13 P7 RO.0O1

The new setting in the wear offset register number 7 will be 0.02 mm and the combined effect
of both offsets number 7 will be the equivalent of cutter radius 4.98 mm (afier blocks N70, N80
and N90 were processed). Always be careful with the G90 or G91 modes - it is recommended to
reinstate the proper mode immediately after use, for any subsequent sections of the program.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING ‘ 65

Note that the tool tip number (programmed in the G10 application as the Q entry) will always
change the geometry offset and the wear offset simultaneously, whatever the value or the offset
type is. There is a simple and very logical reason for it - 1t 1s a control built-in safety that attempts
to eliminate data entry error (manually or automatically). It is impossible to have a different ge-
ometry and wear tool tip numbers for the same physical tool. Data related to axes or the tool nose
radius may have different geometry and wear offset values, because they relate to dimensions.

Data Setting Check in MDI

Programming offset values through the standard or macro program requires full understanding
of the data input format for a particular control system. It is too late when an incorrect setting
causes a damage to the machine or the part. One way to make sure the offset data setting is correct

is to test it. Such a test is very easy to perform in the MDI (Manual Data Input) mode of the con-
trol system. An single word or the whole block can be entered in the MDI mode to test the input,
before committing the data into the program. Select the Program mode and the MDI mode at the
control unit, then insert the input data to check - for example:

G90 G10 L10 P12 R-106.475

J Press INSERT
J Press CYCLE START

To verify the accuracy of the input, check the tool length offset H12 - it should contain the
stored amount of -106.475. Still in the MDI mode, update the preset data - for example:

GS91 G10 L10 P12 R-1.0

- Press INSERT
3 Press CYCLE START

To verify the accuracy of the input, check the tool length offset H12 again -it should contain the
stored amount of -107.475.

Other tests should follow the same process. Always select the test data and offset numbers care-
fully, so they cannot cause any damage.

Programmable Parameter Entry

This section covers vet another aspect of programming the G10 data setting command - this
time as a modal command. It 1s used to change a system parameter through the standard or macro
program. This application is sometimes called the ‘Write 1o parameter function’, and is not very
common in everyday programming, even in macros. Before you attempt to use this method, make
sure you fully understand the concept of control system parameters section, described earlier in
this handbook - see previous chapter for details.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

DATA SETTING 69

« Example 3:

Another example of a system parameter change is for the entry of a two-word parameter type
{(long integer). It will change the work coordinate offset G54 to X-250.000:

G90

G100 L50

N1221 Pl R-250000
Gl1

This is another method, one that differs from the one described earlier. Parameter #1221 con-
trols the G54, #1222 controls the G55, and so on. Pl refers to the X-axis, P2 refers to the
Y-axis, and so on, up to 8 axes. Because the valid range of a long integer (two-word type) is re-
quired, a decimal point cannot be used. Since the setting is in metric system, and one micron
(0.001 mm) 1s the least increment, the value of -250.000 will be entered as -250000, Be careful
with the input of zeros - one zero o0 many or one zero too few could cause a major problem.
Speaking from experience, this type of error is not always easy to discover. The following version
of the example 18 NOT correct, and will result in an error:

G90
G10 L50

N1221 Pl R-250.0 Decimal point is not allowed in the R-address
Gl1l

Correct input is without the decimal point, as R-250000. An error condition (control alarm) will
also be generated if the P-address is not specified. For example,

G90

G1l0 LS50

N1221 R-250000
G1l1l

will generate an error condition (alarm) - the parameter P is missing.

® Example4:

The last example 1s similar to the previous one, but modified for two axes values:

GS0

G10 L50

N1221 P1 R-250000
N1221 P2 R-175000
Gll

If this example is used on a lathe control, the address Pl is the X-axis, the address P2 is the
Z-axis, On a machining center, the address P1 is the X-axis, the address P2 is the Y-axis, and the
address P3 will be the Z-axis, if required. In either case, the first two axes of the G54 setting will
be -250.0 (X) and -175.0 (Y) respectively.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACRO STRUCTURE

Developing macro programs is not much different from development of standard CNC pro-
grams, at least not in the general approach. Before macro programs can developed, study
carefully the many ‘tools of the trade’ and ask a question - what features do we work with?
Macros have the potential of being extremely powerful and flexible. Macros can also shorten the
programming time by many hours, literally. Yet, in spite of their great possibilities, macros are
often the ‘forgotten gems’ available for CNC programming. Many companies do have macro ca-
pabilities, but avoiding them, considering them too difficult and time consuming.

Macro tools include many functions, techniques and procedures. Custom macro cannot be clas-
sified as a true programming language, but macros do share many elements with languages such
as Visual Basic™, C++ ™ Lisp™, and many others, including the derivatives of the ‘early’ lan-
guages, such as Pascal. The most important tool for the start is to know the format of the macro,
and its contents. When these two features are considered together, in the proper sequential order,
we are talking about the macro structure.

Basig_ Tools

Every CNC programming technique that a typical part programmer has already learned can be -
and are - used in macros and macro development. An in-depth knowledge of CNC programming,
combined with a good practical experience (even machining helps), is an essential requirement to
learning macros and learning them right from the beginning. Many programming aids not found
in standard CNC programmung are also available in macros, but they enhance and extend the
traditional programming methods - they do not replace them.

There are three basic areas to understand for successful macro development:

¢ Variables ... three types of data
¢ Functions and Constants ... mathematical calculations
¢ Logical Functions ... loops and branches

These three feature areas offer many powerful special functions that are used within the body of
a macro, which is very similar to a body of a subprogram, except standard subprograms cannot
use variable data, whereby macros can (and do so very extensively).

Just like a subprogram, a macro by itself is not much of a use - it has to be interwoven (inter-
faced) with another program, called from another program, by a previously assigned program
number. The address (letter) O 15 used to store the macro programs, the address (letter) P is used
to call it, applying the same logic as for subprograms.

73

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACRO STRUCTURE 77

Arguments

The data defined with the macro call, that s with the G65 P- command, are called arguments.
Arguments contain the actual program values required for a particular macro application only.
They are always passed to the macro uself. Variable data in the macro are replaced with the sup-

plied arguments and the toolpath or other activity is based on the current definitions (arguments)
passed to the macro.

A typical program sample of a G65 macro using three arguments will have the following
schematic format:

Gé5 P- L~ <ARGUMENTS>

£x where ...
G65 Macro call command
P. Program number containing the macro {stored as 0---)
L- Number of macro repetitions {L1 is assumed as a default)

ARGUMENTS Definition of local variabies to be passed to the macro
An actual sample program macro call may be defined as:

G65 PB003 H6 A30.0 F150.0

£x where ...
G65 Macro call command
P1234 Program number containing the macro (stored as 08003)
HE Assignment of local variable H (#11) argument to be passed to the macro 08003
A30.0 Assignment of focal variable A (#1) argument to be passed to the macro 08003
F150.0 Assignment of local variable F (#8) argument to be passed to the macro 08003

Assignments of variables 1s a separate subject covered in a separate chapter. An assignment sim-
ply means giving the variable a value required at the time of call. From the example, it is evident
that custom macro call G65 is only sinular to, but definitely not the same as, the subprogram call
M98. When two different calls (M98 and G65) of a previously stored repetitive program are com-
pared, there are several very important differences:

¢ In the G65 command, argument is passed to the macro in the form of variable
data. In M98 only the subprogram can be called. No data passing is possible

¢ In a subprogram call M58, the block may include another data (/.e., a motion to a

tool location). In this case, the processing can be stopped in a single block
mode. This is not possible in the G65 mode

¢ In a subprogram call M98, the block may include another data (i.e., a motionto a
tool location). In this case, the processing of the macro starts only after the
‘other data’ is completed. The G65 command calls a macro unconditionally

¢ Local variables are not changed with M98 but they are changed with G65

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACRO STRUCTURE

81

Parameters related to DISPLAY - 08000-08999 program range

Control System

Fanuc 10/11/15

Fanuc 16/18/21

Parameter Bit | BitID Setting
n/a na | nla | 0=nla 1=nla (not available)
0 = Program display during execution is ALLOWED
#0011 #1 | ND8
1 = Program display during execution is NOT ALLOWED
0 = Program editing and display is ALLOWED®
#3202 | #0 | NEB

1 = Program editing and display is NOT ALLOWED*

Program Numbers - Range 09000 to 09999

The second group is named Group 2. It covers the range of program numbers 09000 to 09999
only. Programs using numbers from Group 2 cannot be edited, registered, or deleted, without a
parameter setting. Again, the parameter access number depends on the control system:

S —
Parameters related to EDITING - 09000-09999 program range

Control System | Parameter| Bit | BitID Setting
| 0 = Program editing is ALLOWED
Fanuc 0 #0010 | #4 | PRGY
1 = Program editing is NOT ALLOWED
0 = Program editing is ALLOWED
Fanuc 10/11/15 #2201 #0 | NES
1 = Program editing is NOT ALLOWED
0 = Program editing and display is ALLOWED*"
Fanuc 16/18/21 #3202 | #4 | NES
: 1 = Program editing and display is NOT ALLOWED"*
Parameters related to DISPLAY - 09000-09999 program range
Control System [Parameter Bit | BitID Setting
I Fanuc 0 " nia na | nla 0O=nla 1=nla (not available)
| i 0 = Program display during execution is ALLOWED
Fanuc 1011115 | #2201 #1 | ND9

. 1=Program display during execution is NOT ALLOWED
.

