

Smartist scripting

headquarters
Reg. Gurey Zona Industriale 5/bis

11020 Donnas (AO) - Italy
TEL.: +39 – 0125 – 812811
FAX: +39 – 0125 - 812858

DPSS Laser division
Via Oneda, 11

21018 Sesto Calende (VA) - Italy
TEL.: +39 – 0331 - 918001
FAX: +39 – 0331 - 918032

www.laservall.com

Published on:

Updates

Author

Topics of the new edition Release date

Manul Lupato 1st draft
Manul Lupato Release
Manul Lupato Added section on Project.Close() function 25/01/2008
Manul Lupato Adaptations to ship this manual with Smartust

installer
13/02/2008

Microsoft, MS, MS-DOS, Windows 98, Windows NT, Visual Basic, PowerPoint, Microsoft Press, are registered or trademarks of
Microsoft Corporation In the United States or other countries.
Pentium ® is a registered trademark of Intel Inc.
TrueType is a registered trademark of Apple Computer, Inc.

The information contained in this present document is subject to change without prior notice. All product or program names
mentioned in this document are registered trademarks owned by the respective companies. They are only used in this
document for editorial purposes.

Chapter 1 2 Laservall S.p.A.

PREFACE ... 4
AUDIENCE ... 4
STRUCTURE ... 4
FEEDBACK... 4

SMARTIST ... 5
BUILDING A PROJECT... 5
SCRIPTING ... 5

What’s a script?.. 5
Adding a script to a project .. 5

FORMATTERS... 5
ACTIVEX.. 7

ONLINE DOCUMENTATION ... 7
SCRIPT LIMITS ... 7
ACTIVEX CLIENT... 7
CHOOSING A SOLUTION ... 8

xLaser ... 8
xLAL ... 8
The right tool .. 8

BASIC SCRIPTING SYNTAX.. 9
VARIABLES.. 9

The Variant type: weakly and strongly typed languages .. 9
Things can go subtler and errors more difficult to find:... 9
InputBox prompts the user to insert data; these are always returned as a string, no matter what the input was. 9
Subtypes .. 9
Arrays ... 10
Declaration... 10
Operators.. 10

CONDITIONAL STRUCTURES AND FLOW CONTROL... 11
STRUCTURES FOR CYCLES ... 12
FUNCTIONS AND SUB... 13
OBJECTS .. 14

SMARTIST OBJECTS .. 15
PROJECT .. 15

Processing items ... 15
Loading projects ... 15
Getting interfaces.. 15

DOCUMENT ... 15
Coordinates system... 15
Modifying Document appearance... 15
Accessing Objects ... 16
Laser Parameters.. 16
Synchronization .. 16

SPOOLER ... 16
Busy and Ready... 16
Calling sequence... 16

CONTROL... 16
AXIS .. 16
COMPORT .. 16

Flags ... 16
INPUTOBJECT .. 17
IOPORT.. 17

Masking .. 18
Checking ... 18

TMR... 18
TEXTFILES... 18

Laservall S.p.A. 3 Chapter 1

GRAPHICAL OBJECTS... 19
Transformation ... 19
Parameters.. 19
Box and Extend points .. 19
Wobble .. 19

EVENTS .. 21
PROJECT EVENTS ... 21
IOPORT AND COMPORT EVENTS .. 21

SCRIPT LIMITATIONS ... 22
USE OPTION EXPLICIT DECLARATION WITH LARGE SCRIPTS .. 22
DSP2 I/OS DO NOT WORK WHILE MARKING... 22
BE CAREFUL WHEN ASSIGNING OBJECT REFERENCE TO GLOBAL VARIABLES ... 22
OBJECT DESTRUCTION ... 22
ACTIVATE SMARTIST ACTIVEX LICENSE ... 23

HOW TO BUILD AN ACTIVEX APPLICATION... 24
VISUAL BASIC ACTIVEX CLIENTS ... 24
VISUAL C ACTIVEX CLIENTS... 24

The #import directive.. 24
Using the wizard ... 24

Chapter 1 4 Laservall S.p.A.

Preface
This document was realized with the goal to introduce to VB script programming using Smartist.
This document is not Smartist manual: please refer to it for information on using the program. The
manual can be downloaded from Laservall web site in case you do not have one:
http://www.laservall.com
This document focuses on scripting. Script allows Smartist to interact with other programs and to make
its operation automatic.

Audience
Basic script programming skills are suggested. If the reader has no experience at all, an introduction
to basic scripting is given.
More information can be easily found (and in greater detail) online. Check http://msdn.microsoft.com
as a starting point

Structure
This document focuses on Smartist scripting interface; since its core technology is Microsoft ActiveX
the first part is dedicated to understanding similarities and differences between script and ActiveX
clients.
The second part goes deep into describing the documentation.

