Index

Problems and solutions
Installation

The BASCOM IDE
Running BASCOM-AVR
Eile New

Eile Open

File Close

EileSave

Eile Save As

File Print

File Exit

Edit Undo

Edit Redo.

Edit Cut

Edit Copy

Edit Paste

Edit Find

Edit Fi

Edit Replace

Edit Goto

Edit Toggle Bookmark
Edit Goto Bookmark
Edit Indent Block
Edit Unindent Block

BASCOM-AVR

Version 1.11.7.4

Program Compile
Program Syntax Check
Program Show Result

Program Simulate
Program Send to Chip

Tools Terminal Emultator
Tools LCD Designer
Tools Graphic Converter

Tools Auto Update

Options Compiler

Options Compiler Qutput

Options Compiler Communication
Options Compiler 12C,SPLIWIRE
Options Compiler LCD

Options_Communication
Options Environment.
Options Simulator
Options Programmer

Editor Keys
BASCOM Developing Order

BASCOM and Memory

BASCOM Error codes

BASCOM and Hardware (not a jump link)
Additional Hardware

AVR Internal Hardware

AVR Internal Hardware TIMERO
AVR Internal Hardware TIMER1
AVR Internal Hardware Watchdog timer
AVR Internal Hardware PORT B
AVR Internal Hardware PORT D
AVR Internal Registers

Attaching an LCD displa)

Using the 12C protocol

Using the 1 Wire protocol

Using the SPI protocol

Power Up

Lanqguage Fundamentals

Reserved Words

BASCOM Language Reference (not a jump link)

m

#IE #ELS | #ENDIF

| SASM. $SBAUD $BAUD1 SBGE
$CRYSTAL $DATA $DBG $DEFAULT
SEEPROMHEX | SEXTERNAL SINCLUDE $LCD

| $iN
SLCDPUTCTRL SLCDPUTDATA SLCDVFO $SLIB
$NOINIT SNORAMCLEAR $REGFILE $ROMSTART
$SERIALINPUTL | SSERIALINPUT2LCD | SSERIALOUTPUT | SSERIALOUTPUTL
$TINY SWAITSTATE $XRAMSIZE $XRAMSTART
1WRESET 1WREAD IWWRITE LWSEARCHFIRST
LWVERIFY LWIRECOUNT
ABS ACOS ALIAS ASC
ATN ATN2 BASE64DEC
BAUD BCD BIN BINVAL
BITWAIT BYVAL BSAVE BLOAD
CALL CIRCLE CHECKSUM CHR
CLOCKDIVISION | CLOSE CPEEKH CONFIG
CLOSESQCKET
CONFIG ADC CONFIG BCCARD CONFIG CLOCK | CONFIG COM1
CONFIG DATE CONFIG PS2EMU CONFIG ATEMU CONFIG I2CSLAVE
CONFIG CONFIG CONFIG TIMERO | CONFIG TIMER1
GRAPHLCD KEYBOARD
CONFIG CONFIG LCDMODE CONFIG IWIRE CONFIG SERIALIN
LCDBUS
CONFIG CONFIG CONFIG SDA CONFIG SCL
SERIALOQUT SERIALQUT1
CONFIG SPI CONFIGLCDPIN CONFIG CONFIG PORT

WATCHDOG

CONFIG TCPIP
CONST cos COSH CRC8
CRYSTAL CPEEK CURSOR DATE
DATA DATES DBG DEBOUNCE
DECLARE DECLARE SUB DEFXXX DEFLCDCHAR
FUNCTION

| DELAY DIM DISABLE DISPLAY
DTMFOUT DISKFREE DIR DriveReset

| ECHO ELSE ENABLE END
EXP EOF
FIX FORMAT FOR-NEXT EOQURTHLINE
FUSING FLUSH FREEFILE FILEATTR

EILETIME EILEDATETIME
GETADC GLKBD GETATKBD GETRC
GLCDCMD only GLCDDATA only for GOSUB GOTO
for SED SED
| cer
@(HEXVAL HIGH HIGHW
12CINIT I12CRECEIVE IZCSEND 12CSTART,I2CSTOP,I2CRBYTE I2CWBYTE
IF-THEN ELSE - INCR INITLCD INKEY
_END IF
INPUTBIN INPUTHEX INPUT INSTR
ISCHARWAITING | INITFILESYSTEM IP2STR
KILL
LCASE LCD LCDATonly for LEFT
SED series
LINE LOAD LOADADR LOADLABEL
LCDCONTRAST
LOCATE LOG LOG10 LOOKDOWN
LOC LOF
LOOKUPSTR LOW LOWERLINE LTRIM
MAKEBCD MAKEC MAKEINT MID
MIN
ON INTERRUPT ON VAiE OPEN ouT
PEEK POKE POPALL POWER.
POWERSAVE PRINT PRINTBIN iET
PS2MOUSEXY PUT
PULSEOUT PUSHA_LL RAEG RCSSEND
READ READEEPROM READMAGCARD | REM
ESTORE RETURN RIGHT w
ROUND RTRIM
ENDSCAN SENDSCANKED
SELECT CASE - SET SETFONT onlyfor | SERIN
END SELECT SED series
ECOFDAY SECELAPSED SYSDAY SYSSEC
SETTCP
SGN SHIET SHIFTCURSOR SHIFTIN
SHIFTLCD SHOWPIC SHOWPICE SIN
SONYSEND SOUND SPACE SPC
SPINIT SPIMOVE SPIOUT SOR
STCHECK STOP STR STRING
SOCKETSTAT SOCKETCONNECT SOCKETLISTEN SEEK

Installation of BASCOM -AVR

IIME ICPWRITE TCPWRITESTR TCPREAD
SWAP TAN TANH THIRDLINE
TOGGLE IRIM UCASE UPPERLINE
UDPREAD UDPWRITE UDPWRITESTR

VARPTR WAIT WAITKEY WAITMS
WRITE

WHILE-WEND WRITEEEPROM X10SEND X10DETECT

International Resellers

Supported Programmers

Assembly Mnemonics

If you have questions, remarks or suggestions please let us know.
You can contact us by sending an email toavr@mcselec.com
Our website is located at http://www.mcselec.com

For info on updates : please read the readme.txt file that is installed into theBASCOM -AVR
directory

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.

MCS Electronics will not be liable for any mis-information or errors found in this document.

All software provided with this product package is provided ' AS IS' without any warranty expressed
or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits arising from the usage of
this product package.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose, without written permission of
MCS Electronics.

Copyright MCS Electronics. All rights reserved.

When you downloaded the ZIP files from our website you need to UNZIP them all.
The first file will unzip the file named SETUP.EXE

The second will unzip the file named SETUP.W02

The third will unzip the file named SETUP.W03

The fourth will unzip into SETUP.WO04.

The files can also come on diskettes. In that case there are no zip files and you can continue
without unzipping.

And finally the files can be on a CD-ROM. In that case the files are unzipped already too.

The commercial edition comes wth a license file in the form of a dll. This file is always on the disk
where the file SETUP.EXE is located. When explorer does not show this file, you must set the
option in explorer to view system files(because a DLL is a system file).

Some resellers might distribute the DLL file in a zipped file. Or the file might have the extension of a
number like 123. In this case you must rename the number into DLL.
Make sure the DLL is in the same directory as the SETUP.EXE file.

When you are using the DEMO ya don't need to worry about the license file.

When you are installing on a NT machine like NT4 or W2000, you need to have Administrator
rights.

After installing BASCOM you need to run BASCOM once as an administrator too. After that you
may run BASCOM as any other user.

Now run the SETUP.EXE by double clicking on it in explorer. Or from the DOS command prompt.

The following window will appear:
(screen shots may differ a bit)

Welcome

Welcome to the BASCOM-AVR Setup program. Thiz program will
install BASCOM-AVR on your computer.

It is strongly recommended that you exit all Windows programs
befare running thiz Setup program.

Click Cancel to quit Setup and then close any programs pou have
runming. Click Next to continue with the S etup program.

WARNIMG: Thiz program iz protected by copyright law and
international treaties.

Unauthonzed reproduction or distribution of this program, or any
portion of it, may result in severe civil and criminal penalties, and
will be progecuted to the maximum extent possible under law.

< Back Cancel
Click on the Next button to continue installation.
The following license info window will appear:
Software License Agreement

Please read the following License Agreement. Press the PAGE DOWN key to see
the rest of the agreement.

[3ASCOM-AVR ﬂ
MCS Electronics NO-NOMSENSE LICENSE STATEMENT AND LIMITED WARRANTY
IMPORTANT - READ CAREFUILLY

Thiz license statement and limited warranty constitutes a
legal agreement ["'License Agreement''] between you [either
az an individual or a single entity] and MCS Electronics

for the software product [*Software"] identified above,
including any software, media, and accompanying on-line or
printed documentation.

By INSTALLING, COPYING, OR OTHERWISE LISING THE SOFTWARE,
"OU AGREE TO BE BOUND B &LL OF THE TERMS AND CONDITIONS OF LI

Do you accept all the terms of the preceding License Agreement? If you chooge Mo, Setup
will cloze. Toinstall BASCOM-AVR . vou must accept this agresment.

< Back Yes

1=
=]

Read the license agreement and click the Yes button when you agree.

A window with additional information is then displayed. This information will be installed as a
readme.txt file and contains information on how to get free updates. It also contains the password
needed to unzip updates.

After reading the information, click the Next button.
Now the following window appears:

Type pour name below, You must alzo tppe the name of the
company you work for.

I arne: IM.E.AIberts

LComparny: IMES Electronics

< Back I Mext > I Camrcel

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be installed.

oose Destination Location %]

Setup will install BASCOM-AWR in the following directom.
Toingtall to this directory, click Next.

Toingtall to a different directom, click Browse and select another
directory.

“Y'ou can choose not to install BASCOM-AWR. by clicking Cancel
to exit Setup.

C:A AMCS Electronics\BASCOM-AVR Browse. . |

" Destination Directony

¢ Back Cancel |

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:

C:\Program Files\MCS Electronics\BASCOM-AVR

After selecting the installation directory, click the Next button.

When the installation is completed you must click the Einish-button, and restart Windows.
This time you will be asked in which program group the BASCOM-AVR icon must be placed.

By default, a new program group named MCS Electranics will be made. A sub directory named SAMPLES contains all the BASCOM-AVR sample files.

A sub directory named LIB contains the Library files.
Setup will add program icong to the Program Folder isted below,

“V'ou may type a new folder name, or select one from the existing
Folders lizt. Click Mext to continue.

Erogram Folders:

MCS Electronics

Existing Folders;

Delphi ;I

ElTech Cammunications Lib

HTHL Help “Workshop

InstallShield Express _I
Intermet Explorer

Keil PK5T - Ewal

M ctfes WirusS can

WMCS Electronics

< Back I MNest » I Cancel

After selecting the group, click the Next button to continue.

A summary will be shown. You may go back and change your settings. Otherwise, click the Next
button to complete the installation of BASCOM-AVR.

Start Copying Files Eq

Setup haz enough information to start copying the program files.
If you want to review or change any settings, click Back. 1f you
are satisfied with the settings, click Mext to begin copying files.

Current Settings:

Setup Tupe: ;I
Complete

Target Folder
C:%\Program Files\MCS Electronics\BAS COM-AWVR

User Information
Mame: Mark Alberts
Company: MCS Electronics

i ol

¢ Back

Cancel |

Running BAS COM-AVR

Double-click the BASCOM-AVR icon to run BASCOM.
The following window will appear. (If this is your first run, the edit window will be empty.)

Soer - LEI100 0000

cnalile o

O -1 =i+

Frint =fart

D
viour code gues horo
o
i LR
i T " :
Keturn
| T T
I pou] -
| L= bl UL
A I)
—
'!“\“ﬂ: il ! '!lnrﬂl"t ! I

The most-recently opened file will be loaded.

FileNew

This option creates a new window in which you will write your program.
The focus is set to the new window.

File new shortcut: D, CTRL+ N

File Open

With this option you can load an existing program from disk.

BASCOM saves files in standard ASCII format. Therefore, if you want to load a file that was made
with another editor be sure that it is saved as an ASCII file.

Note that you can specify that BASCOM must reformat the file when it opens it with the Options
Environment option. This should only be necessary when loading files made with another editor.

File open shortcut : H ,CTRL+O

FileClose

Close the current program.

When you have made changes to the program, you will be asked to save the program first.

File close shortcut :ﬁ

FileSave File Save As

With this option, you save your current program to disk under the same file name. With this option, you can save your current program to disk under a different file name.

If the program was created with the File New option, you will be asked to name the file first. Use the
File Save As option to give the file another name. Note that the file is saved as an ASCII file.

Note that the file is saved as an ASCII file. File save as shortcut : @

File save shortcut : EI CTRL+S

FilePrintPreview FilePrint

With this option, you can preview the current program before it is printed. With this option, you can print the current program.
Note that the current program is the program that has the focus. Note that the current program is the program that has the focus.

File print preview shortcut : E File print shortcut :@, CTRL+P

FileExit

With this option, you can leave BASCOM.
If you have made changes to your program, you can save them upon leaving BASCOM.

File exit shortcut : [|

EditUndo

With this option, you can undo the last text manipulation.

Edit Undo shortcut : 7, CTRL+Z

Edit Redo

With this option, you can redo the last undo.

Edit Redo shortcut : ™, CTRL+SHIFT+Z

Edit Cut

With this option, you can cut selected text into the clipboard.

Edit cut shortcut : &, CTRL+X

Edit Copy EditPaste

With this option, you can copy selected text into the clipboard. Withthis option, you can paste text from the clipboard into the current cursor position.

Edit copy shortcut : E@, CTRL+C Edit paste shortcut : O’, CTRL+V

EditFind

With this option, you can search for text in your program.

Text at the cursor position will be placed in the find dialog box.

Edit Find shortcut : ﬁ, CTRL+F

Edit Find Next

With this option, you can search for the last specified search item.

Edit Find Next shortcut : . F3

EditReplace Edit Goto

With this option, you can replace text in your program. With this option, you can immediately go to a line .

Edit Replace shortcut : 4, CTRL+R Edit go to line shortcut : 12, CTRL+G

Edit Toggle Bookmark

With this option, you can set/reset a bookmark, so you can jump in your code with the Edit Go to
Bookmark option. Shortcut : CTRL+K + x where x can be 1-8

Edit Goto Bookmark

With this option, you can jump to a bookmark.
There can be up to 8 bookmarks. Shortcut : CTRL+Q+ x where x can be 1-8

Edit Indent Block

With this option, you can indent a selected block of text.

Edit Indent Block shortcut TI CTRL+SHIFT+I

Edit Unindent Block

With this option, you can un-4ndent a block.

Edit Unindent Block shortcut : tj CTRL+SHIFT+U

Program Compile

Program Syntax Check

With this option, you can compile your current program.

Your program will be saved automatically before being compiled.
The following files will be created depending on the Option Compiler Settings.

File Description

xxX.BIN Binary file which can be programmed into the microprocessor

xxx.DBG Debug file that is needed by the simulator.

xxx.0BJ Object file for simulating using AVR Studio. Also needed by the internal
simulator.

xxx.HEX Intel hexadecimal file, which is needed by some programmers.

xxX.ERR Error file. Only created when errors are found.

xxX.RPT Reportfile.

XxX.EEP EEPROM image file

If a serious error occurs, you will receive an error message in a dialog box and the compilation will

end.

All other errors will be displayed at the bottom above the status bar.

When you click on the line with the error info, you will jump to the line that contains the error. The

margin will also display the E'sign.
At the next compilation, the error window will disappear.

Program compile shortcut: , F7

With this option, your program is checked for syntax errors. No file will be created except for an
error file, if an error is found.

Program syntax check shortcut B, CTRL + F7

Program Show Result

Use this option to view the result of the compilation.

See the Options Compiler Output for specifying which files must be created.

The files that can be viewed are report and error.

File show result shortcut : E,CTRHW

Informationprovided in the report:

_RAMSIZE : size of SRAM

_ERAMSIZE : size of EEPROM

_XTAL : value of crystal

_BUILD : number that identifies the version of the compiler

Info

Description

Report

Name of the program

Date and time

The compilation date and time.

Compiler The version of the compiler.

Processor The selected target processor.

SRAM Size of microprocessor SRAM (internal RAM).
EEPROM Size of microprocessor EEPROM (internal EEPROM).
ROMSIZE Size of the microprocessor FLASH ROM.
ROMIMAGE Size of the compiled program.