Fanuc 16/18/21 | #3202 | #4 | NE9 b
| 1 = Program editing and display is NOT ALLOWED**

0 = Program editing and display is ALLOWED*

NOTE: Dispilay = Display during execution, * and ** identify the same settings for editing and display

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

CONCEPT OF VARIABLES 85

Quite likely, the only difference between the three programs will be the S-address for spindle
speed in rev/min and the F-address for feedrate value in mm/min (in/min). With a macro, both ad-
dresses S and F can be defined as variables (because they will change for each of the three materi-
als), then supply the suitable speed and feedrate values for different materials, as needed. By
changing only those two values, the program can be used for many more different materials, not
just three. The main programming benefit is that the body of the macro program does not change
at all, once it 18 verified.

Variable Declaration

Before they can be used, variables have 10 be defined - macro expression refers to this activity
as declaration of variables - variables have to be declared. Just like the data entry into the memory
of a calculator, the basic rules governung the declaration of variables is that a variable must be de-
fined first, and only then it can be used in a program or a macro. In the program that uses the vari-
able, the form of definition is represented by the # symbol (commonly called the pound sign or the
sharp sign or the number sign). This number sign will be used in all macros. The definition of a
variable can take several forms, the first of them is the variable value:

| #i = assigned current value |

t3r ... where the letter ' represents the variable number - for example:

#19 = 1200 Value of 1200 1s assigned to variable nmumber 19
it can be spindle speed (rev/min)

#9 = 150.0 Value of 150.0 is assigned to variable number 9
it can be feedrate (mm/min, m/min, fi/min, in/min, erc.)

These two macro statements store values - the value of 1200 is stored into the variable #18 and
the value of 150.0 into the variable #9. Both values shown in the example are numbers, but they
are two different fypes of a number.

Real Numbers and Integers

There are two basic types of numerical values used in macros - a number can be either:
¢ REAL number ... real number always requires a decimal point

¢ INTEGER number .. integer numbers cannot use decimal point

When performing mathematical calculations, the fype of every numerical value is important. In
simple terms, real numbers are typically used for calculations, whereby integer numbers are used
for counting and other applications that do not require a decimal point. When a variable number is
used in the macro program, its value can be changed as required at any time, two or more vari-
ables may be used for mathematical calculations, etc.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

CONCEPT OF VARIABLES B89

Positive and Negative Variables

A variable definition that is not equal to zero is called a non-zere vanable. Non-zero variables
may be expressed as either positive or negative variable values. For example,

#24 = 13.7 ... this is a positive value variable definition
#25 = -5.2 ... this is a negative value variable definition

Why is this very simple and common fact so important? The reason is that in a macro, the call
of the variable may also be positive or negative, which means tow signs are in effect. When the
variable is referenced in the macro, the sign can be intentionally reversed, m order to achieve the
opposite effect of the definition, for example:

GO0 X-#24 ... Will be equivalent to GOO X-13.7
GO0 Y-#25 ... will be equivalent to GO0 ¥5.2
GO0 X#24 ... will be equivalent to GO0 X13.7
GO0 Y#25 ... will be equivalent to GO0 Y-5.2

The sign in the declaration 15 always used together with the sign m the actual execution - the
same declaration used as above. Look at one of the above examples:

GOC Y-#25 ... will be equivalent to GO0 ¥5.2

The reason 1s strictly mathematical and relates to the use of a double sign in a calculation. In
many instances, a negative number will have to be added or subtracted, and so on.

The following examples show all four possibilities:

Calculation Result Format Example
Pmiti\ru-rosilivn Positive a + (+b) = a +
Positive + Negative Negative | a + (~b) = a ~-
Negative - Positive Negative | a - (+b) = a -
Heg?tiva . H;g:ativu Positve | a - (~b) = a +

+ (+5) = 3 + 5 = 8
+ (-5) =3 -5 = <2
- {(+5) = 3 = 5 = =2

o |\ U |U
Wwilw w w

This simplified method may be even easier to understand:

Note that the actual order of the plus and minus symbols within a calculation, such as +- or -+
makes no difference to the result. However, the standard mathematical hierarchy of calculating
order is and must always be maintained.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

ASSIGNING VARIABLES

In the general introduction to variables earlier, four groups of variables were identified that are
used in macro programs:

¢ Local variables
¢ Common variables
¢ System variables

4 Null variables (same as empty or vacant variables)

It is very important to understand these variables well, particularly their differences. This chap-
ter explains how to specify a value of a variable - how to assign a value to a variable. The first two
of the groups listed - the local variables and the common variables are covered by this topic.

Local Variables

Local variables transfer the user supplied data to the macro body. Up to 33 variables can be de-
fined as local. Naming this group of variables local means their stored values are only applicable
to the macro they have been defined in, they are not transferable between macros. In macro pro-
grams, cach local variable is associated with an assigned letter of the English alphabet. There are
two options available for the so called assignment lists, Assignment List I, which has 21 local vari-
ables available, and Assignment List 2, which has 33 local variables available. Both assignment
lists are described here in detail.

Defining Variables

Variables that are defined in the G65 macro call, can be within the range of #1 to #33. They
are called the local variables, or arguments. They are available only to the macro that calls them
and processes them. Once the processing of the macro is completed, each local variable is reset to
a null value, which means it becomes empty and has no value - it becomes vacant.

In practical terms, the local variables are used to pass data definitions from the source program
(such as a main program) to a macro. Once transferred, they have served their purpose and are no
longer needed. These variables were local to the program that called them. We use local variables
to assign values to macro program arguments. Local vanables are also used for a temporary stor-
age within the macro body, durning calculations of formulas and other expressions.

In addition to the G65 command, there are also preparatory commands G66, G66.1, and G67,
all related to macros. The G65 command 1s most significant of them and 1s covered here in depth.

93

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

ASSIGNING VARIABLES 99

Figure 17
Drawing example for a modal macro call

XOYO is at the lower left comer,
Z0is at the top of the Smm plate

13 15 20 13

ALPLATE 75 x55x 5

The simple example uses a part drawing in Figure 17, where four holes have to be tapped (drill-
ing operation is omitted in the example). The macro will be designed for a special tapping opera-
ton only and G84 tapping cycles cannor be used. This is also a good example of summing up the
subjects covered so far.

The main objective of the macro is to program a lower feedrate when the tap moves into the ma-
terial and a higher feedrate when the tap moves out. This tapping technique is useful for very fine
threads in soft materials, to prevent thread stripping. These are the programming objectives:

3 Spindle speed 850 rimin

J Nominal feedrate 425 mm/min (850 rimin x 0.5 pitch)

‘J Feedrate in 80% of the nominal feedrate cutting in

J Feedrate out 120% of the nominal feedrate cutting out

3 Retract clearance 3 mm

J Cutting depth 6.5 mm (1.5 mm below the bottom of part)
Selection of Variables

Any assignment address can be used in the G65 macro call, providing it meets the criteria of
macros. Since letters will be used as assignments, the macro programmer has 21 of these letters to
choose from. It makes sense 1o select letters that provide some relationship to their meaning in the
macro. From the list above, selecting argument F for feedrate, S for spindle speed, Z for tapping
depth, R for the initial and retract clearance, etc., makes it easier to fill in the assignments. This is
only a teaching macro that does not have all the 'bells and whistles' incorporated into it. In this
handbook, there are several version listed.

For the example at this stage (using modal macro call), only the following assignments will be
provided - the clearance R-value as 3 mm (#18), Z-depth as -6.5 (#26), and the feedrate as 425.0
(#9). Development of the macro O8004 is quite simple:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACRO FUNCTIONS o 119

To correct the accumulative error, or if you want to be absolutely certain, you have to round the
motion in one direction to equal to the motion in the opposite direction:

N1l G20 English units input

N2 #100 = 3 + 19/64 Input value of 3,.296875 (motion A)

N3 #101 = 2 + 5/64 Input value of 2.078125 (motion B)

N4 G9%1 GO0 X-#100 Incremental motion A to the left X-3,2969

N5 GO1 X-#101 F20.0 Incremental motion B to the left X-2.0781

N6 GO0 X[ROUND([#100]+ROUND(#101)1] Incremental motion A+B to the right will be rounded
N7 MOO End of example

Rounding to a Fixed Number of Decimal Places

There are times when a fractional value has to be rounded to a specific (fixed) number of deci-
mal places. Typically, three decimal places are required for the metric system, four decimal
places are required for the English system, and perhaps one decimal place is required for cutting
feedrate, regardless of the units selected.