Feedback
If you find errors or would like to report suggestions, please email the author here:
swdept@laservall.com

Laservall S.p.A. 5 Chapter 1

Smartist
Smartist is Laservall’s program suite for industrial and ID marking. It includes a layout editor, a laser
control program, a program for tuning the optical field and other applications.
Smartist main application is Laser Editor: this is used to edit the layout to be marked, control axis
movement, build simple projects and, finally, write scripts using the built-in editor. Smartist and Laser
Editor are usually interchangeable terms.
This is not Smartist manual. Please refer to Smartist manual if you have any doubt on the terms being
used

Focus of this section will be illustrating the way the user has to make Smartist operation automatic

Building a project
Each Smartist project comprises a list of one or more project items. Items are associated to specific
behavior of the program: when they are processed the program performs peculiar actions. Some items
react to external signals: since Smartist was born for industrial environment, this allows the program to
interact with programmable logics (PLC) to realize simple program flows. Usage of project items is the
simplest way to control program flow as item processing can be non-sequential.

Scripting
Scripting is an easy and flexible way to control item processing flow, modify layout, interact with other
programs.

What’s a script?
The distinction line between scripts and programs is that the first are written in interpreted languages,
the latter in compiled languages. Example of compiled languages are C or C++: a compiler produces
the binary code from the source files and the resulting program can work stand-alone. Examples of
interpreted languages are VBscript, Jscript, PerlScript: the program need an interpreter on the host
machine to work. The interpreter parses the script at run-time and perform the operation it requires.
Smartist is a script host: not only it includes a script engine that works as an interpreter, but exposes
its own interface in that engine. The scripts executed in Smartist context can therefore access Smartist
own script interface.

Adding a script to a project
To add VBScript to a project, the Project Customization tag must be enabled. An additional page
labeled SCRIPT will appear to the side of the project pages.
A pre-set script can be entered using the SCRIPT combo box located in the properties window or a
new one can be written.
The highlighting syntax is used to quickly display the basic elements that make up the script.
Any errors during execution of the script will be indicated by messages on the page.

Formatters
It is possible to apply customised formatting to single objects (text, bar codes or data matrix) using
formatters. Formatters are simple VBScripts executed into objects context: they execute before a
START command, thus being updated each time the object is sent to the laser print spooler.
It is possible to format an object by selecting the formatter as shown in the following figure.

Chapter 1 6 Laservall S.p.A.

PLEASE NOTE: formatters are not saved with the project as scripts: you need ti manually copy the
formatter in the target machine into the “Formatters” folder.

The formatting scripts are saved in the folder ../smartist4.1/formatters/ .

The keyword Text can be used inside the formatter to access the text contained in the object.

Laservall S.p.A. 7 Chapter 1

ActiveX
ActiveX is a Microsoft technology that enables software components to interact with one another in a
networked environment, regardless of the language(s) used to create them. An ActiveX server is a
program that exposes one or more interfaces to the environment. Accessing those interfaces an
ActiveX client can interact with the server.
Smartist in an ActiveX server; this technology is the core of scripting as well: the very same interface
can be accessed by an ActiveX client and by a script (that is actually seen by the system as client).
This is the reason the documentation of the interface is only one.

Documentation
The ActiveX documentation ships with the installer.
The document is extracted from the source code of the objects or method exported: being Smartist
written in C++, the syntax of documented methods and objects is C++ and MFC (Microsoft Foundation
Class). Script developers must be aware of some information here:

• Pointers: C-style pointers are not supported in VBscript. Functions using pointers cannot be
used in scripts.

• IDispatch: functions returning pointers to IDispatch objects (or better: interface) translate into
reference to objects (therefore they can be used in client applications)

• Constants: constants referenced in the examples must be re-implemented in scripts as they
can’t be exported in script context

• Dispatch and Events: objects interface has been divided in two. The Dispatch part exposes
objects properties and methods; the Event part exposes the event only. This division is due to
technology and implementation limitations.

Script limits
Since interface is unique for scripts and ActiveX clients one would think that it is useless to write a
custom application if everything could be done with a script. Reality is that script has limitations that
only custom application can get over:

• User interface: scripts can customize user interface in very limited ways; highly personalized
interfaces require custom application

• Loading projects: scripts run in their project context, therefore they cant load a project file,
only document files

• Object destruction: due to limitations in script language it is possible to create objects in
laser layout but not deleting them

• Pointers support: functions using pointers as arguments cannot be used

ActiveX client
An ActiveX client can be roughly described as a stand-alone program realized in any language whose
development environment supports ActiveX technology (e.g. Microsoft’s Visual Studio or Borland
Delphi and C Builder). The program statically “links” an interface to its ActiveX server at design time.
At run-time the program queries Windows to see if its server is installed in the system1. If not the client
fails, otherwise a session of the server starts (either visually or in the background) together with the
client. The client communicates with the server trough the “linked” interface model.
Writing an ActiveX client is more complicated (as it requires greater programming skills) and more time
consuming than writing a script. A custom application however offers more flexibility in designing the
user interface and allows better functionality.