BAUD Selected baud rate.

XTAL Selected XTAL or frequency.

BAUD error The error percentage of the baud rate.

XRAM Size d external RAM if available.

Stack start

The location in memory, where the hardware stack points to. The HW-stack pointer
grows down.

S-Stacksize

The size of the software stack.

S-Stackstart

The location in memory where the software stack pointer points to. The software
stack pointer grows down.

Framesize

The size of the frame. The frame is used for storing local variables.

Framestart

The location in memory where the frame starts.

LCD address

The address that must be placed on the bus to enable the LCD display E-line.

LCD RS The address that must be placed on the bus to enable the LCD RSline
LCD mode The mode the LCD display is used with. 4 bit mode or 8 bit mode.

LCD DB7-DB4 The port pins used for controlling the LCD in pin mode.

LCD E The port pin used to control the LCD enable line.

LCD RS The port pin used to control the LCD RS line.

Variable The variable name and address in memory

Constant Constants name and value

Some internal constants are :
_CHIP : number that identifies the selected chp

Program Simulate

With this option, you can simulate your program.

You can simulate your programs with AVR Studio or any other Simulator available or you can use
the build in Simulator.

Which one will be used when you press F2 depends on the selection you made in the Options
Simulator TAB.

Program Simulate shortcut ﬂ F2

To use the build in Simulator the files DBG and OBJ must be selected from the Options Compiler
Output TAB.

The OBJ file is the same file that is used with the AVR Studio simulator.

The DBG file contains info about variables and many other info needed to simulate a program.

S8 - [o]u]

Wariables | Localsl i’ Watchl & uPI Interruptsl

Yariable Yalue | Hesx | Bin |
1] a 0ooooaoo

idx 0 0 00000000

L]

-l
w5

[u] 1 Dim B A= Ewte , Idx As Evte , I Az Evyte

o Zz B = &£BO101 0101

fu} 3 Config Porth = Output

fu} 4 Portd = 255

5 -

4 | | 3
|[PC=0 |Cycles =0 | | v
The Sim window is divided into a few sections:
The Toolbar

The toolbar contains the buttons you can press to start an action.

3
JThis starts a simulation. It is the RUN button. The simulation will pause when you press the
pause button. You can also press F5.

1]
|JThis is the pause button. Pressing this button will pause simulation.
|
|JThis is the STOP button. Pressing this button will stop simulation and you can't continue. This

because all variables are reset. You need to press this button when you want to simulate your
program again.

5=
This is sthe STEP button. Pressing this button(or F8) will execute one code line of your BASIC
program. After the line is executed the simulator will be in the pause state.

IHThis is the STEP OVER button. It has the same effect as the STEP button but sub programs
are executed and there is no step into the SUB program. You can also press SHIFT+F8

|
®IThis is the RUN TO button. The simulator will RUN to the current line. The line must contain
executable code.

JThis button will show the register window.

RO_fn
R |ao

Rz |

Ra |

R4 |0

R5 |0

s |0

R7 |0

Re |

GERN[

R10 |0

Rid oo hd

The values are show in hexadecimal format. To change a value click the cell of the Val column and
type the new value.

(0]
I_IThis is the 10 button and will show the 10 registers.

ACSH
LUERRA

ISR ﬂ

The 10 window works the same like the Register window. Blank rows indicate that there is no |O-
register assigned to that address.(The blank rows might be deleted later.)

Il
JPressing this button shows the Memory window.

D060 0 00 00 00|00 0000 00 00 00 00 00 00
0070 (00 00 00 00 00|00 00|00 a0 o0 00 00 00 00
0080 (00 00 00 00 00|00 00|00 a0 00 00 00 00 00
0030 (00 00 00 00 00|00 00|00 a0 o0 00 00 00 00
00s0 |00 00 00 00 00|00 |00 00 00 00 00 00 00 o0
O0BO |00 00 00 00 00|00 |00 00 00 00 00 00 0o od
0oco |00 00 00 00 00|00 |00 00 00 00 00 0o oo o0

UUIDDI 00 00 00 0000 0000|0000 0000000000
4

Occupied by : B

The values can be changed the same way like in the Register window.

When you move from cell to cell you can view in the status bar which variable is stored in the
address.

The refresh variables button will refresh all variables during a run(F5). When you use the hardware
simulator, the LEDS will only update their state when you have enabled this option. Note that using
this option will slow down simulation.

Under the toolbar section there is a TAB with the pages:
VARIABLES

Localsl & Watchl ﬁ uF'l Intenuptsl

Yariable Yalue | Hex | Bin
a 0 noonaoao

ide 0 0 00000000

You can add variables by double clicking in the Variable-column. A list will pop up from which you
can select the variable.

To watch an array variable you can type the name of the variable with the index.

During simulation you can change the values of the varables in the Valuecolumn, Hex-column or
Bincolumn. You must press ENTER to store the change.

To delete a row you can press CTRL+DEL.
To enter more variables, press the DOWN-key so a new row will become visible.

It is also possible to select a variableby selecting it from the code window, and then pressing enter.

LOCALS

Variables

g Watchl ﬁ uF'l Intenuptsl
Variable Value IHe:-: IBin l

The LOCAL window show the variables in a SUB or FUNCTION. LOCAL variables are also shown.
You can not add variables.

Changing the value of the variables works the same as for the Variable TAB.

WATCH

The Watch- TAB can be used to enter an expression that will be evaluated during simulation. When
the expression is true the simulation is paused.

Type the expression in the text-field and press the Add-button.
When you press the Modify-button the current selected expression from the list is modified with the
typedvalue.

To delete an expression you must select the expression from the list and press the Remove -button.

When the expression becomes true the expression that matches will be selected and the Watch
TAB will be shown.

upP

Variablesl Localsl 6" watch ' Interruptsl

Flaaz

CICTCOHO s OV CONCZ0E I~ Frame Overflowe [~ Stack Overflow
Soft Stack 0000 Soft Stack Min [270F Hw/ Stack 0000 Hw Min [270F

Frame pointer 0000 Frame Max aoon

This TAB shows the status of the microprocessor SREG register.
The flags can be changed by clicking their checkboxes.

The software stack , hardware stack and frame pointer v alues are also shown. The minimum or
maximum value during simulation is shown. When one of the data is entering another one there is a
case of stack/frame overflow.

This will be signaled with a pause and a checkbox.

The snapshot button will create a snapshot of the registers and HW registers.
So it will create a copy of the memory once you press the snapshot button.
You will notice that the snapshot button will change into ‘Stop’

Now execute some code by pressing F8 and press the Snapshot button again.
A window will pop up that will show all modified address locations.

This can help at determining which registers a statement uses.

When you write an ISR with the NOSAVE option you can determine the used registers and save
only the modified registers.

INTERRUPTS

\-"aliablesl Localsl & Watchl * uP
RS [EET [[ET LRI IR EEE
LITsE | AL

This TAB shows the interrupt sources. When no ISR's are programmed all buttons will be disabled.

By clicking a button the corresponding ISR is executed.

The pulse generator can be used to supply pulses to the timer when used in counter mode.

Select the pin from the pull down box. Depending on the chip one or more pins are available. Most
chips have 2counter so 2 input pins.

Select the number of pulse and the delay time and press the Pulse-button to generate the pulses.

The delay time is needed since other tasks must be processed as well.
The option ‘Enable timers’ must be selected when you want to simulate timers/counters.

TERMINAL Section
Under the TAB window you will find the terminal emulator window.
When you use PRINT, the output will be shown in this window.

When you use INPUT in your program, you must set the focus to the terminal window and type the
neededvalue.

You can also print the values directly to the COM port.
Check the Terminal option to enable this feature.
The terminal emulator settings will be used for the baud rate and COM port.

SOURCE Section
Under the Terminal section you find the Source Window.

It contains the program you simulate. All lines that contain executable code have a yellow point in
the left margin.

You can set a breakpoint on these lines by pressing F9.

By moving the mouse cursor over a variable name the vdue is shown in the status bar.
When you select a variable and press ENTER it will be added to the Variable window.

When you want to use the keys (F8 for stepping for example) the focus must be set to the Source
Window.

A blue arrow will show the linethat will be executed next.

The hardware simulator.

Tin

By pressing the hardware simulation button ‘the windows shown below will be displayed.

Hardware simulation ®

Comparatar IND

fron 4

The top section is a virtual LCD display. It works for display code in PIN mode and bus mode. For
bus mode only 8bit bus mode is supported by the simulator.

The LED bars below are a visual indication of the ports.
By clicking a LED it will toggle.
PA means PORTA, PB means PORTB etc.

IA means PINA, IB means PINB etc.
It depends on the kind of microprocessor you have selected, which ports will be shown.

Right beside the PIN leds, there is a track bar. This bar can be used to simulate the input voltage of
the ADC converter. Note that not all chips have an ADC converter. You can set a value for each
channel.

Beside the trackbar is a numeric keypad. This keypad can be used to simulate the GETKBD()
function.

When you simulate the getkbd() it is important that you press/click the keyboard button before
running the getkbd() line !!!
With the Comparator simulator, you can specify the logic level on INO.

Enable Real Hardware Simulation

By clicking the ﬂbutton you can simulate the ports in circuit!

In order to get it work you must compile the basmon.bas file.

When compiled program a chip.

Lets say you have the DT006 simmstick. And you are using a 2313 AVR chip.

Open the basmon.bas file and change the line with $REGFILE = "xxx" into $REGFILE =
"2313def.dat"

Now compile the program. Program the chip. It is best to set the lock bits so the monitor does not
get overwritten when you accidentally press F4.

The real hardware simulation only works when the target micro system has a serial port. Most have
and so does the DT006.

Connect a cable between the COM port of your PC and the DT006. You probably already have one
connected. Normally it is used to send data to the terminal emulator with PRINT.

The monitor program is compile with 19200 baud. The Options Communication settings must be set
to the same baud rate!

The same settings for the monitor program are used as for the Terminal emulator. So select the
COM port and the baud rate of 19200.

Power up the DT006. It probably was since you created the basmon program and stored it in the
2313.

When you press the real hardware simulation button now the simulator will send and receive data
when a port, pin or ddr register is changed.

This allows you to simulate an attached LCD display for example. Or something simpler, the LED.
In the SAMPLE dir you will find a program DT006. You can compile thie program and press F2.

When you step through the program the LED's will change!

All statements can be simulated this way but the have to be static. Which means that 1wire will not
work because it depends on timing. 12C has a static bus and that will work.

It is important that when you finish your simulation sessions that you click the button again to
disable the Real hardware simulation.

When the program hangs it probably means that something wend wrong in the communication. The
only way to escape is to press the Real hardware simulation again.

| think the simulation is a cost effective way to test attached hardware.

The refresh variables button will refresh all variables during a run(F5). When you use the hardware
simulator, the LEDS will only update their state when you have enabled this option. Note that using
this option will slow down simulation.

Program Send to Chip

This option will bring up the selected programmer or will program the chip directly if this option is
selected from the Programmer options.

Program send to chip shortcut ‘ | F4

Menu item Description
File Exit Return to editor
File, Test With this option you can set the logic level to the LPT pins. This is only

intended for the Sample Electronics programmer.

BufferClear

Clearsbuffer

Buffer Load from file

Loads a file into the buffer

Buffer Save to file

Saves the buffer content to a file

Chipldentify

Identifies the chip

Write buffer into chip

Programs the buffer into the chip ROM or EEPROM

Read chipcode into
buffer

Reads the code or data from the chips code memory or data memory

Chip blank check

Checks if the chip is blank

Chip erase

Erase the content of both the program memory and the data memory

Chipverify

Verifies if the buffer is the s ame as the chip program or data memory

Chip Set lockbits

Writes the selected lock bits LB1 and/or LB2. Only an erase will reset the
lock bits

Chip autoprogram

Erases the chip and programs the chip. After the programming is
completed, verification is performed.

RCEN

Writes a bit to enable the internal oscillator. This RCEN bit is only available
on some AVR chips.

The following window will be shown:

ijﬂnvn ISP STK programmer ;Iglll

Elle Buffer Chip

oed BE |Tsl m B O

Manufactor Unknown
Chip Unknown device EEFRONM 128

-|®|
Size -
Frogrammed:0

Flash RO 2KB

FlashROM | EEPROM | Lock and Fuse Bifs |

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070

oo [o1 [0z [0z |04 |05 [os |07 [os [0 o o [oc [oo | o oF | | ii

722 bytes read

722 Rom

0 EPROM MOMAMESS, BIN 4

Note that a chip must be ERASED before it can be programmed.

Tools Terminal Emulator

With this option you can communicate via the RS 232 interface to the microcomputer. The following
window will appear:

7] BASCOM-AVR Terminal emulator

File Terminal

COM1:9600,.M,8.1

Information you type and information that the computer board sends are displayed in the same
window.

Note that you must use the same baud rate on both sides of the transmission. If you compiled your
program with the Compiler Settings at 4800 baud, you must also set the Communication Settings to
4800 baud.

The setting for the baud rate is also reported in the report file.

File Upload

Uploads the current program in HEX format. This option is meant for
loading the program into a monitor program.

File Escape
Aborts the upload to the monitor program.

File Exit
Closes terminal emulator.

Terminal Clear
Clears the terminal window.

Terminal Open Log

Open or closes a LOG file. When there is no LOG file selected you will be asked to enter or select a
filename. All info that is printed to the terminal window is captured into the log file. The menu
caption will changeinto 'Close Log' and when you choose this option the file will be closed.

The terminal emulator has a strange bug that you can't select the menu options by using the
keyboard. This is an error in the terminal component and | hope the third party will fix this bug.

Tools LCD Designer

With this option you can design special characters for LCD-displays.
The following window will appear:

LCD designer

Clear all

Setall |

o Ok

X Cancel

The LCD-matrix has 7x5 points. The bottom row is reserved for the cursor but can be used.

You can select a point by clicking the left mouse button. If a cell was selected it will be deselected.

Clicking the Set All button wil set all points.
Clicking the Clear All button will clear all points.

When you are finished you can press the Ok button : a statement will be inserted in your active
program-editor window at the current cursor position. The statement looks like this :

Deflcdchar?,1,2,3,4,5,6,7,8
You must replace the ?-sign with a character number ranging from 0-7.

Tools LIB Manager

With this option the following window will appear:

LIB Manager ll

Libraries Fautines
FP_Trig.lib ;l _BCCARD
FP_Trig lib goed
gled lib
gledbackup lib
gledSED. b
gledSEDgoed lib

Add
gleds. lib
haufe.lib Delste
haufeb. lib |
i2e.lib :
i2c.ib werking Select routine |
i2cslave lib
key_i2e.lib
led_iZe.lib
4. lib

leddbusy.lib
ledde? lib =|

Compile

o Ok

The Libraries are shown in the left pane. When you select one the routines that are in the library will
be shown in the right pane.

By selecting a routine you can DELETE it.
By clicking the ADD button you can add an ASM routine to the library.

The COMPILE button will compile the lib into a LBX file. When an error occurs you will get an error.
By watching the content of the generated Ibx file you can determine the error.

A compiled IBX file does not contain comment and a huge amount of mnemonics is compiled into

object code. This object code is inserted at compile time of the main BASIC program. And this
results in faster compilation.

The DEMO version comes with the compiled MCS.LIB file and is named MCS.LBX. The ASM
source is included with the commercial edition.

With the ability to create LBX files you can create add on packages for BASCOM and sell them.
The LBX files could be distributed for free and the ASM source could be sold.

Some examples :
?? - MODBUS crc routine for the modbus slave program.
?? - Glcd.lib contains the graphical LCD asm code

Commercial packages available from MCS:
?? - 12CSLAVE library

?? - BCCARD for communication with www.basiccard.com chipcards

See $LIB for writing your own libraries

Tools Graphic Converter

The Graphic converter is intended to convert BMP files into BASCOM Graphic Files (BGF) that can
be used with Graphic LCD displays.

The following dialog box will be shown :

Graphic converter

= Load

Lo |
_Bsee |
@ |

“cs Hent"“lins & Save
[Paste

Height |54 I‘V_Vidth |24u ZI

LED twpe "Eom

12864 ¢ 240128 " B8
& 24064 128128 [Cl=

[~ Uncompressed

To load a picture click the Load button.
The picture can be maximum128 pixels high and 240 pixels width
When the picture is larger it will be adjusted.