In the following two examples, two given values will use a few techniques, providing the results
of different rounding methods:

« Example 1 - Given fractional value is over 0.5 :

#1 = 1.638719 Value to be rounded to a specific number of decimal places

If the ROUND function is applied to this defined value, it will return the next whole number:

ROUND [#1] Returns 2.0

In order to round the given value to a certain number of decimal places, the total of three steps
will be necessary.

STEP 1 - The first step requires the given value to be multiplied by the factor of:

10 ... 10 round off to cne decimal place
100 ... to round off to two decimal places
1000 ... 1o round off to three decimal places typical for metric system

10000 ... to round off to four decimal places typical for English system

... and so on

For example:

#2 = #1 * 1000 Returns 1638.719 (Metric example)
#3 = #1 * 10000 Returns 16387.19 (English example)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

10 SYSTEM VARIABLES

The last group of variables is called the System Variables. The word ‘system’ in the description
of System Variables means the Control System variables. This group of vanables 1s rather a spe-
cial group and cannot be compared to the variable types already discussed (local and common). It
1s equally important in macros, but stands on its own.

In a macro program, this group is used to address the registers of the control memory (also
called addressable memory locations). In certain situations (not normally), some system variables
can also be used to change some infernal data (also called system data) stored within the CNC sys-
tem. For example, a work coordinate system (work offset) can be changed by manipulating the
system variables (changing one or more system variables). In a similar way, items like the tool
length compensation, macro alarms, parameter settings, parts count, modal values of the G-codes
(plus several additional codes), and many others, can be changed as well. System variables are ex-
tremely important for automated environment, such as probing, unmanned and agile manufactur-
ing, transfer systems, etc. There are many system variables available for each control system, and
there significant differences between various control systems (even within the various Fanuc mod-
els available). It is very unlikely that any programmer will ever need them all, The control refer-
ence manual will come very handy as a reference resource.

ldentifying System Variables

When working with system variables, there are two very important features to be aware of right
from the beginning. Both relate to the way the system variables are identified by the control:

¢ System variables are numbered from #1000 and up (four or five digit numbers)

¢ System variables are not displayed on the control display screen

The numbering is fixed by Fanuc and cannot be changed. In this arbitrarily numbered system, a
reference book or manual is required for each control model in the shop. Fanuc provides such a
manual with the purchase of a particular control sysiem. A great number of system variables are
identified in this handbook as well.

Since the system variables cannot be directly displayed on the screen (applies to a large number
of controls), there must be another way of finding what their current values are. The method used
is called a value transfer. In the program, or in MDI mode, the value of a system variable can be
transferred into a local or common variable. This chapter deals with this subject as well.

By organizing work, a tremendous step forward can be made. In the case of system variables,
the first significant step to their better organization is by grouping them.

137

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

SYSTEM VARIABLES 141

#5201to #5206 Work offset value (shift or common) or up to #5215 [*]
#5221to #5226 Work offset value G54 or up to #5235 . . [*]
#5241to #5246 Work offset value G55 or upto #5255 . . . [*]
#5261to #5266 Work offset value G56 or upto #5275 . . . [*]
#5281to #5286 Work offset value G57 or upto #5295 . . . [*]
#5301to #5306 Work ofiset value G58 or upto #5315 . . . [*]
#5321to #5326 Work offset value G59 or upto #5335. . . [*]

[*] marks system variables of the Read and Write type

System Variables for Fanuc Series 16/18/21

#1000 through #1015. Data In DI Sending 16-bit signal from PMC to macro
{reading bit by bit)
#1082 s e e Used for reading all 16-bits of a signal at one time
#1100 through #1115. Data Out DO Sending 16-bit signal from
macro to PMC (writing bit by bit)
BIIRL e e e Used for writing all 16-bits of a signal
at one time to the PMC
#M3B . oo e e e e Used for writing all 32-bits of a signal

at one time to the PMC - Values of -99999999 to
+99999999 may be used for #1133

#2001 through #2200. Tool compensation values . (offsets 1-200)
Memory Type A - Milling

#10001 through #10998. . . . Tool compensation values . (offsets 1-999)
Memory Type A - Milling

#2001 through #2200. Wear offset values (offsets 1-200)
Memory Type B - Milling

#2201 through #2400. Geometry offset vaiues . . (offsets 1-200)
Memory Type B - Milling

#10001 through #10999. . . . Wearoffsetvalues (offsets 1-999)
Memory Type B - Milling

#11001 through #11999. . . . Geometry offset values . . (offsets 1-999)
Memory Type B - Milling

#2001 through #2200. Wear offset values of H-code (offsets 1-200)
Memory Type C - Milling

#2201 through #2400. Geometry offset values of H-code . [(offsets 1-200)

Memory Type C - Milling

#10001 through #10999. . . . Waear offset valusas of H-code (offsets 1-999)
Memory Type C - Milling

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

SYSTEM VARIABLES 145

No doubt, the table looks better organized than a plain list; it also is longer and does not contain
any descriptions. It does not matter which representation is better, this methodical numbering sys-
tem offers numerous benefits. It is not the cosmetics of the numbering system, it is a practically
oriented numbering system that just happens to look appealing as well. This numbering system is
suitable to use formulas in the macros, with vanables, and allows calculation of the required ad-
dress number based on the number of another address.

Take, for example, the following situation. If the calculations are based on the system variable
#5201, all that is needed is a simple multiplication 1o get another coordinate system:

Through the macro, add 20 times 1 to get the X-value for G54
Through the macro, add 20 times 2 to get the X-value for G55
Through the macro, add 20 times 3 to get the X-value for G536
Through the macro, add 20 times 4 to get the X-value for G57
Through the macro, add 20 times 5 to get the X-value for G58
Through the macro, add 20 times 6 to get the X-value for G539

CCOCUOCOC

The value of 20 in this case is called the shift value, Of course, any other variable can be used as
the base vanable for the calculations. The logic of this approach can be used with many calcula-
tions, using the built-in numbering method. Going a little step further, think about how to handle
the jump from one axis to another. Take it as a small challenge, but the next section will reveal the
process and explanation.

Resetting Program Zero

At least a small but quite practical application example is in place here. Its purpose is to illus-
trate the application of system variables for a desirable, yet simple process. The system variable
will be used in an actual macro program. Macro program development will be covered later, so a
small preview now may be useful then. The project is quite simple, and the small macro program
code can be very useful in everyday CNC machining. The macro example will only do one thing -
it will reset the current work offset setting to program zero al the current tool location, using the
topics discussed previously. This 1s known as zero shift or datum shift.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

TOOL OFFSET VARIABLES 151

Turning Control - FS-0T

Typical number of available tool offsets is 32, and the input of tool offset related system vari-
ables reflect that number.

Offset Tool Offset Tool Wear Tool Geometry
Registry Number Offset Value Offset Value

Tool Tip

In the common Type B offset memory, four columns of system variables are required, 32 vari-
ables available for each column. Note that the Geometry and the Wear related variables are the
same for the Tool Tip setting value, because they cannot be different for each mode. If a tool tip
number 3, for example, 1s set to the Geomerry offset, 1t will also appear as 3 in the Wear offset.
Change of one will force the change of the other.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

TOOL OFFSET VARIABLES 189

Assignments for 64 Offsets or Less - Memory Type A

The offset memory 7ype A 1s not found very often in machine shops anymore. The following
reference table lists system variables for 64 or fewer offsets, in memory Type A.

