
Smartist scripting tutorial
Samples reference document
This document references refers to files you can find in
[LASEREDITOR_DIR]\Doc\Tutorial
Where [LASEREDITOR_DIR] refers to LaserEditor installation directory.
All projects were built using the “c:\temp” directory as reference. If you’re using a different
directory you need to change every reference to it in the text of the scripts.

1. Verify a file exists

Topics
Usage of objects in scripts

Sample goal
Given a file name and its path (c:\temp\datafile.txt) realize a script that print a message whether the
file exists or not

Const DATAFILE = "c:\temp\datafile.txt"

Set fso = CreateObject("Scripting.FileSystemObject")
If fso.FileExists DATAFILE Then
 MsgBox "File exists"
Else
 MsgBox "File does not exists"
End If

Walkthrough
The CreateObject function is used to create OS managed external objects (i.e. ActiveX objects).
In this case the FileSystemObject is created which, as its name says, grants access to the file
system. Once created each object’s reference must be assigned to a variable trough the Set
keyword. Methods and properties of the FileSystemObject object are described in the Microsoft
manual included in the zip file shipping with this document.

2. Parse file input

Topics
Usage of the ‘TextStream’ object
Usage of the ‘Split’ function
Usage of Smartist interface in script engine (‘Document’ object

Sample goal
Read the content of a text file. Assume text is a semicolon-separated set of data: parse the data and
assign its content to document objects.

Const DATAFILE = "c:\temp\datafile.txt"

Sub Project_OnQueryStart
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FileExists(DATAFILE) Then

 Set theFile = fso.OpenTextFile(DATAFILE)
 'read a line
 strLine = theFile.ReadLine
 'splitta l'input
 theData = Split(strLine,";")
 'verify the number of values is what expected
 If UBound(theData) <> 2 Then
 MsgBox "Numero di dati errato! " & UBound(theData)
 Exit Sub
 End If
 'assign values to objects
 For i = 0 To 2
 Set theString = Document.GetObject(i+1)
 theString.Text = theData(i)
 theString.Update
 Next
 Document.UpdateView
 Else
 MsgBox "File does not exists"
 End If
End Sub

Walkthrough
A TextStream object is created by FileSystemObject’s method OpenTextFile. This objects offers
functionalities to read/write a file.
The content of the file is parsed trough the Split function: this divides data input into an array that
is used afterwards to assign values to objects.

3. Tracking limits

Topics
Usage of the Spooler object
Processing items

Sample goal
Given sample n°2 add a feature that allows the user to iterate from marking to tracking limits. When
the user presses the start button limits tracking begins. If the user presses the button a second time
the system starts marking.

Const DATAFILE = "c:\temp\datafile.txt"
DoLimits = True

Sub Project_OnQueryStart
 If DoLimits Then
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FileExists(DATAFILE) Then
 Set theFile = fso.OpenTextFile(DATAFILE)
 'read a line
 strLine = theFile.ReadLine
 'split input
 theData = Split(strLine,";")
 'verify the number of values is what expected
 If UBound(theData) <> 2 Then
 MsgBox "Numero di dati errato! " & UBound(theData)
 Exit Sub
 End If
 'assign values to objects

 For i = 0 To 2
 Set theString = Document.GetObject(i+1)
 theString.Text = theData(i)
 theString.Update
 Next
 Document.UpdateView

 'starts limits tracking
 Spooler.Reset
 Spooler.Open(False)
 Spooler.SendDocLimits(Document)
 Spooler.Close
 Spooler.Execute
 DoLimits = False
 Else
 MsgBox "File does not exists"
 End If
 Else
 Spooler.Break
 Spooler.Reset
 'mark
 Project.ProcessActiveItem
 DoLimits = True
 End If
End Sub

Walkthrough
The DoLimits flag is used to decide whether to track limit or engrave: it switch status each time a
phase is completed.
The Spooler object is used to send data to the laser. Opening it with the False flag causes the
spooler to work in limit mode. The operation sequence is always as indicated: first break (only if the
laser is engraving), then Reset to clear any data left from a previous job, then Fill the spooler with
object to be sent, finally close it and execute.