You can use your favorite graphic tool to create the bitmaps and use the Graphic converter to
convert them into black and white images.

When you click the Savebutton the picture will be converted intoblack and white.
Any non-white color will be converted into black.

The resulting file will have the BGF extension.
You can also paste a picture from the clipboard by clicking the Paste button.
Press the Ok-button to return to the editor.

The picture can be shown with the ShowPic statement or the ShowpicE statement.
The BGF files are RLE encoded to save space.

When you use your own drawing routine you can also save the pictures uncompressed by setting
the Uncompressed checkbox. The resulting BGF files can not be shown with the showpic or
showpicE statements anymore in that case!

The BGF format is made up as following:
?? -first byte is the height of the picture
?? -second byte is the width of the picture

?? - for each row, all pixels are scanned from left to right in steps of 6 or 8 depending on the font
size. The resulting byte in stored with RLE compression
RLE used is : byte value, AA(hex), repeats.
So a sequence of 5, AA, 10 means that a byte with the value of 5 must be repeated 16 times (hex
notation used)

Tools Stack Analyzer

The Stack analyzer helps to determine the proper stack size.
See$DBG for the proper usage of this option.

Tools Auto Update

The auto update feature allows you to update BASCOM automatic.

Before choosing this option you must close all editor windows.

The auto update window looks like :

BSS00M Updokc

Update | Sctup |

Files Lo upndale

=
f@ Infu

Lpdata

o re

Auta Update (2] 2001 MC5 Elzctranics

You must first fill in the setting by clicking the Setup TAB.
The setup options are described below.

To check if there is a newer version of BASCOM available press the Info button.
You must have a connection to the internet in order to use this option.

The program will check the file update.ver on the internet and will compare the files on your system.

The compare is based on the file size. The files are compared with the zipped files in your
BASCOM directory. There fore it is important that once you have updated the system, you do not
move or delete the downloaded zip files.

When the zip files are not in the BASCOM\ZIPS directory or the file size is different, the file will be
added to the white window. A checkbox is set to indicate that you need to download it.

Once Auto update knows which files are needed you may click the checkbox to skip the file for
downloading.

When ready press the Update button to start the update process.
All selected files will be downloaded and after the last file is downloaded the application will end.
The application mcsunzip.exe is started automatic and this application unzips the downloaded files.

After the files are unzipped the mcsunzip.exe will start BASCOM again.

The Setup tab looks like:

BASLUMN Wpdul s
Update '-;Elupl

LEE T 1 art lm

Pazzword |-.-.-.

| 'riooy server |

Frouvpart In

o

Autn | pdate [m] 2001 MES Flretromins

Item Description
HTTP Port This should be set to 80
Password The password is the password that you can find in the BASCOM application dir in the

readme.txt file. Copy it from there and paste it with CTRL+V. The —s shown as part of
the password should not be copied.

Proxyserver This is the name or IP address of the proxy server. Home users typically don’t have a
proxy server. Ask your administrator for the TCP address.

Proxyport This is the proxy port number. Set it to 0 when you don’t have a proxy server.

Privacy notice

The auto update process only checks the MCS electronics website for the update.ver file. And will
download the needed zipped files. The application will not send any information from your PC to
either the MCS website or any other location.

It is good practice to use a firewall so you can check all in and out going data from your applications
when you are connected to the Internet.

When you do not have an internet connection on your BASCOM PC.
Follow this procedure to get the update:

?2 Download the zip files manual from the website www.mcselec.com/download/avr or
www.mcselec.com/download/avr/beta

72 Copy the zip files to the BASCOM PC in a subdirectory named ZIPS
?2 ZIPS must be a subdir in the BASCOM application directory
?2 Create a file with notepad in the BASCOM application folder named uzp.|st

?2 Add all the ZIP file names to this files and save and close the uzp.Ist file
72 Run BASCOM and select Tools, Auto Update
72 Select the Password-TAB

?2 Enter the password. The password can be found in the readme.txt file that is located in the
BASCOM application folder

7?2 As an alternative for typing in the password, use copy(CTRL+C) & paste(CTRL+V) so you
do not make type errors

?2 Exit BASCOM and run the program named mcsunzip.exe

?2 This program will unzip the zip files and will start BASCOM when ready

Tools Plugin Manager

The Plugin Manager allows you to specify which Plug-ins needs to be loaded the next time you start
BASCOM.

Plugin Manager x|

|F'Iug|ns to Load

fonteditar. bpl

Just select the plug ins you want to load/use by setting the checkbox.
The plug ins will be loaded under the Tools Menu.

You need to add a button to the toolbar by pressing the right mouse button while the mouse cursor
is pointed to the toolbar.

When you want to write your own plug ins, contact plugin@mcselec.com

OptionsCompiler

Options Compiler Chip

With this option, you can modify the compiler options.
The following TAB pages are available:

Options Compiler Output

Options Compiler Communication
Options Compiler 12C , SPI, IWIRE
Options Compiler LCD

LCompiler I Communic:ationl En\-’ilonmentl §imulat0l| Erogrammerl Mgnitoll F'rinterl

Chip IDutputl Communication | 12C, SPI, TWIRE | LCD |

BASCOM-AYR Options ' x|

Chip 9058515 =l FlashROM G KR

“RAM INDnE

Hiw/ Stack [38 EEFROM [Fl2

Soft Stack |32 [~ =PRaM waitstate
Framesize |32 [~ Estemal Access Enable

j SRaM 512

Default |

The following options are available:

Options Compiler Chip

ltem Description

Chip Selects the target chip. Each chip has a corresponding x.DAT file with
specifications of the chip. Note that some DAT files are not available yet.

XRAM Selects the size of the external RAM. KB means Kilo Bytes.
For 32 KB you need a 62256 STATIC RAM chip.

HW Stack The amount of bytes available for the hard ware stack. When you use GOSUB or
CALL, you are using 2 bytes of HW stack space.
When you nest 2 GOSUB'’s you are using 4 bytes (2*2). Most statements need
HW stack too. An interrupt needs 32 by tes.

Soft Stack Specifies the size of the software stack.
Each local variable uses 2 bytes. Each variable that is passed to a sub program
uses 2 bytes too. So when you have used 10 locals in a SUB and the SUB
passes 3 parameters, you need 13 * 2 = 26 bytes.

Frame size Specifies the size of the frame.

Each local is stored in a space that is named the frame space.

When you have 2 local integers and a string with a length of 10, you need a frame
size of (2*2) + 11 = 15 bytes.

The internal conversion routines used when you use INPUT num,STR(),VAL() etc,
also use the frame. They need a maximum of 16 bytes. So for this example 15+16
= 31 would be a good value.

XRAM waitstate

Select to insert a wait state for the external RAM.

External Access
enable

Select this option to allow external access of the micro. The 8515 for example can
use port A and C to control a RAM chip.

Default

Press or click this button to use the current Compiler Chip settings as default for
all new projects.

Options CompilerOutput

BASCOM-AYR Options

Communic:ationl En\-’ilonmentl §imulat0l| Erogrammerl Mgnitoll P[interl

Chip Output | Commurication | 12€, 5P 1wIRE | LCD |

W Binam file

W Debug File

¥ HEX file

¥ Fepart file

¥ Error file

W &%F Studio Object file

¥ Size warning

\/ Ok x Cancel

Options Compiler Output

Item Description

Binary file Select to generate a binary file. (xxx.bin)
Debug file Select to generate a debug file (xxx.dbg)
Hex file Select to generate an Intel HEX file (xxx.hex)
Reportfile Select to generate a report file (xxx.rpt)

Error file Select to generate an error file (xxx.err)

AVR Studio object
file

Select to generate an AVR Studio object file (xxx.obj)

Size warning

Select to generate a warning when the code size exceeds the Flash ROM
size.

Swap words

This option will swap the bytes of the object code words. Useful for some
programmers. Should be disabled for most programmers.

Don’t use it with the internal supported programmers.

Optimize code

This options does additional optimization of the generated code. Since it takes
more time it is an option.

Show internal
variables

Internal variables are used. Most of them refer toa register. Like _TEMP1 =
R24. This option shows these variables in the report.

OptionsCompilerCommunication

BASCOM-AYR Options

i Communicationl Envilonmentl §imu|at0l| Elogrammerl Mgnitoll P[in[e[l

Chip | Output Commurication | 12€, SPI 1wIRE | LCD |

Baudrate ISEDD j
Frequency |4000000 x| He
Errcr [1%

J Ok x Cancel

Options Compiler Communication

Options Compiler 12C, SPI, IWIRE

BASCOM-AVR Options [x]

LCompiler I Communicationl Envilonment' §imulatol| Emgrammell Mgnitorl F'rinter'

Chip I Dutput' Cammurication 125, 5P TWIRE ILED I

5Pl

PORTE.S - Clock PORTE.S >
IPDHTB.? | MO IPDHTB.B -]

MISD IPDHTB.? 'I

120
SCL port
SDA port
1 Wwire
iz PORTE.O

S5 IPDHTB.4 'I

[T Uze Hardware 5P

J Ok x Cancel

Options Compiler 12C, SPI, 1WIRE

ltem Description

Baud rate Selects the baud rate for the serial statements. You can also type in a new baud rate.

Frequency | Select the frequency of the used crystal. You can also type in a new frequency.

The settings for the internal hardware UART are:
No parity

8 data bits

1 stop bit

Note that these settings must match the settings of the terminal emulator. In the simulator the
output is always shown correct since the baud rate is not taken in consideration during simulation.
With real hardware when you print data at 9600 baud, the terminal emulator will show weird
characters when not set to the same baud rate, in this example, to 9600 baud.

Item Description

SCL port Select the port that serves as the SCL:line for the 12C related statements.

SDA port Select the port that serves as the SDA-line for the 12C related statements.
1WIRE Select the port that serves as the 1WIRE-line for the 1Wire related statements.
Clock Select the port that serves as the clock-line for the SPI related statements.
MOSI Select the port that serves as the MOSI-line for the SPI related statements.
MISO Select the port that serves as the MISO-line for the SPI related statements.
SS Select the port that serves as the SS-line for the SPI related statements.

Use hardware SPI

Select to use builtin hardware for SPI, otherwise software emulation of SPI will
be used. The 2313 does not have internal HW SPI so can only be used with
software spi mode.

Options Compiler LCD

BASCOM-AYR Options

Compiler IEommunicationl Envilonmentl §imu|at0l| Elogrammerl Mgnitoll Plintml

Chip | Output | Communication | 12€, SPI 1wiRE LCD |

LED type |16~ 2

) 4-bit

BUS mode—
’7('“ B-bit

= Enabls IPDHTB.D ~|
Datamode— RS IPDHTB--I j'
L‘: i oE7 |FORTBZ =]

LCD-address |00 pps |FORTA4 v]

RS-address [an0n
™ Make upper 3 bits 1 in LCD designer

DEE IPDHTB.3 'l

PORTAS

Enter LCD address DE4

OptionsCommunication

With this option, you can modify the communication settings fa the terminal emulator.

BASCOM-AVR Optio [x]

Compiler Ervvironment | Simulatar | Programmer | Maritor | Printer |

COk port ICDM1 vl INone j
Baudrate Igsgg vl IBBS AMSI j
Parity I Maohe - l Font &I

Handshake

E muilation

Dieleile IE= jv Backeolor I- MNavy j
Stopbits I 1 = l
o Dk X Cancel

J Ok x Cancel

Options Compiler LCD

Item Description

LCD type The LCD display used.

Bus mode The LCD can be operated in BUS mode or in PIN mode. In PIN mode, the data
lines of the LCD are connected to the processor pins. In BUS mode the data
lines of the LCD are connected to the data lines of the BUS.

Select 4 when you have only connect DB4-DB7. When the data mode is 'pin',
you should select 4.
Data mode Select the mode in which the LCD is operating. In PIN mode, individual

processor pins can be used to drive the LCD. In BUS mode, the external data
bus is used to drive the LCD.

LCD address

In BUS mode you must specify which address will select the enable line of the
LCD display. For the STK200, this is CO00 = A14 + A15.

Item Description

Comport The communication port of your PC that you use for ther terminal emulator.
Baud rate The baud rate to use.

Parity Parity, default None.

Data bits Number of data bits, default 8.

Stop bits Number of stop bits, default 1.

Handshake The handshake used, default is none.

Emulation Emulation used, default BBS ANSI.

Font Font type and color used by the emulator.

Back color Background color of the terminal emulator.

RS address In BUS mode you must specify which address will select the RS line of the LCD
display. For the STK200, this is 8000 = A15

Enable For PIN mode, you must select the processor pin that is connected tothe enable
line of the LCD display.

RS For PIN mode, you must select the processor pin that is connected to the RS line
of the LCD display.

DB7-DB4 For PIN mode, you must select the processor pins that are connected to the

upper four data lines of the LCD display.

Make upper 3 bits
high in LCd
designer

Some displays require that for setting custom characters, the upper 3 bits must
be 1. Should not be used by default.

Note that the baud rate of the terminal emulator and the baud rate setting of the compileroptions,
must be the same in order to work correctly.

OptionsEnvironment

BASCOM-AYR Options

Qompiler' Communication Enwironment I§imu|ator| Erogrammer' Mgnitor' Prinler'

Edior | Font | IDE |

¥ Autoindent

[~ Don't change case
I~ Reformat BAS files
¥ Fefomat code

[~ Smart TAB

¥ Syntax highlight
¥ Show margin

[~ Line numbers

x|

Comment position =]
TaB-size |3
Keymapping |Defaut =l

Na reformat extension IDAT

& Mormal

Size of new editor windo
= Marimized W-‘

Environment Options ’7

Default |

OPTION

DESCRIPTION

BASCOM-AVR Options [x]

Compiler | Communication § Ervironimen

Edior Font |IDE |

Backaround color
Feyword color

Comment colar

§imulatol| Emgrammell Mgnitorl F'rinterl

E ditarF ont Font |

¥ Bold

] e
I- M awy
I- Green

v Italic

L Led Led Lo L

Auto Indent

When you press return, the cursor is set to the next line at the current
column position

ASH color I- Purple
Hw! Register calar I- Maroon
« Dk X Cancel
OPTION DESCRIPTION

Background color

The background color of the editor window.

Don't change case

When set, the reformat won't change the case of the text.
Default is that the text is reformatted so every word begins with upper case.

Keyword color

The color of the reserved words. Default Navy.
The keywords can be displayed in bold too.

Reformat BAS files

Reformat files when loading them into the editor.
This is only necessary when you are loading files that where created with
another editor. Normally you won't need to set this option.

Comment color

The color of comment. Default green.
Comment can be shown in Italic too.

Reformatcode

Reformat code when entered in the editor.

ASM color

Color to use for ASM statements. Default purple.

Smart TAB

When set, a TAB will go to the column where text starts on the previous line.

HW registers color

The color to use for the hardware registers/ports. Default maroon.

Syntax highlighting

This options highlights BASCOM statements in the editor.

Editor font

Click on this label to select another font for the editor window.

Show margin

Shows a margin on the right side of the editor.

Comment The position of the comment. Comment is positioned at the right of your
source code.

TABsize Number of spaces that are generated for a TAB.

Keymapping Choose default, Classic, Brief or Epsilon.

No reformat extension

File extensions separated by a space that will not be reformatted when
loaded.

Size of new editor
window

When a new editor window is created you can select how it will be made.
Normal or Maximized (full window)

BASCOM-AYR Options

Eompilerl Communication Environment Iﬁimulatoll Elogrammerl Mgnitoll F'linterl

Editar I Font IDE I

v Tooltips
[Show Taalbar

¥ Save file as .. far new files

[~ Program after compile

[v Code Hints
Hint time [50Q

%]

File location I

¥ Use HTML help

Drefailt |

OptionsSimulator

With this option you can modify the simulator settings.

OPTION

DESCRIPTION

Use integrated
simulator

Set this option to use BASCOM's simulator. You can also use AVR Studio by
clearing this option.

Run simulator after

Run the selected simulator after a successful compilation.

compilation
Program The path with the program name of the simulator.
Parameter The parameter to pass to the program. {FILE}.OBJ will supply the name of the

current program with the extension .OBJ to the simulator.

OPTION

DESCRIPTION

Tooltips

Show tool tips.

Show toolbar

Shows the toolbar with the shortcut icons.

Save File As ... for new
files.

Will display a dialogbox so you can give new files a name when they must
be saved. When you dont select this option the default name will be give
to the file (nonamex.bas). Where x is a number.