The listing is equivalent to the Wear offset listing only:

Offset Tool Offset Tool Offset
Registry Number Value
1 #2001
2 #2002
X-axis 3 #2003
.
64 #2064
1 #2101
2 #2102
Z-axis 3 B #2103
64 #2164
1 #2201
| 2 #2202
Radius |) 3 #2203
64 #2264
1 #2301
2 #2302
Tool Tip 3 #2303
64 #2364

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

166

Chapter 12

Fanuc 10/11/15

Typical listing of G-codes (preparatory commands) modal information for the higher level CNC
control systems:

System
Variable Number

Preceding

Block

Executing

Block

G-code Commands

#4001 #4201 01 G00GO1G02G03G33 Note: G31 belongs to Group 00
84002 | #4202 02 | G17G18G19

24003 | #4203 03 | 690G -
#4004 | #4204 4 | G262

#4005 | #4205 05 | G93G94 G5

#4006 | #4206 06 | G20G21

BMO0T | #4207 07 | G40G41G42

2008 | #4208 08 | GA43G44G4S

#4000 | #4200 9 | G20 081 082 583 084 505 006 67 088 008
24010 | #4210 10 | GI8GH9

#4011 #4211 11 G50 G51

34012 | #4212 12 | G65G66GE7

2013 | #4213 13 | G96GYT

MO14 | #4214 14 | G54G55G56GS57 G58 G53

#4015 | #215 5 | G61G62G63G64

BOI6 | M216 6 | G68G6Y

BMOIT | M7 7 | G15G16

MO18 | #4218 8 | G504G51.1

2019 | #4219 19 | G40.1G41.1G421

24020 | #4220 20 N/Ato FS-M and FS-T controls
24021 #4221 21 N/A o

M022 | #a222 2 | NA

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

172 ‘ Chapter 13

IF Function

The IF function has several names - it is called the decision function, the divergence function,
or most commonly, the condifional function. The format of th IF function is:

| IF [CONDITION IS TRUE] GOTOn I

where n i1s the block number fo branch to, but only if the evaluated condition (the returned
value) is TRUE. If the condition is true, all statements between the /F-block and GOTOn-block
will be bypassed. If the evaluated condition is not TRUE, it is FALSE, and the program will con-
tinue processing the next block following the block containing the IF function. We can schemati-
cally represent the last example in a simple flow chart in Figure 19,

Figure19

Schematic flowchart representation
YES of the TF conditional branching
ISSUE ALARM

RUN
PROGRAM

The flowchart only shows the decision making and the results, not any complete program. The
diagonal box identifies the condition to be evaluated (for example, machine travel limits), and the
two rectangular boxes identify two - and only two - possible outcomes (YES or NO). Each out-
come results in an action to be taken:

3 | the travel IS too long, generate alarm condition and stop processing
3 [the travel IS NOT too long, run the rest of the program normally

The IF function is one of the macro statements that control the order of program processing.

Conditional Branching

Branching from one block of the program to another block of the same program is unique to
macros - it always means bypassing one or more program blocks. The bypass has to be done in a
selective and controlled way, otherwise all kinds of problems will take over. The conditional func-
tion IF serves as a decision maker between at two options. The main statement in a macro is:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

BRANCHES AND LOOPS 179

WHILE Loop Structure

In Fanuc type macro programming, the WHILE function is used to program loops. The format
of the looping function WHILE consists of the function, condition and action:

WHILE [condition] DOn

In a plain language terms, think of the WHILE function as the ‘as-long-as’ function. The loop-
ing function WHILE [condition|[DOn in a Fanuc macro language means ‘process the body of
the loop as long as the specified condition is true’. The DOn action establishes the connection with
the end of the loop, where the n is replaced with a number of the matching ENDn statement. The
loop is programmed with the ENDn function that corresponds to the DOn call, for example, DO1
with END1, DO2 with END2, and DO3 with END3. Only three loop depths can be programmed.

The three allowed loop depths - often known in programming as the levels of nesting - have
three similar forms:

« Single level nesting
« Double level nesting
J Triple level nesting

As the number of nesting levels increases, so does the programming complexity. The majority
of loops for most macro applications are single level, double levels are not too unusual either, Tri-
ple level has a lot of power, but it does need a suitable application to employ it.

Single Level Nesting Loop

Programming only a single WHILE loop function between the WHILE-DOn loop call and its
matching ENDn, defines the single level loop. This is the simplest and most commonly used loop-
ing function used in macro programs. The single level loop processes and controls one event at the
time - Figure 22:

WHILE |[... Condition 1 is true ... DO1 Start of WHILE loop 1
-= Body of a single level loop ...>
END1 End of WHILE loop 1

Figure 22
Singie level of macro looping - controls one event at the time

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

184 Chapter 13

Formula Based Macro - Sine Curve

When it comes to machining unique contours based on specific machining definitions (typically
mathematical formulas), most CNC controls do not offer direct support. Developing a contour
cutting program for a parabola, hyperbola, ellipse, sine curve, cycloid, and many other curves,
may be not possible in standard CNC programs, but presents no problem in macros. This section
illustrates the development of a sine curve as the actual cutting toolpath macro example. Since the
control system does not directly support sine curve interpolation (or parabolic or hyperbolic inter-
polation, etc.), the toolpath will be simulated by many small linear motions, in G01 mode.

Sine curve is one of several mathematical curves that may come handy in certain applications.
Since it is based on a formula, it becomes a very fitting subject for macro development, the main
reason for using this example. It is a simple formula that will be adapted to generate cutting too!
motion. The Figure 26 illustrates a typical sine curve along with the related terminology. The sine
curve is, in effect, a flat representation of a full circle, from 0° to 360°. The distance between the
start and end angles is called Period. The height of the curve is called Amplitude and is always the
same above and below the X-axis:

l
0
=
3
B
=
=
3
|

i —

~—— ANGULAR INCREMENT
PERIOD

Figure 26
Sine curve - graphicai layout

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

188 Chapter 14

Alarm Format

The macro O8012 illustrates the actual application of a macro alarm that checks the input of an
assigned variable (i.e., argument R, assignment #18). Macro will check if the input radius is
greater than 2.5 mm:

G65 PS000 R2.5 Macro call with one argument (radius amount)
08012 Macro start
IF[#18 GT 0.25]) GOTO1001 Check condition for alarm - true or false ?

Process all blocks if condition is false
N1001 #3000 = 118 (RADIUS TOO LARGE) Force alarm if condition is true

The selected alarm number and message to the operator is displaved on the screen as either

118 RADIUS TOO LARGE or 3118 RADIUS TOO LARGE

Slight variations may be expected. This is a typical application of a programmed alarm - a con-
trolled generation of an alarm by a macro, for a predictable possibility of an error.

Embedding Alarm in a Macro

Regardless of which alarm conditions are used in the macro, the transfer between the processed
and the unprocessed portions of the program must be smooth, regardless of the returned value
(true or false). For example, a macro may contain the following three alarms (to ‘go-to'):

N1C0O1l #3000 = 101 (HOLE SPACING IS TOO SMALL)

N1002 #3000 = 102 (TWO HOLES MINIMUM REQUIRED)
N1003 #3000 = 103 (DECIMAL POINT NOT ALLOWED)

In the macro O8013, these alarms will most likely be located towards the macro end. However,
the macro program that precedes the alarms, using G65 P8013 H8 I12.0 X75.0 Y100.0
macro call, will have to be processed without interruption, if the conditions are false (that means
running good program, with no alarms). For example, this macro structure is NOT correct:

08013 INCORRECT way to program alarms
IF(#4 LE 0] GOTO1001 I=#4 variable stores the hole spacing
IF[{#11 LT 2] GOTO1002 H=#11 variable stores the number of holes
IF[#11 NE FUP[#11]] GOTO1003 Check if #11 contains the decimal point
G90 X#24 Y#25 Previously defined tool location XY

< ... macro body processing ... >
N1001 #3000 = 101 (HOLE SPACING IS TOO SMALL)

N1002 #3000 = 102 (TWO HOLES MINIMUM REQUIRED)
N1003 #3000 = 103 (DECIMAL POINT NOT ALLOWED)
M99

%

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

192

Chapter 14

Evaluate the enclosed comments or try at the control 1o see how the timer works exactly:

08017 {(TIMING AN EVENT)
(PART --ONE-- USING #3001)

#3001 = 0O

G91 GO1 X-100.0 F200.0

X100.0 F400.0

N999 (THIS MUST BE AN EMPTY BLOCK)
#101 = #3001

#102 = #3001/1000

MO0

(PART --TWO-- USING #3002)

#103 = #3002

G9%1 G601 X-100.0 F200.0

X100.0C F400.0

N995 (THIS MUST BE AN EMPTY BLOCK)
#104 = (#3002-#100]+*3600

MO0

M30

%

Reset to zero (start counting from zero)
Duration of this motion is 30 seconds

Duration of this motion is 15 seconds

An emply block to prevent look-ahead !!!
Returns calculation of 45632.000 (milliseconds)
Returns calculation of 00045.632 (seconds)
Temporary stop to check vaniables

Reset to zero (start counting from zero)
Duration of this motion is 30 seconds
Duration of this motion is 15 seconds

An empty block to prevent look-ahead !!!
Returns calculation of 45.631993 (seconds)
Temporary stop to check variables

End of program

Note the blocks N999 and the attached comment. Since the control is in the look-ahead mode, it
calculates the final value prematurely. The empty block guarantees accurate calculated value,

Dwell as a Macro

Although the dwell function G04 can be used much more efficiently in the majority of pro-
grams, the dwell may also be programmed with a macro, using the system variable #3001. For
example, G0O4 P5000 (a five second dwell) is equivalent to the following macro (and its call):

¢ Macro call:
G65 PBO18 TS000

¢ Macro definition:

08018 (TIMER AS A DWELL)

#3001 = O
WHILE (#3001 LE #20) DOl

END1
M99
%

T=#20 can be any other local variable (T is in ms)

Set system variable for timer to zero
Loop until #3001 reaches the set delay

Loop end
Macro end

Note that even with the WHILE loop in effect, there is no need to program a counter, since the

system variable #3001 is always counting.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

AUTO MODE OPERATIONS 197

Most CNC lathes may benefit from these functions a little more than machining centers.
Regardless of the application (milling or turning), an important reminder:

| Be careful when activating the state of the M-S-T functions ! I

Feedhold, Feedrate, and Exact Check Control

System variable #3004 is similar to the #3003, but is used for automatic operation contro! of
the feedhold swilch, the feedrate override switch, and the exact stop check control. This variable
can have up to eight settings, with the 0 (zero) setting as the default for all three functions, when
the machine and control power is turned on. Zero setting means the function is active. Pressing
the RESET button or Power Off will clear both system variables #3004 and #3003.