1 The server usually installs itself as an ActiveX server during the installation procedure. If not running
the program once should install it (the console command regsrv32 can be used either)

Chapter 1 8 Laservall S.p.A.

Choosing a solution
So far it should be clear that neither scripts nor ActiveX clients are feasible way to overcome Smartist
limitations: they can be used only to make Smartist operations automatic and integrate it with other
(ActiveX) applications.
A brief description of other software solutions Laservall provides can help choosing the right tool.

xLaser
This is a collection of functions and (for the most part) objects. Goal of the library is to offer the
programmer willing to implement Laservall technology into its application, a way to access the laser,
initialize and set DSP board, build a layout and engrave it

xLaser is an open source project. Cooperation to extend its capabilities is welcome.

Please note: The xLaser toolkit is a development platform designed for laser marking applications.
The xLaser toolkit consists of multiple software modules, some developed by Laservall and many
developed by other members of the open source community (and released under “GNU Lesser
General Public License”2). Those authors hold the copyrights in the modules or code they developed.
At the same time, the combined body of work that constitutes xLaser toolkit is a collective work which
has been organized by Laservall, and Laservall holds the copyright in that collective work.

xLAL
xLAL is an ActiveX library wrapping xLaser objects. ActiveX technology allows fast and easy
integration with many development languages (Visual Basic, C#, Borland C Builder for example)
paying a little fee in performance time and reduced flexibility.

xLAL is a copyrighted product

Update: xLAL is now out-of-maintenance, this is no more a supported project

The right tool
The following table illustrates what solution is best for specific problems
Tool Application
xLaser high specialization applications: high productivity, special layouts, high integration with

existing application, high flexibility
xLAL Integration with existing application, like xLaser but with lower flexibility and time time-

critical issues
ActiveX
client

Applications were Smartist is sufficient but its interface need to be customized

VBscript Automation of all operations Smartist can perform
Item Integration with PLCs for very simple projects

2 “GNU Lesser General Public License” terms and conditions could be found here:
http://www.gnu.org/licenses/lgpl.html

Laservall S.p.A. 9 Chapter 1

Basic scripting syntax
This chapter is not a manual for scripting syntax. More detailed documentation can be found all over
the web, starting from Microsoft’s web site(s).
This chapter is an introductory to scripting syntax and writing the simplest program.

Variables
VBScript is derived from Visual Basic and the variables behave in almost the same way.
The instruction Dim is used to declare them:

Dim variable1
Dim variable2
etc.

Or
Dim variable1, variable2, etc.

The Variant type: weakly and strongly typed languages
Unlike other languages variable declaration does not require to declare variable type, such as a
number, a string, a date etc. This is why VBScript belongs to the category of weakly typed languages
as opposed to strongly typed languages like C or C++ where all variable type need to be declared.
All declared variables belong to a generic container-type called Variant. It is VBScript interpreter that
converts variant to the proper type required in the operation. This makes it very easy to program, but
requires to be careful manipulating variables as interpreter will not warn us when performing
ambiguous functions (as using a string in a mathematical operation, for example)

dim a,b,c
a = “1”
b = 5
c = a + b ‘interpreter won’t issue an error until run-time

 Things can go subtler and errors more difficult to find:

Dim a,b,c
a = InputBox(“Insert a number”)
b = 5
c = a + b

 InputBox prompts the user to insert data; these are always returned as a string, no matter what the
input was.

Subtypes
Please note: types do not exist, but subtypes which characterize the variables do, they are:

Boolean: Can contain True or False.
Byte : Contains an integer between 0 and 255.
Integer: Contains an integer between -32,768 and 32,767.
Currency: Value between -922,337,203,685,477.5808 and 922,337,203,685,477.5807.
Long: Contains an integer between -2,147,483,648 and 2,147,483,647.
Single: Contains a floating point number with single precision between –

3.402823E38 and 3.402823E38
Double: Contains a floating point number with double precision between –

1.79769313486232E308 and 1.79769313486232E308
Date: Contains a number representing a date between 1 January 100 and 31 December

9999.
String: Contains a string with a variable length composed of a maximum of around 2

billion characters.
Object: Contains an object.

Chapter 1 10 Laservall S.p.A.