Program after Compile

This option will run the programmer after the program is compiled with
success.

File location

Double click to select a directory where your program files are stored. By
default Windows will use the My Documents path.

Use HTML Help

HTML help is available for download and when your OS supports HTML
help, you can turn this option on.
W98,W98SE,W98ME and W2000 support HTML Help.

Auto backup

Check this option to make periodic backups. When checked you can
specify the backup time in minutes.

Options Programmer

With this option you can modify the programmer settings.

LCompiler Communicalionl Environment | Simulator Programmer I Mgnitorl Prinlerl

Programmer

Play zound

[~ Erasewarning [AutoFlash [V Autcverfy |~ Upload Code and Data

Parallel ISeriaI I Other |

LPT-address

Port delay

BASCOM-AYR Dptions : x|

| 5TK200/5TK300 Programmer =l

L

a7 ~

Default |

Other
Use HEX Select when a HEX file must be sent instead of the bin file.
Program The program to execute. This is your programmersoftware.
Parameter The optional parameter that the program might need.

Use {FILE} to insert the binary filename(file.bin) and {EEPROM} to insert the
filename of the generated EEP file.

When ‘Use Hex’ is checked the filename (file.hex) will be inserted for {FILE}. In all
cases a binary file will be inserted for {EEPROM} with the extension .EEP

OPTION DESCRIPTION
Programmer Select one from the list.
Play sound Name of a WAV file to be played when programming is finished.

Press the ..-button to select the file.

Erase Warning

Set this option when you want a confirmation when the chip is erased.

Auto flash Some programmers support auto flash. Pressing F4 will program the chip without
showing the programmer window.
Autoverify Some programmers support verifying. The chip content will be verified after

programming.

Upload code and
data

Set this ogption to program both the FLASH memory and the EEPROM memory

Parallel printer port programmers

LPT address

Port address of the LPT that is connected to the programmer.

Serial port programmer

COM port

The com port the programmer is connected to.

STK500 EXE

The path of stk500.exe. This is the full file location to the files stk500.exe that
comes with the STK500.

OptionsMonitor

OptionsPrinter

With this option you can modify the monitor settings.

With this option you can modify the printer settings.

There are only settings to change the margins of the paper.

OPTION DESCRIPTION

Upload speed Selects the baud rate used for uploading

Monitor prefix String that will be send to the monitor before the upload starts

Monitor suffix String that us sent to the monitor after the download is completed.

Monitor delay Time in millions of seconds to wait after a line has been sent to the monitor.
Prefixdelay Time in millions of seconds to wait after a prefix has been sent to the monitor.

OPTION DESCRIPTION
Left The leftmargin.
Right The right margin.
Top The top margin.
Bottom The bottom margin.

Window Cascade

Window Tile

Cascade all open editor windows.

Tile all open editor windows.

Window Arrange Icons

Arrange the icons of the minimized editor windows.

Window MinimizeAll

Minimize all open editor windows.

Help About

HelpIndex

This option shows an about box as showed below.

'E'eﬁ; BASCGOM-AVE 1.11.6.2
AV Hural
HANMLALIM AYILi l.I'IITI|'IIII':rZ ¥oramn 1.1 l.h. i

Cupyrighl 1996-2001. MCS Elcclrunmics
Fnmil Mtk mesRIRe pnm

Ulzee bk el
Lompany: VL2
Plat{vy i oy MT

WINnaows Ycr#on: o.U

o Fwu GDl e 0
| broc aystcm rcs.: U
— =
T Cany | | W UK |

Your serial number is shown in the about box.
You will need this when you have questions about the product.
The library version is also shown. In this case, it is 1.00.

You can compare it with the one on our web site in case you need an update.

Click on Ok to return to the editor.

Shows the BASCOM help file.

When you are in the editor window, the current word will be used as a keyword.

HelponHelp

Shows help on how to use the Windows help system.

Help Credits

I would like to thank the following people for their contributions to BASCOM:
?? Dr.-Ing. Claus Kuehnel for his book 'AVR RISC', that helped me a lot when | began to study
the AVR chips. Check his website at http://www.ckuehnel.ch
?? Atmel, who gave permission to use the AVR picture in the start up screen. And for the great
tech support. Check their website at http://www.atmel.com

?? Brian Dickens, who did most of the Beta testing. He also checked the documentation on
grammar and spelling errors.

?? Eddie McMullen, who provided me with source code for the new parallel printer port SPI
programmer. Check his website with 8051 and AVR related hardware at
http://www.eedevl.com

?? Jack Tidwell. | used his FP unit. It is the best one | found and it saved lots of work.
?? Josef Franz Vogel. He wrote the complete trig FP library.

BASCOM Editor Keys

Key

Action

LEFT ARROW

One character to the left

RIGHT ARROW

One character to the right

UP ARROW

One line up

DOWN ARROW

One line down

CTRL+Q+x Go to Bookmark. X can be 1-8
CTRL+R Replace text

CTRL+S SaveFile

CTRL+T Terminal emulator

CTRL+P Compiler Options

CTRL+W Show result of canpilation
CTRL+X Cut selected text to clipboard
CTRL+Z Undo last modification

SHIFT+CTRL+Z

Redo last undo

CTRL+INS

Copy selected text to clipboard

SHIFT+INS

Copy text from clipboard to editor

CTRL+SHIFT+J

Indent Block

CTRL+SHIFT+U

Unindent Block

Select text

Hold the SHIFT key down and use the cursor keys to select text. or keep the left
mouse key pressed and tag the cursor over the text to select.

HOME To the beginning of a line
END To the end of a line

PAGE UP Up one window

PAGE DOWN Down one window
CTRL+LEFT One word to the left
CTRL+RIGHT One word to the right
CTRL+HOME To the start of the text
CTRL+END To the end of the text

CTRL+ Y Delete current line

INS Toggles insert/overstrike mode
F1 Help (contextsensitive)

F2 Run simulator

F3 Find next text

Fa4 Send to chip (run flash programmer)
F5 Run

F7 Compile File

F8 Step

F9 Set breakpoint

F10 Run to

CTRL+F7 Syntax Check

CTRL+F Find text

CTRL+G Go to line

CTRL+K+x Toggle bookmark. X can be 1-8
CTRL+L LCD Designer

CTRL+M File Simulation

CTRL+N New File

CTRL+O Load File

CTRL+P Print File

Developing Order

FontEditor

®start BASCOM;

!Open a file or create a new one;

#® Check the chip settings, baud rate and frequency settings for the target system;
®savethefile;

B.Com pile the file;

| an error occurs fix it and recompile (F7);

#®Run the simulator;

‘Program the chip(F4);

The Font Editor is a Plugin that is intended to create Fonts that can be used with the SED Graphical
display.

When you have installed the Font Editor , a menu opion becomes available under the Tools menu :
Font Editor.

Whenyou choose this option the following window will appear:

Ca- MR baat Editer Heatia.dentl
Cile

| ombname FonlBxR Width |8 Il=ight B lram |32 [t |
AICIT char = U U
=1 - .
aF EEEEs
] § .I.I.
21 "
EE fr
B k
o]
o S
27 "
4@ X
— : Prasion Clearal | Ciptd | 4
4] i el ll Syl e ﬂ
it +
45 - ol

You can open an existing Font file, or Save a modifiedfile.
The font files are installed into the Samples directorie.

You can copy an image form the clipboard and you can move the image up , down, left and right.

When you select a new character, the current character is saved. The suggest option will draw an
image of the current selected character.

When you keep the left mouse button pressed, you can set the pixels in the grid. When you keep
the right mouse button pressed, you can clear the pixels in the grid.

When you choose the option to create a new Font, you can provide the name of the font, the height
of the font in pixels and thw width of the font in pixels.

The Max ASCII is the last ASCII character value you want to use. Each character will occupy
space. So it is important that you do not choose a value that is too high and will not be used.

When you display normal text, the maximum number is 127 so it does not make sense to specify a -
value of 255. PinOut

This plugin is based on the PinOut Viewer from Karl Jan Skontorp.
You can download the Karl Jan’s program from www.mcselec.com/download/appnotes/avr-pins.zip

This program contains all the pictures from the AVR chips.
The PinOut Plugin uses the same pictures , or you can add your own pictures.

When the plugin is selected it will show asmall window :

After you have choosen a picture from the list it will be displayed.

AdditionalHardware

AVR Internal Hardware

Of course just running a program on the chip is not enough. You will probably attach all kind of

electronics to the processor ports.

BASCOM supports a lot of hardware and so has lots of hardware related statements.

Before explaining about programming the additional hardware, it might be better to talk about the

chip.

The AVR internal hardware
Attaching an LCD display
Using the 12C protocol
Using the IWIRE protocal
Using the SPI protocol

You can attach additional hardware to the ports of the microprocessor.

The following statements will kecome available:
I2CSEND and |[2CRECEIVE and other 12C related statements.
CLS, LCD, DISPLAY and other related LCD-statements.

1WRESET, 1IWWRITE and 1IWREAD

The AVR chips all have internal hardware that can be used.

For the description we have used the 8515 so somedescribed hardware will not be available when
you select a 2313 for example.

Timer / Counters

The AT90S8515 provides two general purpose Timer/Counters - one 8-bit T/C and one 16-bit T/C.
The Timer/Counters have individual pre-scaling selection from the same 10-bit pre-scaling timer.
Both Timer/Counters can either be used as a timer with an internal clock time base or as a counter
with an external pin connection which triggers the counting.

Prescalar for Timar/Counter0 and 1

CK o 10-BIT T/C PRESCALER
= = B M
5 $ g £
© o 3
[

»
Y
¥
™

D L

Ti T m
DC y ¥ Y VY VY Y Y ¥ l F ¥
CE10 ;l Ca00
L3 B . caem
Cs12 " CEaZ
TIMER/COUNTER1 CLOCK SOURCE TIMERACOUNTEF
TCK1 T

More about TIMERO
More about TIMER1

The WATCHDOG Timer.

Almost all AVR chips have the ports B and D. The 40 pin devices also have ports A and C that also
can be used for addressing an external RAM chip. Since all ports are identical but the PORT B and
PORT D have alternative functions, only these ports are described.

PORT B

AVRInternal Registers

You can manipulate the register values directly from BASIC. They are also reserved words. The
internal registers for the AVR90S8515 are :

Addr. Register

$3F SREGITHSVNZC

$3E SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

$3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO

$3C Reserved

$3B GIMSK INT1 INTO------

$3A GIFR INTF1 INTFO

$39 TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIEO-

$38 TIFR TOV1 OCF1A OCF1B -ICF1 -TOVO-

$37 Reserved

$36 Reserved

$35 MCUCR SRE SRW SE SM ISC11 ISC10 ISCO01 ISC00

$34 Reserved

$33 TCCRO -- --- CS02 CS01 CS00

$32 TCNTO Timer/CounterO (8 Bit)

$31 Reserved

$30 Reserved

$2F TCCR1A COM1Al1 COM1A0 COM1B1 COM1BO - -PWM11 PWM10
$2E TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

$2D TCNT1H Timer/Counterl - Counter Register High Byte

$2C TCNT1L Timer/Counterl - Counter R egister Low Byte

$2B OCR1AH Timer/Counterl - Output Compare Register A High Byte
$2A OCR1AL Timer/Counterl - Output Compare Register A Low Byte
$29 OCR1BH Timer/Counterl - Output Compare Register B High Byte
$28 OCRI1BL Timer/Counterl - Output Compare Register B Low Byte
$27 Reserved

$26 Reserved

$25 ICR1H Timer/Counterl - Input Capture Register High Byte

$24 ICR1L Timer/Counterl - Input Capture Register Low Byte

$23 Reserved

$22 Reserved PORTB = 40 will place a value of 40 into port B.
$21 WDTCR - --WDTOE WDE WDP2 WDP1 WDPO Note that internal registers are reserved words. This means that they can't be dimensioned as
$20 Reserved BASCOM variables!
$1F Reserved ------- EEARS So you can't use the statement DIM SREG As Byte because SREG is an internal register.
$1E EEARL EEPROM Address Register Low Byte You can however manipulate the register with the SREG = value statement.
$1D EEDR EEPROM Data Register
$1C EECR ----- EEMWE EEWE EERE
$1B PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTAL
PORTAO
$1A DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO
$19 PINA PINA7 PINA6 PINAS5 PINA4 PINA3 PINA2 PINA1 PINAO
$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1
PORTBO
$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO
$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
$15 PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1
PORTCO
$14 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO
$13 PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
$12 PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1
PORTDO
$11 DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
$10 PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO
$OF SPDR SPI Data Register
$0E SPSR SPIFWCOL ------
$0D SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO
$0C UDR UART I/O Data Register
$0B USR RXCTXC UDRE FE OR - - -
$0A UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8
$09 UBRR UART Baud Rate Register
$08 ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACISO
$00 Reserved

The registers and their addresses are defined in the xxx.DAT files which are placed in the
BASCOM-AVR application directory.

The registers can be used as normal byte variables.

AVR Internal Hardware TIMERO

The 8Bit Timer/Counter0

The 8-bit Timer/Counter0 can select its clock source from CK, pre-scaled CK, or an external pin. In

addition it can be stopped.

The overflow status flag is found in the Timer/Counter Interrupt Flag Register - TIFR. Control
signals are found in the Timer/Counter0 Control Register - TCCRO. The interrupt enable/disable
settings for Timer/Counter0 are found in the Timer/Counter Interrupt Mask Register - TIMSK.

When Timer/Counter0 is externally clocked, the external signal is synchronized with the oscillator
frequency of the CPU. To assure proper sampling of the external clock, the minimum time between
two external clock transitions must be at least one internal CPU clock period. The external clock

signal is sampled on the rising edge of the internal CPU clock.

Timer/CounterO Block Diagram

T/CO OVER-
FLOWY IRG

AVR Internal Hardware TIMER1

TOIEZ
TIGIEA
QCIE1B
IE1A
TOIE1
TOIED

OCIE2

]
H0| |

% > TIMER INT. MASK
REGISTER (TIMSK)

§-BIT DATA BUS

TIMER INT. FLAG
REGISTER {TIFR})

T

2

1
2=

|
i e g
¥ Vi '8 1=
] =R ¥ -
Qa Q

TG CLE SDOURCE

TIMER/COUNTERQ
« > (TGNTQ) <

I 3

A

The 8-bit Timer/Counter0 features both a high resolution and a high accuracy usage with the lower
pre-scaling opportunities. Similarly, the high pre-scaling opportunities make the Timer/CounterO
useful for lower speed functions or exact timing functions with infrequent actions.

The 16-Bit Timer/Counterl (8515 other timers may be different)

The 16bit Timer/Counterl can select clock source from CK, pre-scaled CK, or an external pin. In
addition it can be stopped.

The different status flags (overflow, compare match and capture event) and control signals are
found in the Timer/Counterl Control Registers - TCCR1A and TCCR1B.

The interrupt enable/disable settings for Timer/Counterl are found in the Timer/Counter Interrupt
Mask Register - TIMSK.

When Timer/Counterl is externally clocked, the external signal is synchronized with the oscillator
frequency of the CPU. Toassure proper sampling of the external clock, the minimum time between
two external clock transitions must be at least one internal CPU clock period.

The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16bit Timer/Counterl features both a high resolution and a high accuracy usage with the lower
prescaling opportunities.

Similarly, the high prescaling opportunities make the Timer/Counterl useful for lower speed
functions or exact timing functions with infrequent actions.

The Timer/Counterl supports two Output Compare functions using the Output Compare Register 1
A and B-OCR1A and OCR1B as the data sources to be compared to the Timer/Counterl contents.

The Output Compare functions include optional clearing of the counter on compareA match, and
actions on the Output Compare pins on both compare matches.

Timer/Counterl can also be used as a 8, 9 or 10-bit Pulse With Modulator. In this mode the counter
and the OCR1A/OCR1B registers serve as a dual glitch-free stand-alone PWM with centered
pulses.

The Input Capture function of Timer/Counterl provides a capture of the Timer/Counterl contents to
the Input Capture Register - ICR1, triggered by an external event on the Input Capture Pin - ICP.
The actual capture event settings are defined by the Timer/Counterl Control Register -TCCR1B.

In addition, the Analog Comparator can be set to trigger the Input Capture.