The #3004 variable controls three states of operation:

J Feedhold

] Feedrate override
- Exact stop check mode

Make sure to understand how these operations work before attempting to use them in macros,

¢ Operation State 1 - FEEDHOLD

When the feedhold is disabled in a macro, using the variable #3004, and the feedhold button
on the control operation panel is pressed, the machine stops in the single block mode. If the sys-
tem variable #3003 (described earlier) has disabled the single block mode, there will be no single

block mode operation available at all.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

202 Chapter 16

Controlling the Number of Machined Parts

There are two more system variables that relate 10 auto mode operation. Two system variables,
#3901 and #3902 control the counting of machined parts during an automatic operation.

They are:
#3901 Number of parts completed (machined)
#3902 Number of parts required

System variable #3901 is used for the number of parts machined. The value of this variable
stores the number of completed parts.

System variable #3902 1s used for the number of parts required. The value of this vanable
stores the number of required parts (the target number).

Both variables can be used to write to or to read from (read/write type). A negative value should
not be used with these variables in macros (consider using the ABS function).

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

206 Chapter 18

Benefits of Parametric Programming_

— R

Fast turnaround in production is the most significant benefit of family of parts macros. More
time is often needed to develop a macro than a standard program, but this time is an excellent in-
vestment, especially if the macro will be used often. Knowing the benefits parametric program-
ming offers, contributes to better decision when to develop a parametric program and when a
standard program is more suitable. Parametric programming benefits in these improvements:

¢ Overall benefits

0 Quick turnaround between parts

(J Reduced time for program checking

d Product quality improvement
d Decrease of overall production costs

Individually, the benefits may be further identified in the production and programming areas:

¢ Benefits in the production area:

(J Reduction of scrap parts
O increased quality of the machined part
3 Tooling cost down due to standardized tooling

J Increased productivity of the CNC machine
J Lower maintenance costs

¢ Benefits in the programming area:

QO Drastic reduction Is programming time
J Programming errors reduced or eliminated

O Consistency for all similar parts
J Easier workioad transition

In order to benefit from the parametric approach to programming, the first step is to identify
suitable parts. Not every programming job is suitable for the additional investment in time.

When to Program Parametrically

The several areas already mentioned are also very important in determination whether the para-
metric programming will bring benefits or not:

Large number of parts that are same in shape but different in dimensions
Large number of parts that are similar in shape

Parts that repeat fairly frequently
Parts that contain repetitive tool path

Various machining patterns

coCcoC

Parametric of programming is never a replacement for other methods - it only enhances them.
There could be a significant investment in time spent on parametric macro program development.

The resulting benefits must be tangible and measurable, in order to be economically efficient.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

212 Chapter 19

Identify Variable Data

The purpose of finding the data values that change from part to part means finding variable
data. Data that changes will help establish variables for the macro, either as a direct input or for
further calculations. In the next listing, the same standard program is presented, this time with all

variable data underlined:

(PIN-001 STANDARD PROGRAM) VARIABLE DATA IS UNDERLINED
(X0Z0 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE = PART LG + 5 MM)

Nl G21 T0100 Metric units and Tool I - no wear aoffset

N2 G96 S100 MO3 CSS at 100 m/min - CW spindle rotation

N3 GO0 xX53.0 2Z0 TO101 MO8 Start position for face cut + wear offset + coolant
N4 GO1 X-1.8 FO.1 Face just below centerline at 0.1 mm/rev feedrate
N5 GO0 23.0 Clear-off face - Z-axis only - by 3 nun

N6 G42 X51.0 X-start for G71 cycle and tool radius offset

N7 G671 U2.5 R1.0 G71 ~ 2.5 mm cuiting depth, 1.0 retract

N8 G71 P9 Q14 Ul1.5 W0.125 F0.3 G71 - N9 to N14 contour - XZ stock - 0.3 mmyrev
N9 GO0 X16.0 Calculated X-diameter for chamfer - '1’

N10 GO1 X24.0 2-1.0 FO.1 Cut front chamfer at 0.1 mmi/rev - ‘2’

N1l z-23.0 R3.0 F0.15 Cut small dia + inner radius at 0.15 mm/rey - '3’
N12 X46.0 R-2.0 Cut face and outer radius - '4’

N13 2-47.0 Cut large diameter 3 mm past part length - 'S’
N14 X54.0 F0.3 Clear-off stock diameter - X-axis only by 2 mm - '6’
N15 G70 P9 Q14 5125 G70 finish conrour at 125 m/min

N16 GOO G40 X100.0 Z50.0 TO100 MO9S Rapid io tool change paosition + cancellations
N17 MO1 Program stop (optionally - next tool expected)

This is a simple example - six program entries have been identified (underlined). Study them in-
dividually and very carefully - these values will become variables in the macro. Block by block
evaluation yields some insight into the selected data:

N9 GO0 X16.0 Calculated X-diameter for chamfer - ‘1’

Block N9 represents the first point of the contour ‘I’ (P9 in the cycle block). It is the X-position
for the chamfer cutting that follows. This diameter is not on the drawing, it has to be calculated,
based on the chamfer size (1 mm at 45°) at the small diameter and the current Z-clearance (3 mm

as per block N5). Working with a 45° chamfer is always easy and no trigonometry is required.
The small diameter is 24 mm, chamfer is 1| mm, and the Z-clearance is 3 mm.

To calculate the corresponding X-diameter is easy - just watch the process carefully and make
sure all values are calculated for a diameter, not per side (radius):

X=24-2x1-2x3=16 mm = X16.0

This calculation will be part of the macro, using other variables, still to be defined.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

218 Chapter 19
Note the change in block numbers in the following programs:
{PIN-001 -~ MAIN PROGRAM)
{(X0Z0 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE = PART LG + 5 MM)
N1 G21 TO100 Metric units and Tool 1 - no wear offset
N2 G96 5100 MO03 CSS at 100 m/min - CW spindie rotation
N3 GO0 X53.0 20 TO0101 MOS8 Start position for face cut + wear offset + coolant
N4 GO1 X-1.8 FO.1 Face just below centerline at 0.1 mm/rev feedrate
NS GO0 23.0 Clear-off face - Z-axis only - by 3 mm
N6 G42 X51.0 X-start for G71 cycle and tool radius offset
N7 G65 P8021 A23.0 B44.0 C24.0 D46.0 R3.0 (PIN-001 MACRO ARGUMENTS)
N8 GO0 G40 X100.0 250.0 TO100 MOS Rapid to tool change position + cancellations
NS MOl Program stop (opiionally - next tool expected)
Other tool(-s) may follow
08021 (PIN-XXX MACRO PROGRAM) Four pins in the family are covered by this macro
N101 G71 U2.5 R1.0 G71 - 2.5 mm cutting depth, 1.0 retract
N102 G71 P103 Q108 Ul.5 W0.125 F0.3 (7] - N103 to N108 contour - XZ, stock - 0.3 mm/rev
N103 GO0 X([#3-2+1-2+3) Calculated X-diameter for chamfer - ‘A’
N104 GO1 X#3 2-1.0 FO.1 Cut front chamfer at 0.1 mm/rev - 'B’
N105 Z-#1 R#18 F0.15 Cut small dia + inner radius at 0.15 mm/frev - 'C’
N106 X#7 R-2.0 Cut fuce and owter radius - 'D'
N107 Z-[#2+3.0] Cut large diameter 3 mm past part length - 'E’
N108 X54.0 F0.3 Clear-off stock dia - X-axis only - by 2 mmn - 'F’
N109 G70 P103 Q108 8125 G70 finish contour at 125 m/min
N110 MS9 End of macro
%

Any legitimate block numbers are allowed, as long as there are no duplicates in the same pro-

gram (subprograms and macros included). Keep in mind that the P and Q addresses in the cycles
indicate block numbers actually used in the contour program.