Errors can be avoided by casting variables (i.e. the transforming a variable from one type to another)
explicitly

dim a,b,c
a = InputBox("First Number:")
b = InputBox("Second Number:")
c = Cint(a) + Cint(b)
MsgBox “Result “ & c

InputBox is a function that allows the user to enter a custom datum. Return value is always a string.
CInt is a cast function: it tries to force the value of the variable into an integer.
MsgBox displays the result in the form of a box. & is the concatenation operator for strings.

Arrays
Variant types can be used as data arrays as well. Declaration is similar to regular variables using the
Dim statement:

Dim array(10) ‘declare a 10 element array
Dim dynarray() ‘declare an array whose dimension is not

kown
Redim dynarray(100) ‘allocates storage space

Declaration
Using Dim to declare a variable is not mandatory: if a variable is used but not declared the interpreter
takes care of creating it (creation is usually the main purpose of declaration). This is an advantage
because you have no need to keep track of all variables declared but can be misleading because
sometimes a simple error in typing a variable can result in long debug (the interpreter “thinks” the
mistyped variable is a new declared one)
When creating a complicated program I recommend to use the Option Explicit command at the
beginning of the program. This command makes variable declaration compulsory: if a variable is used
but not declared an error is generated.

Option Explicit
dim a,b,c
a = InputBox("First Number:")
b = InputBox("Second Number:")
c = Cint(a) + Cint(b)
MsgBox “Result “ & c

The name of a variable must be chosen according to some rules:
• It needs to start with a letter of the alphabet.
• It cannot include periods and spaces.
• It must not be composed of more than 255 characters.
• There is no difference between upper and lower case letters.
• Assign the variable a name that reminds of its logic function inside the program. This is not a

not compulsory but is used to make programs easier to read. E.g. a variable that must contain
a date of birth could be called dtDate_Of_Birth, where dt indicates that it is a date type.

Operators
VBScript operators can be divided into types:
Arithmetic Operators

 a=5 b=2 Result
+ Add c=a+b 7
- Subtract c=a-b 3
* Multiply c=a*b 10
/ Divide c=a/b 2,5
\ Whole Division c=a\b 2
Mod Module c=a Mod b 1
^ Increase exponent c=a^b 25
& String chaining c=a & b 52

Laservall S.p.A. 11 Chapter 1

For complex formulas, addition and subtraction from left to right have precedence.

Comparison operators

= Equal
>= Greater than or equal to
<= Less than or equal to
<> Different
< Less than
> Greater than

Comparison between two variables gives True or False

Logical Operators

Not Negation
And Logical Conjunction
Or Logical Disjunction

These are used for operations with Boolean variables. They will be greatly used in the next chapter
which examines conditional instructions.

The following program is used to check arithmetic operators:

Option Explicit
dim a,b,c
a=5
b=2
MsgBox "c=a + b ---->" & a + b
MsgBox "c=a - b ---->" & a - b
MsgBox "c=a * b ---->" & a * b
MsgBox "c=a / b ---->" & a / b
MsgBox "c=a \ b ---->" & a \ b
MsgBox "c=a Mod b ---->" & a Mod b
MsgBox "c=a ^ b ---->" & a ^b
MsgBox "c=a & b ---->" & a & b

Conditional Structures and flow control
To perform operations conditionally the main command is If. The syntax is as follows:

If <condition> Then
 <operations if the condition is true>
Else
 <operations if the condition is false>
End If

The following example uses the function Month(), which gives the month in a numeric form, and
Now(), which gives the current date and time:

if month(Now())=6 then
 MsgBox “It is June"
else
 MsgBox “It is not June"
end if

It is also possible to nest structures:

if month(Now())<=6 then
 MsgBox "We are in the first half of the year
"
 if month(Now())<=3 then
 MsgBox "it is the first quarter."
 else
 MsgBox "it is the second quarter."
 end if
else
 MsgBox "We are in the second half of the year
"
 if month(Now())<=9 then
 MsgBox "it is the third quarter."
 else

Chapter 1 12 Laservall S.p.A.

 MsgBox "it is the fourth quarter."
 end if
end if

Notice the importance of indenting when using structures that are this complex.
Another use of the If instruction is the give as many conditions as possible:

if month(Now())<=3 then
 MsgBox "We are in the first quarter."
elseif month(Now())<=6 then
 MsgBox "We are in the second quarter."
elseif month(Now())<=9 then
 MsgBox "We are in the third quarter."
else
 MsgBox "We are in the fourth quarter."
end if

You can see that in this type of structure only one operation is carried out. Starting from the top and
moving towards the bottom, at the first condition the corresponding operations is effected and the
structure is left. If it was January all the conditions would have been true but only the first sentence
would have been printed.

The logical operations Not, And and Or can be use to combine multiple conditions.