Timer/Gounter1 Block Diagram

T:C1 OVER- T/G1 GOMPARE TiG1 GUMPARE TVG1 INPUT
FLOW IRCH MSTCHA RO MATCHB IRG CAPTURE IRG
o | =<
= I e T B e
z HEEEIEIERE EEEHIEEE
'z TIMER [NT. MASK TIMEF INT. FLAG TAC1 CONTROL
EH REQISTER (TIMSK] REGISTER{TIFR) REGISTER & {TGCR1
: LS AHEE RGE
53 (5le I
15 vy y | ¥y
T
. —— T/C1 INPUT GAPTURE REGISTER {ICR1)
|
AC}IPTUHE
TRISGER]
15 | TG GLEAR
1
o TIMER-COUNTERT (TCNT1} E:;;CH" SCURCE
15 a | 15
1
16 BIT COMPARATOR 158
[
15 15
1
f—— I TIMER/COUNTE R CUTPLIT COMPARE REQISTER A TIMERZOUNTER ¢
|

AVRInternal Hardware Watchdog timer

The Watchdog Timer

The Watchdog Timer is clocked from a separate on-chip oscillator which runs at 1MHz. This is the
typical value at VCC = 5V.

By controlling the Watchdog Timer pre-scaler, the Watchdog reset interval can be adjusted from
16K to 2,048K cycles (nominally 16 - 2048 ms). The RESET WATCHDOG - instruction resets the
Watchdog Timer.

Eight different clock cycle periods can be selected to determine the reset period.

If the reset period expires without another Watchdog reset, the AT90Sxxxx resets and executes
from the reset vector.

AVR Internal Hardware Port B

PortB

Port B is an 8bit bi-directional I/O port. Three data memory address locations are allocated for the
Port B, one each for the Data Register - PORTB, $18($38), Data Direction Register - DDRB,
$17($37) and the Port B Input Pins - PINB, $16($36). The Port B Input Pins address is read only,
while the Data Register and the Data Direction Register are read/write

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20mA
and thus drive LED displays directly. When pins PBO to PB7 are used as inputs and are externally
pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in the following table:

When the pins are used for the alternate function the DDRB and PORTB register has to be set
according to the alternate function description.

Poit B Pins Alternate Functions

Port Pin Alternate Functions
PORTB.O | TO (Timer/Counter 0 external counter input)
PORTB.1 | T1 (Timer/Counter 1 external counter input)

PORTB.2 | AINO (Analog comparator positive input)

PORTB.3 | AIN1 (Analog comparator negative input)

PORTB.4 | SS (SPI Slave Select input)

PORTB.5 | MOSI | (SPI Bus Master Output/Slave Input)

PORTB.6 | MISO | (SPI Bus Master Input/Slave Output)

PORTB.7 | SCK (SPI Bus Serial Clock)

The Port B Input Pins address - PINB - is not a register, and this address enables access to the
physical value on each Port B pin. When reading PORTB, the PORTB Data Latch is read, and
when reading PINB, the logical values present on the pins are read.

PortB As General Digital I/0

All 8 bits in port B are equal when used as digital 1/0 pins. PORTB.X, General I/O pin: The DDBn bit
in the DDRB register selects the direction of this pin, if DDBn is set (one), PBn is configured as an
output pin. If DDBn is cleared (zero), PBn is configured as an input pin. If PORTBnN is set (one)
when the pin configured as an input pin, the MOS pull up resistor is activated.

To switch the pull up resistor off, the PORTBnN has to be cleared (zero) or the pin has to be
configured as an output pin.

DDBn Effects on Port B Pins

DDBn PORTBn 110 Pull Comment
up
0 0 Input No Tri-state (Hi-2)
0 1 Input Yes PBn will source current if ext. pulled low.
1 0 Output | No Push-Pull Zero Output

| Output I No

| Push-Pull One Output

AVR Internal Hardware Port D

Port D

Port D Pins Alternate Functions

Port Pin Alternate Function

PORTD.0 | RDX | (UART Input line)

PORTD.1 | TDX | (UART Output line)

PORTD.2 | INTO (External interrupt O input)

PORTD.3 | INT1 (External interrupt 1 input)

PORTD.5 | OC1A | (Timer/Counterl Output compareA match output)

PORTD.6 | WR (Write strobe to external memory)

PORTD.7 | RD (Read strobe to external memory)

RD -PORTD, Bit 7
RD is the external data memory read control strobe.

WR -PORTD, Bit 6
WR is the external data memory write control strobe.

OC1- PORTD, Bit 5

Output compare match output: The PD5 pin can serve as an external output when the
Timer/Counterl com-pare matches.

The PD5 pin has to be configured as an out-put (DDD5 set (one)) to serve this f unction. See the
Timer/Counterl description for further details, and how to enable the output. The OC1 pin is also
the output pin for the PWM mode timer function.

INT1- PORTD, Bit 3

External Interrupt source 1: The PD3 pin can serve as an external interrupt source to the MCU. See
the interrupt description for further details, and how to enable the source

INTO- PORTD, Bit 2

INTO, External Interrupt source 0: The PD2 pin can serve as an external interrupt source to the
MCU. See the interrupt description for further details, and how to enable the source.

TXD - PORTD, Bit 1

Transmit Data (Data output pin for the UART). When the UART transmitter is enabled, this pin is
configured as an output regardless of the value of DDRD1.

RXD - PORTD, Bit 0

Receive Data (Data input pin for the UART). When the UART receiver is enabled this pin is
configured as an output regardless of the value of DDRDO. When the UART forces this pin to be an
input, a logical one in PORTDO will turn on the internal pull-up.

When pins TXD and RXD are not used for RS-232 they can be used as an input or output pin.
No PRINT, INPUT or other RS-232 statement may be used in that case.

The UCR register will by default not set bits 3 and 4 that enable the TXD and RXD pins for RS-232
communication. It is however reported that this not works for all chips. In this case you must clear
the bits in the UCR register with the following statements:

RESET UCR.3
RESET UCR.4

Adding XRAM

Some AVR chips like the 8515 for example can be extended with external RAM memory.

On these chips Port A serves as a Multiplexed Address/Data input/output.

Port C also serves as Address output when using external SRAM.
The maximum size of a XRAM chip can be 64Kbytes.

The STK200 has a 62256 ram chip (32K x 8 bit).

Here is some info from the BASCOM userlist :

If you do go with the external ram , be careful of the clock speed.
Using a 4Mhz crystal , will require a SRAM with 70nS access time
or better. Also the data latch (74HC573) will have to be from a faster
family such as a 74FHC573 if you go beyond 4Mhz.

You can also program an extra wait state, which slow it down a bit.
Here you find a pdf file showing STK200 schematics:

http://www.avr -forum.com/Stk200_schematic.pdf

If you use 32kRAM, then connect the /CS signal to A15 which give
to the range of &H0000 to &H7FFF, if you use a 64kRAM, then
tie /CS to GND, so the RAM is selected all the time.

Thanks to Colin O'Flynn for creating this circuit :

- 1

FAHCOID

o G

f
i

angome tlatashests numbers may be i haged
netl based jle: starts at A1, nol AD)

BATES

L4 \]
!:'E-ﬂ.'!': EE
o s
Edid
—3W i
GRD BaF
) o -,
. YEE s 07 A0s DS ADAADS EDZAD 1 AD0
- sl g L bl R Dl il
™ l_,_ ‘ '
%% o — Na
; R
£+ 10k =
LB — —
Lk m” T 1] B
§ e s —
o |z a3pF || e A
i Jl ZULT l;l_

Attaching an LCD Display

Memoryusage

A LCD display can be connected with two methods.

?2??By wiring the LCD -pins to the processor port pins.
This is the pin mode. The advantage is that you can choose the pins and that they don't have to
be on the same port. This can make your PCB design simple. The disadvantage is that more
code is needed.

?2?7?By attaching the LCD-data pins to the data bus. This is convenient when you have an external
RAM chip and will adds little code.

The LCD-display can be connected in PIN mode as follows:

LCD DISPLAY | PORT PIN
DB7 PORTB.7 14
DB6 PORTB.6 13
DB5 PORTB.5 12
DB4 PORTB.4 11
E PORTB.3 6
RS PORTB.2 4
RW Ground 5
Vss Ground 1
vdd +5 Volt 2
Vo 0-5 Volt 3

This leaves PORTB.1 and PORTB.0 and PORTD for other purposes.
You can change these settings from the Options LCD menu.

BASCOM supports many statements to control the LCD-display.

For those who want to have more control the example below shows how to use the internal
routines.

$ASM

Ldi _templ, 5 'load register R24 with value

Rcall _Lcd_control ‘it is a control value to control the display
Ldi _temp1,65 'load register with new value (letter A)

Rcall _Write_lcd 'write it to the LCD-display

$END ASM

Note that _lcd_control and _write_lcd are assembler subroutines which can be called from
BASCOM.

See the manufacturer's details from your LCD display for the correct assignment.

Every variable uses memory. This memory is also called SRAM.
The available memory depends on the chip.

A special kind of memory are the registers in the AVR. Registers 0-31 have addresses 0-31.
Almost all registers are used by the compiler or might be used in the future.
Which registers are used depends on the statements you used.

This brings us back to the SRAM.
No SRAM is used by the compiler other than the space needed for the software stack and frame.

Some statements might use some SRAM. When this is the case it is mentioned in the help topic of
that statement.

Each 8 used bits occupy one byte.

Each byte occupies one byte.

Each integer/word occupies two bytes.
Each Long or Single occupies four bytes.
Each String occupies at least 2 byes.

A string with a length of 10. occupies 11 byes. The extra byte is needed to indicate the end of the
string.

Use bits or bytes where you can to save memory. (not allowed for negative values)

The software stack is used to store the addresses of LOCAL variables and for variables that are
passed to SUB routines.

Each LOCAL variable and passed variable to a SUB, uses two bytes to store the address. So when
you have a SUB routine in your program that passes 10 variables, you need 10 * 2 = 20 bytes.
When you use 2 LOCAL variables in the SUB program that receives the 10 variables, you need
additional 2 * 2 = 4 bytes.

The software stack size can be calculated by taking the maximum number of parameters in a SUB
routine, adding the number of LOCAL variables and multiplying the result by 2. To be safe, add 4
more bytes for internally used LOCAL variables.

LOCAL variables are stored in a place that is named the frame.

When you have a LOCAL STRING with a size of 40 bytes, and a LOCAL LONG, you need 41 + 4
bytes = 45 bytes of frame space.

When you use conversion routines such as STR(), VAL() etc. that convert from numeric to string
and vice versa, you also need a frame. It should be 16 bytes in that case.
Add additional space for the local data.

Note that the use of the INPUT statement with a numeric variable, or the use of the PRINT/LCD
statement with a numeric variable, will also force you to reserve 16 bytes of frame space. This
because these routines use the internal numeric<>string conversion routines.

XRAM
You can easy add external memory to an 8515. Then XRAM will kecome available.(extended
memory).

When you add a 32KB RAM, the first address wil be 0.

But because the XRAM can only start after the SRAM, which is &H 0260, the lower memory
locations of the XRAM will not be used.

ERAM

Most AVR chips have internal EEPROM on board.
This EEPROM can be used to store and retrieve data.
In BASCOM, this data space is called ERAM.

An important difference is that an ERAM variable can be written for a maximum of 100.000 times.
So only assign an ERAM variable when it is needed and not in a loop.

Constant code usage
Constants are stored in a constant table.
Each used constant in your program will end up in the constant table.

For example:
Print "ABCD"
Print "ABCD"

This example will only store one constant (ABCD).

Print "ABCD"
Print "ABC"

In this example, two constants will be stored because the strings differ.

Using the I2C protocol

The I12C protocol is a 2wire protocol designed by Philips. Of course you also need power and
ground so it really needs 4 wires.

The 12C protocol was invented for making designs of TV PCB's more simple. But with the
availability of many 12C chips, it is ideal for the hobbyist too.

The PCF8574 is a nice chip - it is an I/O extender with 8 pins that you can use either as input or
output.

The design below shows how to implement an 12C-bus. The circuit shown is for the 8051 micro the
AT89C2051 which is pin compatible with the AT90S2313. It also works for the AVR.

R1 and R2 are 330 ohm resistors.
R3 and R4 are 10 kilo-ohm resistors. For 5V, 4K7 is a good value in combination with AVR chips.

You can select which port pins you want to use for the 12C interface with the compiler settings.

MCC

= 0

~SNO=NHENN-~D
—

L]

-
L)
L]
TYVTTVOVOTD
(e e e o o e o

3 J SOA ==
ATB9CZ2051 30

— 1 SCL

The following information was submitted by Detlef Queck.

"Many people have over and over problems width 12C(TWI) Termination, use 4,7k or 10 k pullup?
How long can the SCL,SDA Line width used pullup's go etc.etc.

You can bring this incredible situation's down. Here is a Schematic for an active Termination of 12C
and TWI. We have this Schematic used for over 10 years, and have no problem's with it. The 12C
(TWI1) Line's can be up to 80cm(400KHz) without any problem when the Terminator is at the end of
the Lines."

VELC

1
ECSS7E

CC
LT

Ivl

el oo
cef [
iy [w
o
s
GO

106R

ECS57E

Using the 1 WIRE protocol

The 1 wire protocol was invented by Dallas Semiconductors and needs only 1 wire for the
communication. You also need power and ground of course.

This topic is written by Gote Haluza. He tested the new 1wire search routines and is building a
weather station. Thanks!

Dallas Semiconductor (DS) 1wire. This is a brief description of DS 1wirebus when used in
combination with BASCOM. For more detailed explanations about the 1w-bus, please go to
http://www.dalsemi.com. Using BASCOM, makes the world a lot easier. This paper will approach
the subject from a "BASCOM-user-point-of-view".

lwire-net is a serial communication protocol, used by DS devices. The bus could be implemented in
two basic ways :

With 2 wires, then DQ and ground is used on the device. Power is supplied on the DQ line, which
is +5V, and used to charge a capacitor in the DS device. This power is used by the device for its
internal needs during communication, which makes DQ go low for periods of time. This bus is called
the 1wirebus.

With 3 wires, when +5V is supplied to the VDD line of the device, and DQ + ground as above. This
bus is called the 2wirebus.

So, the ground line is "not counted" by DS. But hereafter we use DS naming conventions.
How it works. (1wire)

The normal state of the bus is DQ=high. Through DQ the device gets its power, and performs the
tasks it is designed for.

When the host (your micro controller (uC)) wants something to happen with the 1w-bus, it issues a
reset-command. That is a very simple electric function that happens then; the DQ goes active low
for a time (480uS on original DS 1w-bus). This put the DS-devices in reset mode; then (they) send
a presence pulse, and then (they) listen to the host.

The presence pulse is simply an active low, this time issued by the device(s).

Now, the host cannot know what is on the bus, it is only aware of that at least 1 DS device is
attached on the bus.

All communication on the 1w-bus is initialized by the host, and issued by timeslots of active-low on
a normally high line (DQ), issued by the device, which is sending at the moment. The devices(s)
internal capacitor supplies its power needs during the low-time.

How you work with 1w-bus

Thereafter, you can read a device, and write to it. If you know you only have 1 sensor attached, or if
you want to address all sensors, you can start with a "Skip Rom"- command. This means; take no
notice about the Ids of the sensors - skip that part of the communication.

When you made a 1w-reset, all devices of the bus are listening. If you chose to address only one of
them, the rest of them will not listen again before you have made a new 1wreset on the bus.

| do not describe BASCOM commands in this text - they are pretty much self-explaining. But the uC
has to write the commands to the bus - and thereafter read the answer. What you have to write as a
command depends on devices you are using- and what you want to do with it. Every DS chip has a
datasheet, which you can find at http://www.dalsemi.com/datasheets/pdfindex.html. There you can
findout all about the actual devices command structure.

There are some things to have in mind when deciding which of the bus-types to use.
The commands, from BASCOM, are the same in both cases. So this is not a problem.

The +5V powersupply on the VDD when using a 2wire-bus has to be from separate power supply,
according to DS. But it still works with taking the power from the same source as for the processor,
directly on the stabilizing transistor. | have not got it to work taking power directly from the
processor pin.

Some devices consume some more power during special operations. The DS1820 consumes a lot
of power during the operation "Convert Temperature". Because the sensors knows how they are
powered (it is also possible to get this information from the devices) some operations, as "Convert
T" takes different amount of time for the sensor to execute. The command "Convert T" as example,
takes ~200mS on 2wire, but ~700mS on lwire. This has to be considered during programming.