4. Loading a document

Topics
Distinguish a project and a document file
Smartist Document object

Sample goal
Read a text file of two lines. The first line contains the name of the document to load, the second
line contains the data used to customize the layout to be engraved.
Const DATAFILE = "c:\temp\datafile2.txt"
Const LDX_PATH = "c:\temp\"

Sub Project_OnQueryStart
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FileExists(DATAFILE) Then
 Set theFile = fso.OpenTextFile(DATAFILE)
 'read first line, load corresponding document
 DocFile = theFile.ReadLine
 If fso.FileExists(LDX_PATH & DocFile) Then
 Document.Load(LDX_PATH & DocFile)
 Document.UpdateView
 Else
 MsgBox "File " & DocFile & " not found in " & LDX_PATH & vbCr &_

 "Processing interrupted"
 Exit Sub
 End If
 'read second line
 strLine = theFile.ReadLine
 'split input
 theData = Split(strLine,";")
 'assign values to objects
 For i = 0 To UBound(theData)
 Set theString = Document.GetObject(i+1)
 theString.Text = theData(i)
 theString.Update
 Next
 Document.UpdateView
 Else
 MsgBox "File does not exists"
 End If
End Sub

Walkthrough
The fist line of the file is the name of the document file to load. A document file is different from a
project file as it only contains marking data (i.e. it does not contain scrip information or items). The
UpdateView function is used to force a redrawing of document content.

5. Building a simple user interface

Topics
Usage of the Input object
Managing a cycle

Sample goal
Prompt the user with the name of the file to load. If the user insert an invalid datum, cycle trough
the entire process until the datum is valid or the operator gives up.

Const LDX_PATH = "c:\temp\"

Sub Project_OnQueryStart
 Set fso = CreateObject("Scripting.FileSystemObject")

 cycle = True
 Do
 Input.QueryString "File name", "*.LDX"
 Input.Ask "Insert name of the file to load"

 'get file name from user input
 fileName = Input.GetString(0)

 'load the file
 If fso.FileExists(LDX_PATH & fileName) Then
 If Document.Load (LDX_PATH & fileName) Then
 Document.UpdateView
 'starts marking
 Project.ProcessActiveItem
 cycle = False
 End If
 End If

 If cycle Then
 If MsgBox("File does not exist or its type is not supported" & vbCrLf &_
 "Do you want to insert a new file?", vbYesNo) = vbNo Then
 cycle = False
 End If
 End If

 Loop While cycle

End Sub

Walkthrough
The input function queryNumber and QueryString can be used to add a line to the interface of the
Input object; the Ask functions suspend script execution until the user closes the Input window.
GetString is used to retrieve operator’s input.

6. Managing signals

Topics
Usage of the IOPort object

Sample goal
Set a ready signal ON when the script is running, set it OFF when it is not or the laser is busy
engraving.
Monitor an external signal: when the signal switches ON, start engraving

Const READY_OUT_MASK = &H2000
Const START_IN_MASK = &H1000

IoPort.CheckPort 0
IoPort.SetPort 0, READY_OUT_MASK

Sub IoPort_OnInputChange
 'intercepts external strat signal
 If IoPort.GetPort(0) And START_IN_MASK Then
 IoPort.Setport 0, 0
 Project.ProcessActiveItem
 End If
End Sub

Sub Project_OnItemEnd
 'enable READY signal again
 IoPort.SetPort 0, READY_OUT_MASK
End Sub

Sub Project_OnClose
 'reset script
 IoPort.ResetPort 0, READY_OUT_MASK
 IoPort.UncheckPort 0
End Sub

Walkthrough
The MASK constants defined at the beginning are used to determine what PIN(s) functions are
operating on; e.g mask &H2000 means PIN n° 13 (as 13th bit is ON in its binery representation)

The CheckPort function starts port monitoring thread: each time an input signal changes an
OnInputChange event is triggered.
The OnItemEnd event is triggered at the end of each spooler execution, the OnClose event happens
when closing the program or switching to EDIT mode.

7. Using a Timer

Topics
Usage of the Timer object

Sample goal
Use a timer to seek a file. If the file exists load the document and prompt the user for marking.

Const DATAFILE = "c:\temp\datafile.txt"
Const LDX_PATH = "c:\temp\"

Tmr.SetTimer 0, 100
Set fso = CreateObject("Scripting.FileSystemObject")

Sub Tmr_OnTimer(nTimer)

 If nTimer <> 0 Then
 Exit Sub
 End If

 Tmr.KillTimer 0

 If fso.FileExists(DATAFILE) Then
 Set theFile = fso.OpenTextFile(DATAFILE)
 strLine = theFile.ReadLine
 If fso.FileExists(LDX_PATH & strLine) And Document.Load(LDX_PATH & strLine)
Then
 Document.UpdateView
 If MsgBox("Start engraving document?", vbYesNo) = vbYes Then
 Project.ProcessActiveItem
 Else
 Tmr.SetTimer 0, 100
 End If
 Else
 Tmr.SetTimer 0,100
 End If