When using structures with many choices based on the value of a parameter, you can use a structure
with Select. This is the same program as above but with a Select structure:

Select case month(Now())
case 1,2,3
 MsgBox "We are in the first quarter."
case 4,5,6
 MsgBox "We are in the second quarter."
case 7,8,9
 MsgBox "We are in the third quarter."
case else
 MsgBox "We are in the fourth quarter."
end select

In this structure the variable to check is set with the instruction "Select case Variable"., and then a list
of possible values that the variable can assume with the instruction" case value1, value2, value3"; the
operations to be carried out follow this instruction. In the example the variable is numeric, in the case
of string variables the values are placed between quotation marks: case "value1", "value2", "value3".

Structures for cycles
A cycle is used to repeat operations for a certain number of times or until a certain condition occurs.
The For - Next cycle increments by a variable at each cycle. When the variable reaches an
established value the cycle finishes.

Option Explicit
Dim i
For i=4 to 20
 MsgBox i & "
"
next

The program prints the values from 4 to 20 in a column.
Using the Step parameter, I can count backwards and use different steps.

Option Explicit
Dim i
For i=20 to 4 step -2
 MsgBox i & "
"
next

Laservall S.p.A. 13 Chapter 1

This program will display the numbers 20, 18, 16, 14, 12, 10, 8, 6, 4

The For - Each cycle is similar: a loop is performed for all the elements contained in an array

Option Explicit
Dim vector(5),element
vector(0)="Html"
vector(1)="Asp"
vector(2)="Php"
vector(3)="JavaScript"
vector(4)="VBScript"
For Each element In vector
 MsgBox element & "
"
next

The Do - Loop cycle is repeated until a condition becomes false. The following code will be repeated
until a second has elapsed from start.

Option Explicit
dim StartTime, EndTime, count
count=0
StartTime = Now()
EndTime = Now()+1/100000
Do While now() <= EndTime
 count=count+1
Loop
MsgBox "The cycle has been repeated " & count & " times in 1 second"

If the condition never occurs, the code in the cycle is never executed. Moving the condition to the
bottom the test executes at least once as the condition is evaluated at the bottom. In the following
example the message "Test Until" is displayed even if the condition is false.

Option Explicit
dim a
a=10
Do
 MsgBox "Test Until"
Loop While a < 0

The cycles can also be nested. In the following code the contents of a matrix is displayed.

Option Explicit
dim cLines, Columns, Matrix(3,2)
matrix (1,1)=1
matrix (2,1)=2
matrix (3,1)=3
matrix (1,2)=4
matrix (2,2)=5
matrix (3,2)=6
for cLines=1 to 3

for cColumns=1 to 2
MsgBox mstrix(cLines,cColumns) & " "

next
MsgBox "
"

next

Functions and Sub
These two keywords can be used to declare a procedure that perform a series of statements, and
change the values of its arguments (i.e. what the majority of programming languages call a function).
However, unlike a Sub procedure, you can use a Function procedure on the right side of an
expression in the same way you use any intrinsic function, such as Sqr, Cos, or Chr, when you want
to use the value returned by the function.

 Function myFirstFunction
 myFirstFunction = "Hello" ‘this is function’s return value
 End Function

Chapter 1 14 Laservall S.p.A.

 Sub myFirstSub
 myFirstSub = "Hello"
 End Sub

 MsgBox myFirstFunction ‘prints Hello
 MsgBox myFirstSub ‘error: type not corresponding

There’s no declaration order: i.e. function can be called before or after they have been declared.

Objects
VBScript is a object-oriented programming language. Object-oriented programming languages offer
the ability to organize the information into groups called classes. Each instance (i.e. allocation in
physical memory) of a class is called an object.
A class is composed of properties (that is characteristics, represented by variables) and methods (that
is behaviors, implemented as functions). Just like in the real world a person is characterized by
properties like sex, height, hair color and methods like how they talk, walk and throw, a "person" class
can be modeled with variables corresponding to the characteristics and function that describe the
actions the person can perform.
VBScript has some built-in classes but others can be created by user. Smartist itself adds several
objects to its context (i.e. they are accessible in the built-in editor): they will be described more
accurately in the next chapter.

Laservall S.p.A. 15 Chapter 1

Smartist Objects
The following is a list of all objects Smartist declares. This means that in Smartist context they became
sort of reserved keywords (i.e. users can not declare variables or functions having same name) and
this words are highlighted in Smartist built-in editor.

• Project
• Document
• Spooler
• Control
• Axis
• ComPort
• InputObject
• IoPort
• Tmr
• TextFile

Project
A project is a collection of items. Items can be either Documents (plane or ring) or special
“instructions” that Smartist interprets to perform specific actions (cloning a document, setting outputs,
waiting fro specific input etc).