And that power also hasto be supplied somehow.

If you use 2wire, you don't have to read further in this part. You can do simultaneously "Convert T"
on all the devices you attach on the bus. And save time. This command is the most power-
consuming command, possible to execute on several devices, | am aware of.

If you use lwire, there are things to think about. It is about not consuming more power than you
feed. And how to feed power? That depends on the devices (their consumption) and what you are
doing with them (their consumption in a specific operation).

Short, not-so-accurate description of power needs, not reflecting on cable lengths

Only the processor pin as power supplier, will work < 5 sensors. (AVR, 1w-functions use an internal
pullup. 8051 not yet tested). Don't even think of simultaneously commands on multiple sensors.

With +5V through a 4K7 resistor, to the DQ-line, 70 sensors are tested. But, take care, cause
issuing "Convert T" simultaneously, would cause that to give false readings. About ~15 sensors is
the maximum amount of usable devices, which simultaneously performs some action. This
approach DS refers to as "pull-up resistor".

With this in mind, bus up to 70 devices has been successfully powered this way.

The resistor mentioned, 4K7, could be of smaller value. DS says minimum 1K5, | have tested down
to 500 ohm - below that the bus is not usable any more. (AVR). Lowering the resistor feeds more
power - and makes the bus more noise-resistant. But, the resistor minimum value is naturally also
depending on the uC-pin electric capabilities. Stay at 4K7 - which is standard recommendation.

DS recommends yet another approach, called "strong pull-up" which (short) works via a MOS-FET
transistor, feeding the DQ lines with enough power, still on 1wire, during power-consuming tasks.
This is not tested, but should naturally work. Cause this functionality is really a limited one;
BASCOM has no special support for that. But anyway, we tell you about it, just in case you wonder.
Strong pull-up has to use one uC pin extra - to drive the MOS-FET.

Cable lengths (this section is only for some limitation understanding)

For short runs up to 30 meters, cable selection for use on the 1W bus is less critical. Even flat
modular phone cable works with limited numbers of 1-Wire devices. However, the longer the 1W
bus, the more pronounced cable effects become, and therefore the greater importance placed on

cable selection.

For longer distances, DS recommends twisted-pair-cable (CAT5).

DS standard examples show 100 meters cable lengths, so they say, that's no problem. They also
show examples with 300m cabling, and I think | have seen something with 600-meter bus (but |
cant find it again).

Noise and CRC

The longer cable and the noisier environment, the more false readings will be made. The devices
are equipped with a CRC-generator - the LSByte of the sending is always a checksum. Look in
program examples to learn how to re-calculate this checksum in your uC. AND, if you notice that
there are false readings - do something about your cables. (Shield, lower resistor)

Transfer speed

On the original 1w-bus, DS says the transfer speed is about 14Kbits /second. And, if that was not
enough, some devices has an overdrive option. That multiplies the speed by 10. This is issued by
making the communication-time-slots smaller (from 60 uS to 6uS) which naturally will make the
devices more sensitive, and CRC-error will probably occur more often. But, if that is not an issue,
~140Kbit is a reachable speed to the devices. So, whatever you thought before, it is FAST.

The BASCOM scanning of the bus is finds about 50 devices / second , and reading a specific
sensors value to a uC should be about 13 devices / second.

Topology

Of the 1w-net - that is an issue we will not cover so much. Star-net, bus-net? It seems like you can
mix that. It is a bus-net, but not so sensitive about that.

The benefit of the 1w-bus

Each device is individual - and you can communicate with it over the media of 2 wires. Still, you can
address one individual device, if you like. Get its value. There are 64 ~ 2 unique identifications-
numbers.

Naturally, if lot of cables are unwanted, this is a big benefit. And you only occupy 1 processor pin.

DS supplies with different types of devices, which all are made for interfacing an uC - directly. No
extra hardware. There are sensors, so you can get knowledge about the real world, and there are
also potentiometers and relays, so you can do something about it. On the very same bus.

And the Ibutton approach from DS (ever heard of it?) is based on lwire technology. Maybe
something to pick up.

BASCOM let you use an uC with 1wire-devices so easy, that (since now) that also has to count as a
benefit - maybe one of the largest. ;-)

The disadvantages of the 1w-bus

So far as | know, DS is the only manufacturer of sensors for the bus. Some people think their
devices are expensive. And, until now, it was really difficult to communicate with the devices.
Particularly when using the benefit of several devices on one bus. Still some people say that the
1w-bus is slow - but | don't think so.

Gote Haluza
System engineer

Using the SPI protocol

General description of the SPI

The SPI allows highspeed synchronous data transfer between the AVR and peripheral devices or
between several AVR devices. On most parts the SPI has a second purpose where it is used for In
System Programming (ISP).

The interconnection between two SPI devices always happens between a master device and a
slave device. Compared to some peripheral devices like sensors which can only run in slave mode,
the SPI of the AVR can be configured for both master and slave mode.

The mode the AVR is running in is specified by the settings of the master bit (MSTR) in the SPI
control register (SPCR).

Special considerations about the /SS pin have to be taken into account. This will be described later
in the section "Multi Slave Systems -/SS pin Functionality".

The master is the active part in this system and has to provide the clock signal a serial data
transmission is based on. The slave is not capable of generating the clock signal and thus can not
get active on its own.

The slave just sends and receives data if the master generates the necessary clock signal. The
master however generates the clock signal only while sending data. That means that the master
has to send data to the slave to read data from the slave.

Figure 1. Master and Slave Ini
-

_______________ . — - = F————————————— = — = — =

|

| | |

: o

- |

I Masater Mode | Slave Mods
|

| = | |

o TG | s
|

! Shik- . 1 wwo] EHiMt-

: Regletar e : 20 Reglater
|

I ! I

| ' t

| | :
|

I 1 | sk !

! Clock Genaratar I i

: - =

| o _______ o e E
Yoo =

DatatransmissionbetweenMasterandSlave

The interaction between a master and a slave AVR is shown in Figure 1. Two identical SPI units are
displayed. The left unit is configured as master while the right unit is configured as slave. The
MISO, MOSI and SCK lines are connected with the corresponding lines of the other part.

The mode in which a part is running determines if they are input or output signal lines. Because a
bit is shifted from the master to the slave and from the slave to the master simultaneously in one
clock cycle both 8-bit shift registers can be considered as one 16-bit circular shift register. This
means that after eight SCK clock pulses the data between master and slave will be exchanged.

The system is single buffered in the transmit direction and double buffered in the receive direction.
This influences the data handling in the following ways:

1. New bytes to be sent can not be written to the data register (SPDR) / shift register before the
entire shift cycle is completed.

2. Received bytes are written to the Receive Buffer immediately after the transmission is completed.
3. The Receive Buffer has to be read before the next transmission is completed or data will be lost.
4. Reading the SPDR will return the data of the Receive Buffer.

After a transfer is completed the SPI Interrupt Flag (SPIF) will be set in the SPI Status Register
(SPSR). This will cause the corresponding interrupt to be executed if this interrupt and the global

interrupts are enabled. Setting the SPI Interrupt Enable (SPIE) bit in the SPCR enables the interrupt
of the SPI while setting the | bit in the SREG enables the global interrupts.

Pins of the SPI

The SPI consists of four different signal lines. These lines are the shift clock (SCK), the Master Out
Slave In line (MOSI), the Master In Slave Out line (MISO) and the active low Slave Select line (/SS).
When the SPI is enabled, the data direction of the MOSI, MISO, SCK and /SS pins are overridden
according to the following table.

Table 1. SPI Pin Overrides

Pin Direction Overrides Master SPI Mode Direction Overrides Slave SPI Modes
MOSI UserDefined Input

MISO Input UserDefined
SCK UserDefined Input

SS UserDefined Input

This table shows that just the input pins are automatically configured. The output pins have to be
initialized manually by software. The reason for this is to avoid damages e.g. through driver
contention.

MultiSlaveSystems - /SSpin Functionality

The Slave Select (/SS) pin plays a central role in the SPI configuration. Depending on the modethe
part is running in and the configuration of this pin, it can be used to activate or deactivate the
devices. The /SS pin can be compared with a chip select pin which has some extra features. In
master mode, the /SS pin must be held high to ensure master SPI operation if this pin is configured
as an input pin. A low level will switch the SPI into slave mode and the hardware of the SPI will
perform the following actions:

1. The master bit (MSTR) in the SPI Control Register (SPCR) is cleared and the SPI system
becomes a slave. The direction of the pins will be switched according to Table 1.

2. The SPI Interrupt Flag (SPIF) in the SPI Status Register (SPSR) will be set. If the SPI interrupt
and the global interrupts are enabled the interrupt routine will be executed. This can be useful in
systems with more than one master to avoid that two masters are accessing the SPI bus at the
same time. If the /SS pin is configured as output pin it can be used as a general purpose output pin
which does not affect the SPI system.

Note: In cases where the AVR is configured for master mode and it can not be ensured that the /SS
pin will stay high between two transmissions, the status of the MSTR bit has to be checked before a
new byte is written. Once the MSTR bit has been cleared by a low level on the /SS line, it must be
set by the application to re-enable SPI master mode.

In slave mode the /SS pin is always an input. When /SS is held low, the SPI is activated and MISO
becomes output if configured so by the user. All other pins are inputs. When /SS is driven high, all
pins are inputs, and the SPI is pas-sive, which means that it will not receive incoming data.

Table 2 shows an overview of the /SS Pin Functionality.
Note: In slave mode, the SPI logic will be reset once the /SS pin is brought high. If the /SS pin is

brought high during a transmission, the SPI will stop sending and receiving immediately and both
data received and data sent must be considered as lost.

TABLE 2. Overview of SS pin.

Mode /SS Config /SS Pin level Description

Slave Always input High Slave deactivated

transfer formats. To ensure a proper communication between master and slave both devices have
to run in the same mode. This can require a reconfiguration of the master to match the
requirements of different peripheral slaves.

The settings of CPOL and CPHA specify the different SPI modes, shown in Table 3. Because this is

Slave activated
Low
Master Input High Master activated
Master deactivated
Low
High Master activated
Output
Low

no standard and specified different in other literature, the configuration of the SPI has to be done

carefully.

Table 3. SPI Mode configuration

As shown in Table 2, the /SS pin in slave mode is always an input pin. A low level activates the SPI

SPI Mode CPOL CPHA Shift SCK Capture SCK
edge edge

0 0 0 Falling Rising

1 0 1 Rising Falling

2 1 0 Rising Falling

3 1 1 Falling Rising

of the device while a high level causes its deactivation. A Single Master Multiple Slave System with
an AVR configured in master mode and /SS configured as output pin is shown in Figure 2. The
amount of slaves, which can be connected to this

AVR is only limited by the number of I/O pins to generate the slave select signals.

Flgure 2. Multi Slave System

SCK BCK
oS ol
__mso wso M
5 [(PB) =3
BCK
[T 5
PEO =5
AR
Mada e By
PB1 =2
.
L}
.
5CK
[r otz
prero |
PET =

The ability to connect several devices to the same SPI-bus is based on the fact that only one
master and only one slave is active at the same time. The MISO, MOSI and SCK lines of all the
other slaves are tristated (configured as input pins of a high impedance with no pullup resistors
enabled). A false implementation (e.g. if two slaves are activated at the same time) can cause a
driver contention which can lead to a CMOS latchup state and must be avoided. Resistances of 1 to
10 k ohms in series with the pins of the SPI can be used to prevent the system from latching up.
However this affects the maximum usable data rate, depending on the loading capacitance on the
SPI pins.

Unidirectional SPI devices require just the clock line and one of the data lines. If the device is using
the MISO line or the MOSI line depends on its purpose. Simple sensors for instance are just
sending data (see S2 in Figure 2), while an external DAC usually just receives data (see S3 in
Figure 2).

SPITiming

The SPI has four modes of operation, 0 through 3. These modes essentially control the way data is
clocked in or out of an SPI device. The configuration is done by two bits in the SPI control register
(SPCR). The clock polarity is speci-fied by the CPOL control bit, which selects an active high or
active low clock. The clock phase (CPHA) control bit selects one of the two fundamentally different

The clock polarity has no significant effect on the transfer format. Switching this bit causes the clock
signal to be inverted (active high becomes active low and idle low

becomes idle high). The settings of the clock phase, how-ever, selects one of the two different
transfer timings, which are described closer in the next two chapters. Since the MOSI and MISO
lines of the master and the slave are directly connected to each other, the diagrams show the
timing of both devices, master and slave. The /SS line is

the slave select input of the slave. The /SS pin of the master is not shown in the diagrams. It has to
be inactive by a high level on this pin (if configured as input pin) or by configuring it as an output
pin.

A.)CPHA=0and CPOL =0(Mode 0)and CPHA =0and

CPOL=1(Mode1)

The timing of a SPI transfer where CPHA is zero is shown in Figure 3. Two wave forms are shown
for the SCK signal -one for CPOL equals zero and another for CPOL equals one.

Flgure 3. 5Pl Transfer Format with CPHA =0

SCKOYCLE My z [s[4 s8] 78

When the SPI is configured as a slave, the transmission starts with the falling edge of the /SS line.
This activates the SPI of the slave and the MSB of the byte stored in its dataregister (SPDR) is
output on the MISO line. The actual transfer is started by a software write to the SPDR of the
master. This causes the clock signal to be generated. In cases where the CPHA equals zero, the
SCK signal remains zero for the first half of the first SCK cycle. This ensures that the data is stable
on the input lines of both the master and the slave. The data on the input lines is read with the edge
of the SCK line from its inactive to its active state (rising edge if CPOL equals zero and falling edge
if CPOL equals one). The edge of the SCK line from its active to its inactive state (falling edge if
CPOL equals zero and rising edge if CPOL equals one) causes the data to be shifted one bit further
so that the next bit is output on the MOSI and MSO lines.

After eight clock pulses the transmission is completed. In both the master and the slave device the

SPI interrupt flag (SPIF) is set and the received byte is transferred to thereceive buffer.
B.)CPHA=1and CPOL=0(Mode2)and CPHA=1and

CPOL =1 (Mode 3)

The timing of a SPI transfer where CPHA is one is shown in Figure 4. Two wave forms are shown
for the SCK signal -one for CPOL equals zero and another for CPOL equals one.

Figure 4. SPI| Transfer Format with CPHA = 1

SOK CYCLER

FOR REFERENCE)
SOK [CPOL=0)
SCK [CPOL=1)
MOS|

(FROM MASTER)

MIST

{FROM SLAVE)
55 [T0 SLAVE)
SAMPLE

Mot defined but noomally LSE of previously rensmitied charactern,

Like in the previous cases the falling edge of the /SS lines selects and activates the slave.
Compared to the previous cases, where CPHA equals zero, the transmission is not started and the
MSB is not output by the slave at this stage. The actual transfer is started by a software write to the
SPDR of the master what causes the clock signal to be generated. The first edge of the SCK signal
from its inactive to its active state (rising edge if CPOL equals zero and falling edge if CPOL equals
one) causes both the master and the slave to output the MSB of the byte in the SPDR.

As shown in Figure 4, there is no delay of half a SCK-cycle like in Mode 0 and 1. The SCK line
changes its level immediately at the beginning of the first SCK-cycle. The data on the input lines is
read with the edge of the SCK line from its active to its inactive state (falling edge if CPOL equals
zero and rising edge if CPOL equals one).

After eight clock pulses the transmission is completed. In both the master and the slave device the
SPI interrupt flag (SPIF) is set and the received byte is transferred to the receive buffer.
Considerationsforhighspeedtransmissions

Parts which run at higher system clock frequencies and SPI modules capable of running at speed
grades up to half the system clock require a more specific timing to match the needs of both the
sender and receiver. The following two diagrams show the timing of the AVR in master and in slave
mode for the SPI Modes 0 and 1. The exact values of the displayed times vary between the
different pars and are not an issue in this application note. However the function-ality of all parts is
in principle the same so that the following considerations apply to all parts.

Figure 5. Timing Master Mode

S
8 1
SCK 3 - d
JCPOL =) V1
7 z
SO
{CPOL = 1) ‘r 3 - .'!1
heaf b N J <
IS0 - -
[Diaka Inpat) | M= Y\ W R) ;
el
Y
MOs1 - I v -
st Coutper) M L i X == T
v

The minimum timing of the clock signal is given by the times "1" and "2". The value "1" specifies the
SCK period while the value "2" specifies the high / low times of the

clock signal. The maximum rise and fall time of the SCK signal is specified by the time "3". These
are the first timings of the AVR to check if they match the requirements of

theslave.