Final Version

The purpose of this presentation was to develop a basic macro program for a family of similar

parts. Without a doubt, many additions to the macro can easily be made, depending on the exact
nature of the existing job. Tolerances and surface finish may play a great role in the program de-
velopment, as may some specific requests by the customer. These are all easy to implement. The
main objective was to introduce a skilled CNC programmer mnto the world of macros.

One significant change that can be made - and it can also show how flexible macros are - is to

make it easier 10 change machining from one part to another,

In the macro OB021, the only way to change the assignments of variables for different pins is in
the block N7 - the G65 block. This is quite a common method, but not the best method. Much
better method is to include all four definitions into a single main program, and change just one
variable number (at the program top) to select the required part (pin type). This objective is easy
to achieve by including the four definitions along with the IF function in the main program:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

222 Chapter 20

When considered with similar drawings, this example provides all data needed to set up macro
framework. It covers the conditions and restrictions, in which the macro application will be valid.
For the educational purposes, this first application will be relatively simple (but definitely useful).
Many programming techniques used in this macro will repeat in subsequent examples, with added
features. First, evaluate the various self-imposed conditions and constrains towards the set goal:

Al holes are spaced equally within the pattern EQSP holes

(J Any number of holes is acceptable - minimum of two holes within machine capabilibes
O The distance between the holes must be known pitch of hofes

O Any pitch between holes is acceptabie within machine capabilities
(J The location of the first hole must be known as XY coordinates

O Any angie between the first hole and the iast hole must be known establishes direction

Once the conditions have been established and applied to an example, like the one in Figure 31,
the most important first step has been completed. When evaluating a single drawing, always think
of all other possibilities that may exist in similar drawings. For example, is the pattern of holes
horizontal or vertical, is it rotated in the opposite direction, should the macro still be able to han-
dle this pattern? Logically, there is no fundamental difference between one orientation and an-
other, Always consider all features, including the angle, even if the angle is zero. Zero degree
angle will define the horizontal orientation to the right of the first hole (east direction). A one-hun-
dred-eighty degree angle defines the horizontal orientation to the left of the first hole (west direc-
tion). In the macro, the defined angle controls the orientation of the linear hole pattern. Based on
all these considerations, including the self-imposed restrictions and other decisions, a common
macro specific drawing will be necessary, applicable to all similar patterns - Figure 32:

MACRO 08101
“ @\ﬂ\
Q (#7)
Angu

A (#1)
ar hole pattern macro - Version 1
? VAR # Description

H | 11| Number of EQSP holes

Q |17 Spacing between holes

Start hole XY location l :
called in the main program A | 1 | Angular direction of cutting

G65 P8101 H- Q- A-

Figure 32
Variable data for angular pattern of holes - Version 1 - Macro 08101

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

226

C_hapter 20

Frame Hole Pattern

Frame hole pattern is quite common in many machine shops, and consists of a series of equally
spaced holes, forming a rectangular pattern. In effect, this pattern consists of four sets of holes in
an angular arrangement, so the first macro (O8101) can be used - four times. However, a frame
pattern is more efficient and - if developed correctly - prevents double cutting of the comner holes,
which can easily happen using other methods. The macro to develop is a macro that defines such a
pattern of holes, starting at the lower left hole of the rectangle, then continuing around the frame
in the CW or CCW direction. Again, certain decisions, conditions and restrictions have to be im-
posed first, based on the type of work.

Figure 35 represents a typical drawing for a frame hole pattern.

gL THRU

6 EQSP HOLES

Figure 35

q‘
F
Tl

|

9.

o 0-0-00 %

Frame hole pattem - definitions

5 EQSP HOLES

|

<
10

a

Material: Aluminum plate 100 x 76 x 12 mm

Based on the typical pattern shown, study carefully what features have been considered. Note
that the equal spacing between holes is (or could be) different for the X-axis and the Y-axis, This
reality has 1o be taken into consideration. Based on the example drawing, as well as on the result
of the necessary thinking process, the following features have been employed in the macro pre-

sented here:

oo oe

All holes are spaced equally within the pattern
Any number of holes is acceptable

Distance batween holes must be known

Any pitch between holes Is acceptable
Location of the first hole must be known
First hole is the lower left corner of the pattern
Machining direction is CCW

pitch in X can be different from the pitch in Y
machine permiting - 2 min per row or column
pitch along X and Y (both posttive)

XY coordinates

must be known

X+ Y+ X- Y-

In the macro, the key element will be to prevent cutting any corner hole twice. That can be
achieved by programming L0 or K0 in the fixed cycle called. From these selected conditions, the
assignments in the G65 macro call block can now be defined.

Figure 36 shows the visual definition of all required variables.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

232 Chapter 20

Although the concept of this macro may need some effort to understand it thoroughly, a few
points may help. First, note the input of the BCD - the Bolt Circle Diameter - internally, in the
macro, the diameter is irrelevant - it is the radius that is needed within the macro for calculations.
However, it is the diameter value that is the normal way of dimensioning the drawing, so it should
be the diameter value that is input into the G65 variable definitions (variable R in the above figure
is actually not used - instead, the variable W is redefined, to save memory resources of the control
system. Another variable that is necessary for calculations (but not defined as an assignment) is
identified as B in the illustration only, and nested internally in the macro.

For final reference, finished top of the part is program zero for the Z-axis (Z0). X0YO is located
at the lower left corner (but could be anywhere). The following main program reflects the bolt cir-
cle drawing illustrated in Figure 37:

00024 (MAIN PROGRAM)

N1l G21 Metric mode

N2 G90 GOO G54 X0 YO S1200 MO03 First motion block + spindle speed

N3 G43 210.0 HO1 MOB Tool length offset + clearance above

N4 G99 G82 R1.0 Z2-15.9 P300 F225.0 LO Fixed cycle call data - no machining (or K0)
NS5 G65 P8104 X50.0 Y37.5 W49.0 B6 Al.0 S1 Macro call with assignments - full circle
N6 G80 Z10.0 MDS Retract above work

N7 G28 210.0 MO05 Return to machine zero

N8 MO1 End of current tool

%

08104 (BOLT HOLE CIRCLE MACRO) Macro number and description

#10 = #4003 Store current setting of G90 or G91
IF(#23 LE 0] GOTOS101 Bolt circle diameter to be greater than zero
IF[(#11 NE FUP([#11]] GOTO9102 No fractions allowed for number of holes
IF(#11 LE 0] GOTO9103 Minimum number of holes is one

IF(#19 EQ #0) THEN #19 = 1 Start hole number = 1 (one) if not specified
IF[(#19 NE FUP([#19)]) GOTO9102 No fractions allowed for start hole number
IF[(#19 LT 1] GOTO%104 Start hole number must be one or higher
IF[#19 GT #11] GOTO9105 Start hole number must be less than all holes
#23 = §23/2 Change diameter of bolt circle to radius
WHILE([#19 LE #11] DOl Start loop for holes

#30 = [#19-1)+360/#11+#1 Calculate current hole angle
X[COS[#30]1*#23+#24) Y[SIN[#30]+*#23+825) Calculate current X and Y hole location
#19 = #15+1 Update counter for the loop

END1 End of loop

GOTO09999 Bypass alarm messages

N9101 #3000=101 (DIA MUST BE GT 0) Alarm number 101 or 3101

N9102 #3000=102 (HOLES DATA MUST BE INTEGER) Alarm number 102 or 3102
N9103 #3000=103 (ONLY POSITIVE NUM OF HOLES) Alarm number 103 or 3103
N9104 #3000=104 (START HOLE MUST BE INTEGER) Alarm number 104 or 3104
NS105 #3000=105 (START HOLE NUMBER TOC HIGH) Alarm number 105 or 3105
N99599 G#10 Restore modal G-code

M99 End of macro

%

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACROS FOR MACHINING 237

Variable Data for Circular Pocket Roughing

Circular pocket roughing includes many settings that change from job to job. Good planning is
important and when completed, the following features will be defined to develop a macro toolpath
for a circular pocket roughing:

J Pocket center as absolute X-location ... assigned lelter X (variable #24)
J Pocket center as absolute Y-jocation ... @assigned letter Y {variable #25)
J Pocket finai depth ... assigned letfer Z {variable #26)
J Pocket final dlameter ... assigned lefter D (variabie #7)
J Depth of each cut ... assigned lefler K (variable #6)
2 Width of each cut ... assigned lefter W (variable #23)
J Tool offset number ... assigned lefter T (variable #20)
Q Cutting feedrate ... assigned lefter F (variable #9)

If the K (#6) is omitted, macro will cut to the full depth, as specified in assignment Z (#26).
This macro is also a good example of using two loops simultaneously - a loop within a loop.

The Figure 42 shows a graphical representation of the variables used for circular pocket rough-
ing macro. Note that the common variable #120 is defined as a calculated value within the
macro, based on the tool radius stored in the offset number identified by variabie T (#20).