Processing items
Smartist default behaviour when script is not enabled is to process items in a sequential order from top
to bottom: when the current item being processed is completed, the next one is started automatically.
With script enabled there’s a different behaviour between Smartist 4.0x and Smartist 4.1x. Smartist
4.0x processes items from top to bottom as without script. Smartist 4.1x default is to not process items
at all. This is because the script itself can be required to take control over the processing sequence.
ProcessActiveItem, ProcessNextItem, SelectActiveItem are some of Project’s functions that can be
used to control the process. If the user want the script to behave the other way the
ProcessItemsAsDefault function must be used.

Loading projects
Projects cannot be loaded within a script. The Load function (as the Hide/Show and the Close
functions) are meaningful only in ActiveX clients (although the latter can be used)

Getting interfaces
The GetXXX functions in Project’s interface allow to have access to other objects interface.

Document
A Document is a collection of marking objects such as string, barcodes, data matrix, vectorial objects,
raster objects (bitmaps and jpeg). Documents are represented in Project as items (but not all items
are Documents).

Coordinates system
The marking field is represented as a Cartesian plane with the origin at the centre of the marking filed
itself. This origin cannot be changed.
Objects position is always referred to plane origin. Objects origin (the point the coordinates are
measured with respect to plane origin) is placed by default at the centre of the rectangle surrounding
the object. The origin can be moved to any angle of the box or to the middle of any box side.

Modifying Document appearance
The Move and Rotate functions provide a way to modify Document’s appearance. Remember to call
UpdateView to apply changes and redraw screen layout.

Chapter 1 16 Laservall S.p.A.

Accessing Objects
 Smartist interface allows to assign IDs to objects. IDs should be unique alphanumeric string: they are
used in scripts to access those objects interfaces. The GetObject and GetObjectIds functions provide
functionality to get the list of accessible objects in Documents and to object interface.

Laser Parameters
A Document is associated with laser parameters in the way that the laser engraves all objects
contained in the document with the parameters associated to the document unless differently
specified. Power, Frequency, Passes, Delay and Speed functions set the parameters.

Synchronization
Strings and objects inheriting from these (i.e. barcodes and data matrix) have built-in formatters that
allow simple operations like formatting an automatic counter or representing a date. Updating happens
before or after marking (dates are updated right before, counters right after); you can force updating of
these properties by calling the PreSyncObjects and PostSyncObjects functions. Forced updates is
necessary when default item processing is not enbled

Spooler
The Spooler object allows direct interaction with the raw buffer data being sent to the DSP board for
controlling laser emission and scanners movement. Dynamic Spooler management can be used
when tracking Document’s limit or to gain control over the synchronization procedure described in
previous section. In fact pre- and post-synchronization requires the program to re-send data to the
spooler (as some data may have been changed). This operation can be time-consuming: if you are
sure data have not been changed you can simply re-execute the Spooler.

Busy and Ready
The IsLaserBusy and IsLaserReady function may seem to produce the same (complementary)
information. Actually, busy refer to the status of the DSP board and the function directly accesses the
underlying hardware to get the information, while ready refers to the Spooler status: it is ready when it
has been correctly closed and can be sent to the laser.

Calling sequence
Call Break before using the Spooler if you are not sure if the laser is busy or not. Reset allows to clear
Spooler’s memory. You then need to Open the spooler, fill it with data trough the SendXXX functions,
finally Close the Spooler and Execute it.

Control
The Control object allows control over the parameters characterizing the system. Please consult
“Introduction to Laservall technology” for an overview of the meanings of the parameters.

Axis
The Axis object controls axis movement

Comport
The ComPort object allows script users to control RS232 ports for I/O operation.
Please note: ComPort object is not available in Smartist ActiveX interface intentionally as ActiveX
client have better ways to directly access serial ports.

Flags
ComPort interface allows to set a number of flag whose usage makes sense only with the event
notification system (which I will talk about more later). Every time a flag changes its status an event is
fired.

Laservall S.p.A. 17 Chapter 1

InputObject
This object extends the capabilities of the standard InputBox object: it is possible to prompt the user
for more information in different formats (strings, numbers, strings in a drop down list)

IoPort
The DSP2 board is actually composed of one laser controller module connected to one or more
expansion I/O modules.

Each module offers 16 inputs and 16 outputs: in the first module only a part of these are available to
the user. The following table list all pins and their use:

DB 25 pin male - Axis motor connection.

Chapter 1 18 Laservall S.p.A.

DB 15 pin male – Laser controls/status..

Pin out
1: Out – Laser End. Active at end of engraving.
2: Out – Laser Busy. Active during engraving.
3: Out – Laser Ready. Active when system is ready.
4: In – External Start. Starts engraving when activated.
5: In – External Stop. Stops engraving in progress when activated.
6: Input 13
7: Input 15.
8: Output 15
9: 12V.
10: DSP Ready
11: N.C.
12: GND
13: Input 12
14: Input 14
15: Output 14

Pins available to the user are Input and Output only. I/Os can be used to provide simple
communication with devices like PLCs. The IoPort object is an interface to the board I/O and provide
I/O communication.