The Setup time "4" and Hold time "5" are important times because they specify the requirements
the AVR has on the interface of the slave. These times determine how long before the clock edge

the slave has to have valid output data ready and tow long after the clock edge this data has to be
valid.

If the Setup and Hold time are long enough the slave suits to the requirements of the AVR but does
the AVR suit to the requirements of the slave?

The time "6" (Out to SCK) specifies the minimum time the AVR has valid output data ready before
the clock edge occurs. This time can be compared to the Setup time "4" of the slave.

The time "7" (SCK to Out) specifies the maximum time after which the AVR outputs the next data bit
while the time "8" (SCK to Out high) the minimum time specifies during which the last data bit is
valid on the MOSI line after the SCK was set back to its idle state.

Figure 6. Timing Slave Mode

— —
5=
I
P T i
—-— N
SCH ¥ o E
(CPOL = 0} iy
i 1
SCH ¥ o
[CPOL = 1) \,\ I H
13 L
- Ll —'f---—
N
[Fe] I Al Y
A58 EE
(Dt Irgaaty " (Y \ i
. .
N
KIS0 Al -
wMz8 3B
(Dt Oulgrty ¥ iy X -

In principle the timings are the same in slave mode like previously described in master mode.
Because of the switching of the roles between master and slave the requirements on the timing are
inverted as well. The minimum times of the master mode are now maximum times and vice versa.
SPITransmissionConflicts

A write collision occurs if the SPDR is written while a transfer is in progress. Since this register is
just single buffered in the transmit direction, writing to SPDR causes data to be written directly into
the SPI shift register. Because this write operation would corrupt the data of the current transfer, a
write-collision error in generated by setting the WCOL bit in the SPSR. The write operation will not
be executed in this case and the transfer continues undisturbed. A write collision is generally a
slave error because a slave has no control over when a master will initiate a transfer. A master,
however, knows when a transfer is in progress. Thus a master should not generate write collision
errors, although the SPI logic can detect these errors in a master as well as in a slave mode.

When you set the SPI option from the Options, Compiler, SPI menu SPCR will be set to 01010100
which means ; enable SPI, master mode, CPOL = 1

When you want to control the various options with the hardware SPI you can use the CONFIG SPI
statement.

Power Up Supported Programmers

At power up all ports are in Tri-state and can serve as input pins. BASCOM supports the following programmers

When you want to use the ports (pins) as output, you must set the data direction first with the
statement : CONFIG PORTB = OUTPUT

s
Individual bits can also be set to be used as input or output.
For example : DDRB =&B00001111 , will set a value of 15 to the data direction register of PORTB.

PORTB.0 to PORTB.3 (the lower 4 bits) can be used as outputs because they are set high. The
upper four bits (PORTB.4 to PORTB.7), can be used for input because they are set low.

STK200 ISP programmerfrom Atmel/Kanda

The PG302 programmer from Iguana Labs

The simple cable programmer from Sample Electronics.

You can also set the direction of a port pin with the statement :
CONFIG PINB.0 = OUTPUT | INPUT Eddie McMullen's SPI programmer.

:;]r;:fgat?urpeal RAM is cleared at power up or when a reset occurs. Use SNORAMCLEAR to disable KITSRUS KIT122 Programmer

MCS Universal Interface Programmer

STK500 programmer and Extended STK500 programmer.

Lawicel BootLoader

ISP programmer

BASCOM supports the STK200 and STK200+ and STK300 ISP programmer from Kanda.
This is a very reliable parallel printer port programmer.
The STK200 ISP programmer is included in the STK200 starter kit.

All programs were tested with the STK200.

For those who don't have this kit and the programmer the following schematic shows how to make
your own programmer:

The dongle has a chip with no identification but since the schematic is all over the web, | have
included it. Kanda also sells a very cheap separate programmer dongle. So | suggest you buy this
one!

Here is a great tip received from a user :

Ifthe parallel port is disconnected from the interface and left floating, the '244 latch outputs will
waver, causing your microcontroller to randomly reset during operation. The simple addition of a
100K pull-up resisistor between pin 1 and 20 of the latch, and another between pin 19 and 20, will
eliminate this problem. You'll then have HIGH-Z on the latch outputs when the cable is
disconnected (as well as when it's connected and you aren't programming), so you can use the
MOSI etc. pins for /0.

Use J1 and J2 for STKIO0O0
Use J1 for STKZ00

S
o — c1
J1 JZ z 100nF
K1 o
| D1 1N4148
T4 1 z
© = T FOWER
O [=
o li = IC1 20 o Tém(ESET
T 1E S 1AL 1YL g2
5 2 {182 1vz (g2 s MIS0 |
o1 =] 183 13 1
< T lAd 1va LS FGST]
oA s 2A1 21— |
o = = 2h2 22 L CLOCE |
o ZAZ ZY3
et 12 ‘lzha Zva 4 END
o
o—r=22 Tid 1¢ L
o 2G =
o121 10
P] TAACZAS
P
o1l I
=
Pl -
i
O T=a
o—i2 CONNESTOR DEZS MALE
o
ZE
O Tis
]

PG302 programmer

The PG302 is a serial programmer. It works and looks exactly as the original PG302 software.

PG302 programmer B3

Device

tdemony Lockhits
IV(" Flazh € EEPROM W LB1 [T LB2 [T LE3
Blank check | Erase | ™ Auto Erase
- [Auto Verify
ey | Erogram |
Besd | Setlockhit | X Close

|

Select the programmer from The Option Programmer menu or right click on the |‘ |button to show
the Option Programmer menu.

Sample Electronics cable programmer

Sample Electronics submitted the simple cable programmer.

They produce professional programmers too. This simple programmer you can make yourself within

10 minutes.

What you need is a DB25 centronics male connector, a flat cable and a connector that can be
connected to the target MCU board.

The connections to make are as following:

DB25 pin Target MCU Target MCU Target MCU DT104
pin(AT90S8535) M103/M128 pin 8515

2, D0 MOSI, pin 6 PE.O, 2 MOSI, 6 J5, pin 4

4, D2 RESET, pin 9 RESET, 20 RESET, 9 J5, pin 8

5, D3 CLOCK, pin 8 PB.1,11 CLOCK, 8 J5, pin 6

11, BUSY MISO, pin 7 PE.1, 3 MISO, 7 J5, pin 5

18-25,GND GROUND GROUND GND,20 J5, pin 1

The MCU pin numbers are shown for an 8535! And 8515

Note that 1825 means pins 18,19,20,21,22,23,24 and 25

You can use a small resistor of 100-220 ohm in series with the DO, D2 and D3 line in order not to
short circuit your LPT port in the event the MCU pins are high.

But it was tested without these resistors and my PC still works :-)

Tip: when testing programmers etc. on the LPT it is best to buy an 1/0 card for your PC that has a
LPT port. This way you don’t destroy your LPT port that is on the motherboard in the event you
make a mistake!

The following picture shows the connections to make. Both a setup for the DT104 and stand-alone
PCB are shown.

I received the following useful information:
Hi Mark,

| have been having spurious success with the simple cable programmer from
Sample Electronics for the AVR series.

After resorting to hooking up the CRO | have figured it out (I think). When
trying to identify the chip, no response on the MISO pin indicates that the
Programming Enable command has not been correctly received by the target.
The SCK line Mark/Space times were okay but it looked a bit sad with a slow
rise time but a rapid fall time. So | initially tried to improve the rise

time with a pull-up. No change ie still could not identify chip. | was about

to add some buffers when | came across an Atmel app note for their serial

programmer

"During this first phase of the pragramming cycle, keeping the SCK line

free from pulses is critical, as pulses will cause the target AVR to loose
synchronization with the programmer. When synchronization is lost, the only
means of regaining synchronization is to release the RESET line for more
than 100ms."

| have added a 100pF cap from SCK to GND and works first time every time
now. The SCK rise time is still sad but there must have been enough noise
to corrupt the initial command despite using a 600mm shielded cable.

This may be usefu to your users.
Regards,

Mark Hayne

K1
.
o z
B
© = JS, DT104 SimmStick
e
3 3
1z —4d:
it PR 9z
& 2
15 1 RZ o
s —
]
1 T » 330 & HEADER

IZIpF

4 MH=

[

4

T

=

[%)

-4

0

Ky

|
=

1

o o0 0 0 0 0o O 0
Lol Lol e I Lo o IS B] Q #] Q
(&Y
|

CONMECTOR DEZS MALE

Connect when use with

Options

KITSRUS Programmer

MCS Universal Interface Programmer

The K122 is a KIT from KITSRUS. (www.kitsrus.com)
The programmer supports the most popular 20 and 40 pins AVR chips.

On the Programmer Options tab you must select this programmer and the COM port it is connected

to.

On the Monitor Options tab you must specify the upload speed of 9600, Monitor delay of 1 and

Prefix delay 1.

When you press the Program button the Terminal Emulator screen will pop up:

fi3d BASCOM-AVR Terminal emulator

File Terminal

o | EZ|E< al

& Flash EEPROM !|

IEDMH 9200,H.8.1

A special toolbar is now visible.

You must press the Program enable button to enable the programmer.

When you enable the programmer the right baud rate will be set.
When you are finished you must press the Enable button again to disable it.

This way you can have a micro connected to your COM port that works with a different BAUD rate.

There is an option to select between FLASH and EEPROM.
The prompt will show the current mode which is set to FLASH by default.

The buttons on the toolbar allow you to :
ERASE, PROGRAM, VERIFY, DUMP and set the LOCK BITS.
When DUMP is selected you will be asked for a file name.

When the DUMP is ready you must CLOSE the LOGFILE where the data is stored. This can be

done to select the CLOSE LOGFILE option form the menu.

The MCS Universal Interface programmer allows you to customize the pins that are used for the
ISP interface. The file prog.settings stores the various interfaces.

The content :

;how to use this file to add support for other programmers
Jfirst create a section like [newprog]

; then enter the entries:

; BASE= $hexaddress

; MOSI= address in form of BASE[+offset] , bit [,inverted]

; CLOCK= same as MOSI

; RESET=same as MOSI

; MISO=same as MOSI

; The bit is a numer that must be written to set the bit

; for example 128 to set bit 7

; Optional is ,INVERTED to specify that inverse logic is used
; When 128 is specified for the bit, NOT 128 will be written(127)

[FUTURELEC]
;tested and ok
BASE=$378

MOSI=BASE+2,1,inverted
CLOCK=BASE,1
RESET=BASE,2
MISO=BASE+1,64

[sample]
;tested and ok
BASE=$378

MOSI=BASE,1
CLOCK=BASE,8
RESET=BASE,4
MISO=BASE+1,128,INVERTED

[stk200]
;tested and ok
BASE=$378

MOSI=BASE,32
CLOCK=BASE,16
RESET=BASE,128
MISO=BASE+1,64

Four programmers are supported : Futurelec, Sample and STK200/STK300 and WinAVR/ SP12.

To add your own programmer open the file with notepad and add a new section name. For the
example | will use stk200 that is already in the file.

[stk200]

The LPT base address must be specified. For LPT1 this is in most cases $378. $ means
hexadecimal.

The pins that are needed are MOSI, CLOCK, RESET and MISO.

Add the pin name MOSI =

After the pin name add the address of the register. For the STK200 the data lines are used so
BASE must be specified. After the address of the register, specify the bit number value to set the
pin high. Pin 0 will be 1, pin 1 would be 2, pin 2 would be 4 etc. D5 is used for the stk so we specify
32.

When the value is set by writing a logic 0, also specify, INVERTED.
After you have specified all pins, save the file and restart BASCOM.
Select the Universal Programmer Interface and select the entry you created.

After you have selected an entry save your settings and exit BASCOM. At the next startup of
BASCOM, the settings will be used.

The following picture shows the LPT connector and the relation of the pins to the LPT registers.

D7 |D&(D5|D4|D3|D2|{D1| DO

BASE“"“””S‘Z;—‘

B B
©00000000/

2006 00|

==

=B
-]
'Y
w
]
-
-]
om

BASE+1

BASE+2 w4 |uiv|nv

Always add your entry to the bottom of the file and email the settings toavi@mcselec.com so it can
be added to BASCOM.

STK500Programmer

When you select the STK500 programmer, BASCOM will run the files named stk500.exe that is
installed with AVR Studio.
That is why you have to specify the file location of the stk500.exe

The normal STK500 support will erase, and program the flash.

The extended STK500 support will show the following window:

STK500 Options
Programming Mode =
Imput Flash file I"C:\F‘rogram FiIes\BorIariI Erase |
Input EEFROM fle | =1

Erase chip
Output Flash file I EI
Output EEPROM file | =]
Mode IBoth j
Program | Read device | Wernfy device |
Signature I Read Signature |
Lock Byte I Read | ‘wiite
Fuze Butes I I Read | ‘Wite
W target I Fead | ‘write
AREF I Read | ‘Wit
Ocillatar I I Read Wwiike
Frequency I
j'IL Cloze
Option Description

Programming mode Serial or parallel. Some options require the parallel mode.

Input Flash File The program HEX file. It is loaded automatic

Input EEPROM File The program EEP file. It is loaded automatic when it exists

Output Flash File

The name of the output flash file. Only needed when you want to
read a device.

Output EEPROM File

The name of the output EEPROM file. Only needed when you want
to read the EEPROM from a device

Mode

Both will work on the FLASH and EEPROM, Flash will only work on
the FLASH ROM and EEPROM will only work on the EEPROM.

Use both when you want to program both a program and an

Lawicel BootLoader

EEPROM (EEP) file.
Erase Erase chip. Must be done before programming the chip.
Program Program the chip
Read device Read the flash and or EEPROM content and store in the specified
files.
Verify device Verify the chip content with the files.
Read signature Read the signature bytes that identify the chip.
Read/Write Lock Byte Read and write the lock byte. Hex notation!
Read/Write Fuse Bytes Read and write the fuse bytes. Hex notation!
Read/Write Vtarget Read or set the Vtarget voltage
Read/Write Aref Read or set the Aref voltage
Read/Write oscillator Read or write the oscillator settings
Read/Write frequency Read or set the board frequency

All options will set the command line parameters. A file named stk500.cmd will be created by the
compiler with the proper syntax.

This file will be executed and the result is stored in the stk500.log file.

The Lawicel Bootloader must be used with the StAVeR. The StAVeR contains a bootloader so you
only need a serial interface, no parallel programmer or other programmers.

You can also use Hyperterminal.

When you have selected the Lawicel Bootloader from the Options, Programmer, the following
window will appear when you press F4.

£l
=,

Mmemt kmwme

As the window suggests, press the reset button on the activity board or StAVeR, and the chip will
be programmed. This is visible by a second wind that will be shown during programming.

When the programming succeeds, both windows will be closed.

When an error occurs, you will get an error message and you can clock the Cancel button in order
to return to the Editor.

AVR ISP Programmer

ATI90S2313

The AVRISP programmer is AVR ICP910 based on the AVR910.ASM application note.

The old ICP910 does not support Mega chips. Only a modified version of the AVR910.ASM
supports Universal commands so all chips can be programmed.

The new AVRISP from Atmel that can be used with AVR Studio, is not compatible!

When you do not want to use the default baud rate that AVR910 is using, you can edit the file
bascavr.ini from the Windows directory.

Add the section [AVRISP]
Then add : COM=19200,n,8,1

This is the default. When you made your own dongle, you can increase the baud rate
You need to save the file and restart BASCOM before the settings will be in effect.

This page is intended to show user comments about the chip.

Your comment is welcome.

PRIR/SQIC

_ S
RESET] 4 ap b vae
{RXD) POC o 2 1% [0 PBE7 [SGK)
(TXD) PD1] 3 18 [1 PBS (MISO)
XTAL2 [4 17 [0 PBS {MOSI)
XTALT1 O & 1& O PB4
(INTO) PD2] & 15 [0 PB3 (OC1)
{INT1) PD2] 7 14 O pBeZ
(TG) PD4] & 13 [0 PB1 (AIN1)
(T1) PDE] g 12 [0 PBO {(AINE)
GND] 10 11 [PCé& {ICP)

AT90S2323

This page is intended to show user comments about the chip.

Your comment is welcome.