MACRO 08106

Circular pocket - roughing macro
VAR| # Description
X |24 | Absolute center location in X
Y |25 _ Absolute center location in Y

Z |26 | Pocket depth
7 | Pocket diameter (initial)

Y (#25)

D | 7 | Pocket radius #7/2 - applied
K | 6 | Depth of each cut (Z-axis)
W | 23 | Width of cut (typical)
W (#23) ET Calcums to cut
(Fer) 20 | Tool radius offset number

T
| F ‘9 Cutting feedrate

G65 P8106 X- Y- Z- D- K- W- T- F-

Figure 42
Assignment of variables for a typical circle pocket roughing - Macro 08106

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

242

Chapter 20

cCoooo0Co

(POCKET DIA - TOOL DIA) / 2

Z-<clearance above the work is 2 mm or 0.1 inches {(automatically selected)

Feedrate for Z-axis infeed is one half of the programmed feedrate

Direction of machining is from the center in climb milling mode (G41 D..) at M03

The tool offset numbers must be within the range of 1-33

Tool offsets used are for Memory Offsef Type C - less than 200 offsets - as per Fanuc control designation
Tool diameter must be greater than 0 and less than the pocket diameter

LEAD-IN and LEAD-OUT arcs are identical and calculated by the macro as:

Additional conditions can be applied only for more advanced approach:

J i cleanup of the bottom is required during finishing, the tool diameter must be POCKET DIA / 3 or greater
O Stepped Z-depth may be added to the macro, if desired

00027 (MAIN PROGRAM)

N1l G21
N2 G900 GO0 G54 X0 YO sS800 MO3

N3 G43 225.0 HO4 MO8

Metric mode
Any first motion location with spindle speed
Tool length offset with clearance above part

N4 G65 PB107 X50.0 Y37.5 27.5 W49.0 T4 F150.0 Macro call with assignments

N5 225.0 M09

N&é G28 Z25.0 MOS5
N7 MOl

%

08107 (CIRCULAR POCKET FINISHING MACRO)

IF[#26 EQ 0] GOTOS101

IF[#23 LE 0] GOTOS102

IF[#20 LE 0) GOTO9103

IF([#20 GT 33] GOTOS104

IF[#S EQ #0) GOTOS105

#120 = #[2400+#20]+#[2600+#20]
IF[#120 LE 0] GOTOS106

#23 = #23/2

IF[#23 LE #120] GOT0S107

#101 = [#23+#120)/2

#10 = #4003

#26 = ABS([#26]

#126 = #4006

IF[#126 EQ 20.0] THEN #126 = 0.1
IF[#126 EQ 21.0] THEN #126 = 2.0
G90 GO0 X#24 Y#25

Z#126

GOl Z-826 F([#9/2)

G91 G41 X#101 Y[#23-#101) D#20 F#9
GO3 X-#101 Y#101 I-#101

J-#23

X-#101 Y-#101 J-#101

GOl G40 X#101 Y-[#23-#101]

GS0 GO0 Z#126

Retract above work
Return to machine zero
End of current tool

Depth of pocket must not be a zero

Pocket diameter must be a positive value
Offset number required for cutter radius offset
Maximum number of offsets is 33

Cutting feedrate must be defined

Retrieve the stored value of selected 100l offset
Offset value radius must be positive

Change diameter of pocket to radius

Pocket radius must be larger than offset radius
Calculate Lead-in/Lead-out arc radius

Store current setting of G90 or G91

Guararntee that the Z-depth is a positive value
Check current units (English G20 or Metric G21)
Clearance above work is 0.1 inch for G20
Clearance above work is 2 mm for G21

Rapid to start position X and Y

Rapid 1o start position Z {above pocket center)
Feed to depth at one half of the feedrate
Motion from center + cutter radius offset
Lead-in arc tool motion

Full circle tool motion

Lead-out arc tool motion

Return to the center + cancel cutter radius offset
Retract above the finished pocket

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

MACROS FOR MACHINING 249

Macro Version Development

Normally, custom macros are developed from scratch - there is no need to create a subprogram
first and then "translate’ it. Based on the provided drawing in Figure 48 (and all similar drawings),
a general master template of all required variables can be made (Figure 49):

MACRO 08109

- W(#23) ~o=] D (#7) —om] fea

Multiple depth circular groove macro
VAR #| Description
24 | Groove center X-coordinate
25| Groove center Y-coordinate
23 | Groove center diameter
Distance between centers
Maximum depth of cut

8 | Cutting feedrate

G65 P8109 X- Y- W- D- C- F-

Figure 49
Assignment of vanables for a typical circular groove cutfing macro - Macro 08109

Based on the drawing specifications, the macro call will be developed as expected:

G65 PB1l0O9 X- ¥- W- D- C- F-

i where ..
X = (#24) Center location of the circular groove in X-axis
Y = (#25) Center location of the circular groove in Y-axis
W= (#23) Groove diameter on the centerfine {groove pitch diameter)!
D = (#7) Total depth of the groove
C = (#3) Cutting depth of the groove (maxmmum depth of each cut)
F = (#9) Cutting feedrate for the circle machining

Although this macro only covers the most important general concepts of controlling the groove
depth, it should not be very difficult to develop another macro, one that completes both walls of
the groove, once the final depth has been reached (finishing cuts). Regardless of the macro com-
plexity (easy or difficult), thorough pre-planning is absolutely essential. Good planning can save
many valuable hours of work and yield excellent results,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

256

Chapter 21

Options Available

Although the most common programming codes that are used as special cycles are the G-codes,
M-functions are often used to allow a hardware function call by the special M-code, selected by
the CNC macro programmer (often at the manufacturer's level).

Typically, the following addresses can be used for either a macro call or a subprogram call:

J G-code macro call .. COMMON

J M-code macro call ... common

J M-code subprogram call ... 18SS common

S-code subprogram call .. 1ess common

< T-code subprogram call .. l68s common

J B-code subprogram call .. less commen
G-code Macro Call

Total of 10 (that is ten) of G-codes can be defined as special custom macros that can be called by
a G-code. Only the range between G01 and G255 is allowed, with the exception of G65, G66,
and G67 codes. Positive value is the same as G65, negative value is the same as G66 (or G66.1).

Depending on the control system, the system parameters related to the G-code Macro Call are
listed in the following tables (different control systems are shown):

FANUC SYSTEM 0

G-code Macro Call - 10 options available - G685, G66 and G67 excluded

Parameter Number

Description <Valid data 1 - 255>
G-code that calls the custom macro stored in program 03010

G-code that calls the custom macro stored in program 09011

G-code that calls the custom macro stored in program 09012

G-code that calls the custom macro stored In program 09013

G-code that calls the custom macro stored in program 09014

G-code that calls the custom macro stored in program 09015

G-code that calis the custom macro stored in program 09016

G-code that calis the custom macro stored in program 09017

G-code that calls the custom macro stored in program 09018

220
rry
222
223
224
225
226
227
228
229

G-code that calls the custom macro stored in program 09019

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

CUSTOM CYCLES 261

MACRO 08111

P see text
—-. DIA = Circle cutting cycle G13
T (#20) —=t VAR | # Description
Radius offset D | 7 | Circular pocket diameter
NUMBER
20 | Cutter radius offset number

Start macro at XY center © — + —

and at pocket bottom P |8 [fanting Tacssie

o #3331 #33 =

G13D-T-F-

Figure 53
llustration for the development of G13 circle cutting macro cycle (ckmb milling mode)

The curter radius offset using the 641 command will not be necessary, since the macro reads
the radius offset value directly from the control register. In fact, it would be wrong to program
G41. Without the G41, only arcs can be programmed, without linear lead-in and lead-out tool
motions. The Figure 53 also shows assignments of the three variables used in the macro.

The variable data is short for this macro - only three assignments are required:

A The pocket size - normally given on the drawing as a diameter Vaniable D (#7)
J The tool offset number where the cutter radius is stored Variable T (820)
The cutting feedrate Variable F (#9)

There are macros similar to this one that require the pocket radius input rather than its diameter.
Selecting the input of a diameter is a better choice, since circular holes or pockets are dimensioned
as diameters. For the internal calculations, when the radius is needed, a simple calculation will
store the radius as one half of the given diameter.

For most machining applications, the climb milling mode built into the macro (cycle G13) is the
desirable way of metal removal. However, the macro is not suitable to cut in conventional mode,
should such need arise. For that purpose, another macro (cycle G12) will have to be developed.
Essentially, both macros will be the same, except the machining order of 1-2-3 for the climb mill-
ing mode will be reversed to 3-2-1 for the conventional mode (G03 will change to G02). Both
macros (cycles) are listed in this chapter.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

EXTERNAL OUTPUT 269

DPRNT Function Description
The DPRNT function writes a plain text output. The programming format is shown in Figure 56.