Masking
The SetPort and ResetPort functions take a mask as second parameter. The mask is used to select or
de-select the bit(s) going ON or OFF.
The mask is interpreted in binary formats: each input or output is associated with the corresponding bit
in the mask (numbered right to left). Active bits (i.e. set to 1) in the mask are either set (i.e. moved to
ON with the SetPort function) or reset (i.e. moved to 0 in the ResetPort function); inactive bits (i.e. set
to 0) are left unchanged.

Checking
The CheckPort and UncheckPort functions allows to monitor port state: if the checked port changes its
state, an event is fired (see Events later)

Tmr
Allows to set/reset a timer that periodically fires an event

TextFiles
Allows access to text files. VBScript facilities to access files are usually preferred.

Pin out
1: +12V 500mA
2: Step Y
3: Step Z
4: Brake X
5: Brake Y
6: Brake Z
7: Zero X
8: Zero Y
9: Zero Z
10: Disable X
11: Disable Y
12: Disable Z
13: GND.

Pin out
14: +5V 500mA.
15: Step X
16: Dir Z
17: Dir Y
18: Dir X
19: Input 8
20: Input 4
21: Input 2
22: Input 1
23: Output 9
24: N.C.
25: GND.

Laservall S.p.A. 19 Chapter 1

Graphical Objects
The following figure illustrates the inheritance hierarchy of laser objects.

LaserObject

LaserVectorial LaserString LaserGroup

LaserBarcode

LaserMatrixcode

LaserImported

The hierarchy is single rooted, meaning that all objects inherit from the base class LaserObject.
Inheritance means that derived objects get the same interface as the base class object and add some
more properties and/or functions depending on their characteristic.

Transformation
LaserObject were born vectorial therefore all objects have the interface to perform vectorial
transformation over them even if this does not make sense (as for LaserImported objects containing
raster image).
A generic vectorial transformation can always be summarized in the product of the coordinates of the
points constituting the object with a 2x2 matrix. Transformations as Scale, Rotate, Shear are cases of
the more general algorithm accessible trough the Transform function.
Remember to call Update after applying any transformation to an object,

Parameters
Laser parameters are the same as Document’s. Refer to Document section.

Box and Extend points
The surrounding box is the minimum rectangle (i.e. having sides parallel to the axis) containing the
object.
Extend points belong to a bigger rectangle surrounding the box itself. This is used inside Smartist to
place command icons around the object

Wobble
The purpose of this parameter is to engrave the single lines of vectorial graphics, either True Type
characters or imported figures, with thicker lines. The line thickness if normally equal to the dimension
of the laser spot. However, for some applications this thickness may not be sufficient, the wobble
function solves this problem.
The figure below represents the functioning principle of the wobble. Figure 1 shows the result of a
vector engraving with the wobble disabled. Figure 2 shows the same vector but with the wobble
enabled. The conversion of the vector into a dense spiral provides greater thickness of the engraved
line. The same function can be applied to any vectorial graphic that is going to undergo plain or ring
engraving.

Chapter 1 20 Laservall S.p.A.

Properties:
WobbleDiameter: Represents the diameter of the spiral curve
WobbleSpeed: Represents the frequency of spiral repetition

Laservall S.p.A. 21 Chapter 1

Events
Axis, ComPort, IoPort, Project and Tmr objects expose an event interface. Events are functions that
Smartist fires when specific conditions occur. Scripts or AciveX client re-implement those functions to
catch the condition occurring.
Event syntax is the same as the normal Subs; the name of the Sub is composed adding the name of
the event to the name of the object (separated by underscore) as in the following example:

Object: Project
Event: OnQueryStart
Sub name: Project_OnQueryStart

Project events
Project object associates most of the event. The OnCustomEvent family event is fired when the
corresponding item in the project is being processed. Although the event is documented as having no
arguments, the user can define a string in item’s interface that can be used as parameter for the
event. This example describe this behavior:

User adds a Custom Event item to the project. He assigns number zero to the event and writes this
string as parameter: “12,30”. The following code catches the event and interprets the parameter:

Sub Project_OnCustomEvent0(theString)
 ParamList = Split (theString, “,”) ‘gets parameter list from the
string argument
End Sub

The OnItemStarting event differs from the OnItemStart as the latter fires before pre-synchronization
takes place while the second fires after.

IoPort and ComPort events
IoPort’s OnImputChange event fires only if the port is checked.
ComPort’s OnRxFlag and OnRxChar events fire only if the Rx char has been defined trough the
SetFlag method. Other ComPort events relates to well documented RS232 signals.