 'delete file anyway
 theFile.Close
 fso.DeleteFile(DATAFILE)
 Else
 Tmr.SetTimer 0,100
 End If

End Sub

Sub Project_OnItemEnd
 Tmr.KillTimer 0
End Sub

Walkthrough
Smartist exports the timer object with the Tmr keyword. The keyword can be used to instantiate
more than one timer: each timer is associated with a numeric ID associated to it with the SetTimer
function. The second parameters of this function indicates the time interval the OnTimer function is
issued.
The OnTimer event has the timer issuing it as parameter.
KillTimer is used to destroy the timer.

8. Serial port

Topics
Usage of the ComPort object

Sample goal
Read data from the Com port and print it in a string to be engraved

Const EndLineChar = 13

If ComPort.Open("COM1,19200,8,1,None") = False Then
 MsgBox "Failed to open COM port!"
Else
 'sets char/flag that raise OnRXFlag event
 ComPort.SetFlag EndLineChar
End If

' ComPort receives CR (end line char)
Sub ComPort_OnRXFlag

 buffer = ComPort.Read
 buffer = Replace(buffer,Chr(EndLineChar),vbNullString)
 Set theString = Document.GetObject(1)
 theString.Text = buffer
 theString.Update

End Sub

Walkthrough
The EndLineChar constant defines the last character code used in the data stream sent trough the
serial cable. When this code is set trough the SetFlag function an OnRXFlag event is issued each
time this code is found in the data stream. The content is read then last character is changed with a
proper string terminator.

9. Using an ActiveX server

Topics
Using the script as an ActiveX client of Excel

Sample goal
Use the data read from a COM port stream to seek a record in an Excel worksheet. Use data in the
recordset to update objects in document.

Const EndLineChar = 13

Public Const DBASE_PATH = "C:\Temp\"
Public Const DBASE_ENTRY = "LASER.xls"
Public Const SHEET_ENTRY = "Foglio1"

' Apre il file XLS impiegando gli oggetti ActiveX di Exel
Set ExlApp = CreateObject("Excel.Application")
Set ExlBook = ExlApp.Workbooks.Open(DBASE_PATH & DBASE_ENTRY)
Set ExlSheet = ExlBook.Worksheets(SHEET_ENTRY)

If ComPort.Open("COM1,19200,8,1,None") = False Then
 MsgBox "Failed to open the COM port"
Else
 'sets char/flag that raise OnRXFlag event
 ComPort.SetFlag EndLineChar
End If

' ComPort receives CR (end line char)
Sub ComPort_OnRXFlag

 buffer = ComPort.read
 buffer = Replace(buffer,Chr(EndLineChar),vbNullString)

 LoadData(buffer)

End Sub

Sub LoadData(ID)
 'seek record in excel DB
 nRow = SearchRecord(ExlSheet, ID, 0)
 If nRow >= 0 Then
 Set theString = Document.GetObject(1)
 theString.Text = ExlSheet.Range("B" & nRow).Value
 theString.Update
 Document.UpdateView
 Else
 MsgBox "Record not found"
 End If

End Sub

Function SearchRecord(theSheet,MatchData, FirstRow)

 ' use EXCEL internal searching algorithm
 Set rng = theSheet.Columns("A").Find(MatchData)
 If rng Is Nothing Then
 SearchRecord = -1
 Else
 SearchRecord = rng.Row
 End If

End Function

Walkthrough
A connection to an ActiveX server is created trough the CreateObject function. Argument of the
function is the server name. This name is unique and allows the OS to associate the name with
application. This is usually provided by the application developer (Microsoft in this case) as well as
for its interface documentation. The sample shows some of the functions associated to the object..

	Smartist scripting tutorial
	Samples reference document
	1. Verify a file exists
	Topics
	Sample goal
	Walkthrough

	2. Parse file input
	Topics
	Sample goal
	Walkthrough

	3. Tracking limits
	Topics
	Sample goal
	Walkthrough

	4. Loading a document
	Topics
	Sample goal
	Walkthrough

	5. Building a simple user interface
	Topics
	Sample goal
	Walkthrough

	6. Managing signals
	Topics
	Sample goal
	Walkthrough

	7. Using a Timer
	Topics
	Sample goal
	Walkthrough

	8. Serial port
	Topics
	Sample goal
	Walkthrough

	9. Using an ActiveX server
	Topics
	Sample goal
	Walkthrough