DPRNT function format Figure 56

Format structure of the DPRNT function

Character(-s) to print
— Variable number

Number of digits before
the decimal point

Number of digits after
| the decimal point

[a#b [cd] ...]

In the DPRNT function, the characters can be the capital letters of the English alphabet (A to Z),
all digits O to 9, and several special characters (+ = / * ..). Asterisk (*) will be output as the
space code. The End-of-Block character (EOB) will be output according to the setung of the ISO
code, Variables that are vacant (null variables) cannot be output on Fanuc 6 (alarm #114 will re-
sult), however, they will be output as ¢ on Fanuc 10/11/15/16/18/21. Since the output format de-

pends on the setting of some system parameters, let’s look at the settings of the relevant
parameters. There 1s a different between some controls.

Parameter Settings - Fanuc 10/11/12/15

In order to make the data transfer work correctly, some system related parameters have to be set
accordingly. The following parameters have to be set for Fanuc controls 10/11/12/15:

Parameter Number | Setting value Type

0021 Qutput device interface number for foreground Byte

r% whara the setting value can be ...

1 Puncher to be connected with CD4A of BASEQ (RS-232C interface 1)
2: Puncher to be connected with CD4B of BASEQ (RS-232C interface 2)
3: Puncher to be connected with CD4 of senal port (RS-232C interface 3)
4 DNC1

13: Puncher to be connected with CD3 of serial port (RS-222 interface)
15: MMC DNC operational interface

16: MMC UPLOAD/OOWNLOAD interface

Note that PUNCHER can be any external RS-232 device.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

EXTERNAL OUTPUT 273

BPRNT or DPRNT ... with variable specifications
PCLOS
\ Macro structure - Version 2 I
POPEN
BFRNT or DPRNT ... with vaniable specifications
BPRNT or DPRNT ... with variable specifications
PCLOS
Output Examples

The following macro example will download the current values of variables within the range of
100 to 149 to an external device, such as a computer disk file (in text format):

« Macro call:
G65 P8200 I100 J149 Example of macro call - range of variables specified

& Macro definition;

08200 (VARIABLE SETTINGS PRINT-OUT)

POPEN Initialize the active communications port

#1 =0 Reset variable counter

WHILE[#1 LE (#5-#4]] DO1 Limit loop to selected range of variables

#2 = #[#4+[#1)) Current variable number - as a variable

#3 = #4+#1 Current variable number - as a number (no # symbol)
DPRNT (VAR #3[5] ***DATA #2([57]) Formartted output includes text, variable ID and value
#l = #l+1 Increase the counter of vanables by one

END1 End of loop

PCLOSE Clase the active communications port

M99 End - can be M30 if used as main program

L]

Virtually any data that is stored in the control system can be output as a hard copy or displayed
on the screen. Macro programs using the DPRNT function can be very useful in keeping records,
creating a log of program flow, debugging a troublesome macro, and many other applications.
Some common examples are shown in the next section.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

278

Chapter 23

Probing Devices on CNC Machines

Any machine shop can benefit from measuring the part during a machining cycle. The probe
unit is mounted in the tool magazine, with is own number and offset settings, just like any other
tool. The major difference from other tools is that a probe does not rotate in the spindle when it is
used. In-process gauging is closely tied to the macro program that controls the machining, mea-
suring and adjustments of offsets in the control system. Macro features such as branching, condi-
tional testing, looping, use of different variables and access to control features, are all important
for programming the various probing devices.

In-Process Gauging Benefits

There are many benefits in measuring the various part features during the machining cycle -
they are all relate to the increased productivity and overall accuracy. The most important benefits
can be summed up into several items:

o

J

Types of Probes

Part location, length, and diameter of the cutter used can be measured automatically

All three offset memory groups can be caiculated automatically and corrected as needed during
machining, individually or collectively

Reduction of machine kile time - setup of the part can be greatly simplified - there is no need to spend
time on exact physical setup. The actual position of the part and Its alignment with the machine axes
and/or fixture datums can be corrected mathematically rather than physically

Reduction in the level of scrap - since the actual machined dimensions are monitored
by the macro program and the probing cycle, any required offset correction is made automaticalty

Inspection of the first finished part does not require its removal from the machining area
Broken tools can be detected and proper action followed as specified by the macro program
Initial investment in the technology (equipment and skills) is retumed much faster than other methods

CNC operator's confidence level is increased and unattended machining can become a reality

Various manufacturers offer many different models of probes. When selecting probes, the main
issue is, of course, the probe accuracy. However, accuracy of a probe is not usually an issue,
which means the customer looks for additional features when selecting probes. In this context, it is
very important to understand is that a probe in itself does not measure, so the question of probe
accuracy is purely academic.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

PROBING WITH MACROS 283

The idea of making the first manufactured part exactly to specifications developed into the im-
plementation of in-process gauging. In some cases, this method of measuring can totally eliminate
off-line measuring systems (CMM), or at least complement them. By employing the full in-pro-
cess gauging exclusively at the machine, CMM systems can be often eliminated (at least for cer-
tain applications) and the cost and downtime of the off-line measurement is also ¢liminated. There
are several technological requirements for this technology to be successful.

J The probing system must be used in the toolholder, just as any other tool

(3 The probing system is stationary (non-rotating) and often locked in an oriented position
3 Macro program option has to be available within the control system

O Proper interfaces between the probe and control system have to be established

J Special macro programs have to be developed and maintained for the measuring

In terms of economics, in-process gauging does extend the total cycle time, often quite signifi-
cantly. Even if not every part in the batch is measured, the average cycle time must be considered.
When the CNC machine tool is used as a measuring device, the equipment involved in the various
stages of measurement has to be certified or calibrated. Calibrating of the probing device is done
on a verified gauge (gage), using a macro program. The principles of calibration have been dis-
cussed earlier.

Many CNC machine tools incorporate a unique design that allows for the inclusion of a cali-
brated artifact within the working cube of the machine. Working cube is defined by the combined
maximum amount of travel along the X-axis, Y-axis and Z-axis. If only two axes are considered,
the term 'working cube’ is changed into a working area or a working envelope.

Features to be Measured

In order to determine what features of the part can be measured on a CNC machine, a great deal
depends on the type of probe used. In their basic applications, virtually every probe can measure
the following features of a part or within a particular part:

Center measurement
External diameter
Internal diameter
External length - width
Internal length - width
Depth of a feature
Angle of a feature

QOO0 LO00 0

There are many other part features that can also be measured and some are more common than
others. The most typical item in this group covers the part feature location, such as a center of a
hole, distance between two points, diameter, and so on. Since the typical part feature is normally
specified by at least the X and Y axes, it means a macro development that uses a combination of
the various resuits and manipulating them mathematically. All this takes place within the macro
body. In many cases, directly returned value are not used as such, but for calculations of a differ-
ence in values between two measurements. How this difference is handled depends on the particu-
lar application. Normally, the calculated value is used to adjust a particular offset setting.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

85 CNC Custom Macros

Programming resources

for

Fanuc Custom Macro B users

An invaluable companion to the author’s best selling CNC Programming Handbook, this book
IS an extensive introduction to the subject of macros (known as Custom Macros or User Macros). Its
purpose I1s to make you aware of what macros are, how to develop them, and how to use them
effectively. It also explores important related subjects and identifies several other helpful topics in
this increasingly important and exciting field of CNC programming.

Knowiledge of macros Is becoming more and more essential, as companies large and small look
for more efficient ways of CNC program development. This approach does not replace but rather
complements other programming methods. As an extension of manual programming, macros offer
a much higher level of sophistication and often can serve as a special solution to special require-
ments.

This book offers many practical do’s and don'ts while covering all the popular Fanuc control
systems exclusively, Macros for different controls share a common approach and mainly differ in
their syntax. Leaming Fanuc custom macros will be a benefit if you should need to leam a macro
for a different control at another time.

Numerous examples and sample programs are used throughout this book. Their purpose Is to
serve not only as practical applications of the techniques presented, but (for many of them) as the
basis of ready-to-run macro programs. To help make your use of these programs as easy and as
reliable as possible, all the sample programs have been reproduced on the enclosed CD.

CNC programmers and service technicians will find this book a very useful training and
reference tool to use in a production environment. Also, it will provide the basis for exploring in
great depth the extremely wide and rich field of programming tools that macros truly are.

ABOUT THE AUTHOR Peter Smid is a professional consultant, educator, and speaker,
and has many years of practical, hands-on experience with CNC and CAD/CAM applica-
tions on all levels. He consults for both manufacturers and educational institutions on the
practical use of CNC technology, part programming, CAD/CAM, advanced machining,
tooling, setup, and many other related fields. Hundreds of organizations have used his
services and benefited from his wide-ranging industrial background in CNC programming,
machining, and company-oriented training. His enormously popular CNC Programming
Handbook 1s also available through Industrial Press.

ISBN 0-8311-3157-8

||

97780831

131579