Chapter 1 22 Laservall S.p.A.

Script limitations
The goal of this chapter is to list the errors a programmer can be trapped in when developing a script
in Smartist. Contents of this chapter results from Laservall experience in script development and are
supposed to increase with it.

Use Option Explicit declaration with large scripts
Name mistyping can be a source of insidious bug in your script since the interpreter does not complain
if a new variable is used without being initialized. These errors can be difficult to track down in
complex programs: use Option Explicit to avoid mistypes.

DSP2 I/Os do not work while marking
This limitation relates to DSP2 more than scripting itself. While the board is busy marking or tracking
the limits then I/O changes are not detected and events not fired.

Be careful when assigning object reference to global variables
When a Smartist object reference is assigned to a variable, then a “link” is created between the
variable and the real object. Local variables go out of scope (i.e. out of visibility) when exiting the
function they are placed in: in this case the link is automatically deleted by the script engine. Global
variables can be accessed within any function in the script, therefore they “live” as long as the script is
executed and never run out of scope. User need to be aware that they need to take care of the link
between the variable and the Smartist object. See the following example to understand what happens
under the scene:

 Dim theRef ‘global variable

Sub ComPort_OnRxFlag
 theFile = ComPort.Read ‘read the name of the
file to load in ComPort’s buffer

theRef = Nothing ‘!!Smartist crashes
without this line!!
Document.Load(theFile)
Set theRef = Document.GetObject(“ID”) ‘assign the global
variable a reference to an object contained in the
 ‘document

End Sub

This code crashes the second time the OnRxFlag event fires. The Load function deletes all the
content of the document: if theRef was already assigned to an object in a previous call to OnRxFlag,
then the interpreter will try to delete the link with that object before making a new assignment, but
since the object has already been deleted by the Load function, then the engine crashes.

Object destruction
Object destruction is a delicate topic in ActiveX technology.
Basically it is not possible for an object to delete itself. If this is done, the reference to that object is still
active and each successive use of the variable holding the reference to the object will crash the
application. A method like Project.Close() can be misleading in an ActiveX client:

 Dim WithEvents myProject As LaserManagerLib41.LaserProject

 Private Sub Form1_Load(…) Handles MyBase.Load
 ' Connects to Smartist4.1 creating a new empty project
 myProject = New LaserManagerLib41.LaserProject

 myProject.Load("c:\temp\test.prj")
 End Sub

 Private Sub Button1_Click(…) Handles Button1.Click
 myProject.Close()

myProject = Nothing
 End Sub

Laservall S.p.A. 23 Chapter 1

This code crashes when dereferencing myProject because the object has already been destroyed but
the ActiveX engine tries to decrement its internal reference counting before freeing the variable.
The Project.Close() function should only be used when the variable referring to the project is
never used anymore.

Activate Smartist ActiveX license
Changes between Smartist 4.1.2 and 4.1.3 involved the licensing mechanism: a new line has been
added to the license file that enables ActiveX interface to be exported to external clinets; without this
key it is impossible to build an ActiveX client.

Chapter 1 24 Laservall S.p.A.

How to build an ActiveX application
I use Microsoft Visual Studio as development environment and therefore I will describe the procedure
to link a client application to the Smartist server with Visual Basic and Visual C. I will not go deep into
the details of writing the application, linking objects and events as these topic can be better learned
looking at some sample code you can require our support department.

Visual Basic ActiveX clients
Adding Smartist ActiveX interface to a Visual Basic project is easy: right click the “References” item in
the Solution Explorer window of the project. Click “Add Reference” then select the “COM” tab and
choose “Laser Manager Control 1.0”. Click “Select” then “OK”: the interface is added to the project and
you can navigate trough it with the Object Browser.

Visual C ActiveX clients
Either one of the following procedures link an MFC application to Smartist trough ActiveX technology.

The #import directive
 #import "LaserEditor.exe" no_namespace rename("GetObject","GetObj")
 ...
 myPrj.CreateInstance(_T("LaserEditor.Project"))

The #import directive is used to incorporate information from a type library. The content of the type
library is converted into C++ classes, mostly describing the COM interfaces. The compiler generates
two files from the type library containing the type library interface. See Microsoft documentation form
more details.
This is not the procedure vcclient uses but it is the way to go if you are not developing an MFC
application.

Using the wizard
In Visual Studio IDE click “Project” then “Add class”. Pick “MFC Class from TypeLib” then “Open”. Now
you can either select “Registry” then pick up “LaserManager Control 1.0” from the drop down list or
select “File” then browse to “LaserEdito.exe”. Select the interface you want to integrate from the list:
one header will be generated and must be included for each interface. See the vcclient sample for
details on implementing the code.