RESET O] 1 sfvee
KTALI[2 7 D Pez (scKkiTo)
¥TALzO 3 & [PB1 (MISO/INTD)
GND O 4 5 [PBD (MOSI)
ATI0S/LS2323

AT90S2333

This page is intended to show user comments about the chip.
Your comment is welcome.

A
RESET []14 28 [0 PCA (ADCS)
(R¥D) PDA O] 2 27 [PC4 (ADCA)
(TXD} RD1]3 28 [1RC3 (ADC3)
(INTO) PD2 []4 26 [1PC2 (ADC2)
(NT1) PO 5 24 [PC1 (ADGT)
(Th) P04 [& 23 0 PR (ARG
veoe vy 22 1 AGND
chDOs 29 1 AREF
XTALY 2 20 1 AVCC
XTALZ O] 10 13 [PBS (SCK]
(T1) PD& [] 11 18 [PB4 (MI30])
(AIND) PB8 []12 17 [PB3 (MOSI)
(AINT) PET [13 18 [RB2 (58)
(IcPyREO] 14 16 1 PB1 (0E1)

AT90S2343

This page is intended to show user comments about the chip.
Your comment is welcome.

RESETO]
(CLOCK) PR3]
PBAT]

GND O

yien

[PBZ (SCKTa)

[PB1 (MISCHINTG)
[PAO (MOS1)

e Ta—
]

ATS05/L52343

[tip from Martin Verschuren]

When using the AT90S2343 with BASCOM-AVR 1.11.6.4 and the STK200. Programming must be
done with jumper ext-clk.

The BASCOM build in programmer will detect a Tiny22, which seems to have the sameID string as
the 2343 (Atmel source) so no wonder.

By using the internal clock RCEN=0, then the jumper of the STK200 must be on int.clk after
programming.
Don't leave this away, some AT90S2343 will not correctly startup.

In your own project notice that yau have to pullup the clk pin(2) at power up else it won't work. (I just
looked for it for a day to get this problem solved:-)

Note : the at90s2343 and tiny22 have the same chip ID. In BASCOM you need to choose the tiny22
even if you use the 2343.

I note from MCS : only the AT23LS43-1 has the internal oscillator programmed by default! All other
2343 chips need an external clock signal. Tip: use a AT90S2313 and connect X2 to the clock input
of the 2343.

[tip from David Chambers]

Using the AT90S2343 withBASCOM 1.11.7.3 the DT006 hardware there are no problems with
programming the chip ie no special jumper conditions to enable programming. However it is best to
remove links connecting ports to the DT006 LED’s before programming. If access to PB3 and PB4
is desired then jumpers J11 & J12 must be installed with pins 2 and 3 linked in both cases. Note
that PB3 and PB4 are each connected to a momentary pushbutton on the DT006 board. These can
be used to check contact closure functions, so bear this in mind when writing code for contact
monitoring.

The current ATMEL data sheet specifies that all versions -1, -4 and —10 are supplied with a fuse bit
set for the internal clock that operates at approximately 1Mhz. If using the internal clock make sure
to enter 1000000 under Options \Complier\Communication\frequency.

A great little chip with minimal external components. Only the resistor and capacitor required for
RESET during power up.

Note that the LED’s on the DT006 are not connected to the same programmed port pins when
changing the chip type. This is because the special functions assigned ports varies between the
8pin, 20 pin and 28 pin products eg the MOSI, MISI and SCK functions are assigned to PBO, PB1
and PB2 for an 8 pin processor and PB5, PB6 and PB7 fa a 20 pin processor. The result is that for
a given program the LED’s that respond are different.

AT90S4414

(TO) PBO
(T1) PB1
(AINO) PB2
{(AIN1) PB3
(S5) PB4
(MOSI) PBS
(MISC) PBS
{SCK) PB7
RESET
(RXD) PDO
(TXD) PD1
(INTO) PD2
(INT1) PD3
PD4
{OC1A) PDS
(WR) PD8
{RD) PD7
XTAL2
XTAL1
GND

Your comment is welcome.

This page is intended to show user comments about the chip.

./

o 1 40 [vee

O 2 39 [0 PAD (ADD)
3 38 [0 PA1 (AD1)
o 4 37 [PAZ (AD2)
= 36 [0 PA3 (AD3)
O & 35 [0 PA4 (AD4)
o7 34 [0 PAS5 (ADS)
O 8 33 [PAB (AD6)
= 32 [PA7 (AD7)
] 10 31 [0 IcP

o 11 30 0 ALE
12 29 [0C1B

o 1a 28 b PCT (A15)
14 27 [0 PC6 (A14)
] 18 26 [0 PC5 (A13)
] 16 25 b PG4 (A12}
o 17 24 [0 PGa (A11)
] 18 23 [0 PC2 {(A10)
19 22 [PC1 (A9)
] 20 21 [0 PCO {A8)

ATO0S4433

This page is intended to show user comments about the chip.
Your comment is welcome.

A
RESET []14 28 [0 PCA (ADCS)
(R¥D) PDA O] 2 27 [PC4 (ADCA)
(TXD} RD1]3 28 [1RC3 (ADC3)
(INTO) PD2 []4 26 [1PC2 (ADC2)
(NT1) PO 5 24 [PC1 (ADGT)
(Th) P04 [& 23 0 PR (ARG
veoe vy 22 1 AGND
chDOs 29 1 AREF
XTALY 2 20 1 AVCC
XTALZ O] 10 13 [PBS (SCK]
(T1) PD& [] 11 18 [PB4 (MI30])
(AIND) PB8 []12 17 [PB3 (MOSI)
(AINT) PET [13 18 [RB2 (58)
(IcPyREO] 14 16 1 PB1 (0E1)

ATI0S4434

ATI0S8515

This page is intended to show user comments about the chip.

Your comment is welcome.

(TO) PBO
{T1) PB1
(AINO) PB2
(AIN1) PB3
(88) PB4
(MOSI) PBS
(MISO) PBE
(SCK) PB?
RESET
vee

GND
XTAL2
XTAL1
(RXD) PDD
(TXD) PD1
(INTO) PD2
(INT1) PD3
(OC1B) PD4
(DC1A) PDS
{ICF) PD6

OO0000000 00000000 nmn

Om ~Nminhkhn -2

bbb oooooohtd

PAO {ADCO)
PA1 {ADC1)
PAZ (ADC2)
PA3 (ADC3)
PA4 (ADCA4)
PAS (ADCS5)
PAG (ADCSB)
PA7 (ADCT)
AREF

AGND

AVCC

PC? (TOSC2)
PCE (TOSG1)
PCS5

PCA4

PC3

PC2

PC1

PCO

PDT {OC2)

This page is intended to show user comments about the chip.

Your comment is welcome.

(TO) PBO
(T1) PB1
{(AINO) PB2
(AIN1) PB3
(55) PB4
(MOSI) PBS
(MISC) PBS
{SCK) PBY
RESET
(RXD) PDO
(TXD) PD1
{INTD) PD2
(INT1) PD3
FD4
{OC1A) PD5
(WR) PD6
{RD) PD7
XTAL2
XTAL1
GND

./
1 40 3
2 3% 0
3 32 O
4 37T O
5 a6 o
() %O
-7 4 O
s a3 g
) az [/
10 MO
- 11 30 o
12 29 1
13 28 O
14 27 O
15 26 1
] 16 25 O
117 24
] 18 23 O
19 22 O
]| 20 21 O

vce
PAD {ADD)
PA1 (AD1)
PAZ (AD2)
PA3 (AD3)
PA4 (AD4)
PAS5 (ADS5)
PAG (ADS6)
PA7 (AD7)
ICP

ALE
oc1B
PCT (A15)
PCG (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PCO (AB)

MEGA8515

MEGA8535

ATI0S8535

This page is intended to show user comments about the chip.
Your comment is welcome.

-
(TOYPBO] 1 40 O pao {ADCO)
{T1YyPB1] 2 38 1 paq (aDC1)
(AINO) PB2] 3 38 1 paz (ADC2)
(AIN1) PB3] 4 37 1 pA3 (ADC3)
(SS)PB4] & 38 1 pag (aDC4)
(MOSI) PBS O] & 35 D pas (aDCS)
(MISOYPBS (] 7 34 ' pag (ADCS)
{(SCK)PB7 | 8 23 O paz taDcT)
REBET] 8 32 O AREF
voo O 10 31 1 AGND
GND (] 11 a0 g Avee
XTAL2 O] 12 29 1 PCT (TOSC2)
XTAL1] 13 28 [0 PCE (TOSC1)
(RXD) PDD] 14 27 DO PCS
(TXD)PD1 O 15 26 O PC4
{INTO} PD2] 16 25 O PC3
{INT1} PD3] 17 24 1 PC2
(OC1B) PD4] 18 23 b Pon
(OC1A) PDS] 19 22 b oo
{ICP) PDE] 20 21 P PDT {(0C2)

MEGAG603

This page is intended to show user comments about the chip.
Your comment is welcome.

S§888 f:Ef:fgzse
232F:42 8838828 @)
5 (7] 8][4 (8] 5] 2] (] 48] [[] ¥ [58] [
(AD2) PAZ [49)
{AD1) PA1 [50)
(ADO) PAD [51)
vee [s2|
GND (53|
(ADCT) PF7 [54|
(ADCS) PF6 [55|
(ADC8) Pr5 (66 ATmegab03/103
(ADC4) PF4 [57)
(ADC3) PF3 [58]
(ADC2) PF2 [58|
(ADC1) PF1 [g0)
(ADCO) PFD [61]
s &
AGND [63| INDEX CORNER
oo] (7
FiER EEEEE BERERE!
EESEEEEREfl]])

MEGA103

Your comment is welcome.

| 8] Pas (aD3)
| 3] Pas (AD4)
| &] Pas (aD5)

This page is intended to show user comments about the chip.

| &| PA7 (ADT)

| £] PAS (aD8)
&] aLe

ATtiny22

This page is intended to show user comments about the chip.
Your comment is welcome.

EE T S
;o o~ @

OVCC

[PB2 (SCKITO)

[PB1 (MISO/INTO)
[0 PBO (MOSI)

| &] Pc7 (a15)
| 2] Pos at4
| 8| Pos (3
| 8] Pea a1z
| 8] Pea A
Emwn
| 8| Pe1AS)
| 8] Poo (A8}
| ro

——

(AD2) PAZ [49)
{AD1) PA1 [50)
(AD0) PAD [51)
vee [s2|

GND [53|
(ADCT) PF7 [54|
(ADCS) PF6 [55|
(ADCE) PF5 (66|
(ADC4) PF4 [57)
(ADC3) PF3 [58]
(ADC2) PF2 [58|
(ADC1) PF1 [60|
(ADCO) PFD [61]
seer &2
AGND [63|
AVCC (84|

%

=]
||
{INT?) PET ﬂ
3]
2]

PEN
{PDVRXD) PEQ [n|

(PDOITXD) PE1

ATmega603/103

INDEX CORNER

{33)PBO

<] 5] Te]
g8 g
¢ g g

{INTS) PES u
{INTE) PES | o |

{3CK) PR
Mosn PE2 ||
(MISO) PBS | |
{OCOIPWMO) PB4 |3 |
{CCIAPWM1A)PBS |2 |

FUAAD AT O 00

ATtiny12

This page is intended to show user comments about the chip.

Your comment is welcome.

(RESET) PB5 O
(XTAL1) PB3 O
(XTALZ) PB4 [

GND [

L Ry =

o

th & =~ @@

vee

M PB2 (SCK/TO)

] PB1 (MISO/INTO/AINT)
1 PBO (MOSIAING)

ATtiny15

This page is intended to show user comments about the chip.

Your comment is welcome.

PDIP/SOIC
S
(RESET/ADCO) PB5 [1 8 OVCC
(ADC3) PB4 [2 7 [PB2 (SCK/ADC1/TO/INTO)
(ADC2)PB3 [3 8 1 PB1 (MISO/AIN1/OCP)
GND [4 5 1 PBO (MOSI/AINO/AREF)

M161

This page is intended to show user comments about the chip.
Your comment is welcome.

(OCOTO) PBO O
(Oc2m1) Pe1Q
(RXD1AIND) PB2 [
(TXD1/AINT) PR3 O]
(S5) PB4

(MOSI) PB5 [
(MISO) PB6]
(SCK) PBT
RESET [

{(RXD0) PDO O
(TXDO) PD1 0
{INTO) PD2 O
(INT1) PD3 O
(TOSC1) PD4 [
(OC1A/TOSC2) PDS O
(WR) PD6 O]

(RD) PD7 O

XTAL2 O

KTALT O

GND O

0 =~ & N s L b

w

10
11
12
13
14
15
16
17
18
19

3
38
3
36
3
34
33
E?
H
30
2
2
2
2
2
2
2
22
21

=3

=

o

(&

LB S~ o

AvCC

1 PAD (ADOY

[PA1 (AD1)

[PAZ (AD2)

1 PA3 (AD3)

[PA4 (AD4)

[PAS (AD5)

[PAG (ADB)

[PAT (ADT)

H PEO (ICPANTZ)
[PE1 (ALE)

M PE2 (OC1B)

1 PCT (A15
[PCE (A14
[PCS (413
[PC4 (A12
1 PC3 (A1
HPC2 (A10
[0 PC1 (AZ)
[PCO (A8)

)
)
)
)
)
)

M162

This page is intended to show user comments about the chip.
Your comment is welcome.

The M162 has a clock-16 divider enabled by default. See the M162.bas sample file

M163

The M163 by default uses the internal clock running at 1 MHz

When you have problems with timing set the right fuse bit A987= 0101. This will solve this problem.

I have just found a small difference in PortB when using the Megal63 in place of a 8535. The
difference is in regard to PortB.4- PortB.7 when not used as a SPI

interface. The four upper bits of PortB are shared with the hardware SPI unit.
If the SPI is configured in SLAVE mode (DEFAULT) the MOSI , SCK , /SS
Are configured as inputs, Regardless of the DDRB setting !

The /SS (slave select) pin also has restrictions on it when using it as a general input.- see data
sheet ATmegal63 - p57.

This sample allows you to use the upper nibble of PortB as outputs.
Portb = &B0000_0000

DDRB = &B1111_0000 'set upper bits for output.

Spcr = &B0001_0000 ' set SPI to Master and Disable.

If The SPCR register is not set for Master, you cannot set the pins for
Output.

M323

This page is intended to show user comments about the chip.
Your comment is welcome.

L
(XCK/TO) PEO O A0 1 PAO (ADCO)
(T1yPB1[]2 390 PA1 (ADC1)
(INT2/AINO) PB2] 3 3a[0Pa2 (ADC2)
(OCO/AINT) PBS O 4 37O PA3 (ADC3)
(SS)PB4 S 36 [0 PA4 (ADC4)
(MOSI) PBS [] 6 35[0 PAS (ADCS)
(MISO) PBE] 7 34 [0 PAB (ADCE)
(SCK) PB7 8 33[0PAT (ADCT)
RESET 9 320 AREF
vcc 1o 31 O AGND
GND O 11 30 AVYCC
XTALZ []12 29[PC7 (TOSC2)
XTALT1] 13 28 [PCE (TOSC1)
(RXD) PDO 14 27 PCS (TDI)
(TXD) PD1 Q15 26 [PC4 (TDO)
(INTOy PD2 168 250 PC3 (TMS)
(INT1} PD3] 17 24 PC2 (TCK)
(OC1B) PD4] 18 23[0PC1 (SDA)
(OC1A) PDS O] 19 22[0PCO (SCL)
(ICP) PD& O 20 21 A PD7 (0C2)

The JTAG interface is enabled by default. This means that portC.2-portC.5 pins can not be used.
Program the JTAG fuse bit to disable the JTAG interface.

M8

This page is intended to show user comments about the chip.

Your comment is welcome.

(RESET) PCE [1
(RXD) POO [2
(TXD) PD1 0 3
{INTO) PD2 [4
(INT1) PD3] 5

(XCK/TO) PD4 [&

vee 7

GND O 8
(XTAL1/TOSC1) PBE] @

(XTALZTOSG2) PBT O 10
(T1)PD5 O 11

{AIND) PDE [] 12

(AIN1) PDT O 13

(ICP) PBO O 14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

[PCS (ADCE/SCL)
[PC4 (ADC4/SDA)
[PC3 (ADC3)

O PC2 (ADC2)

[PC1 (ADC1)

[PCO (ADCO)

[AGND

[0 AREF

HAVCC

[PBS (SCK)

[PB4 (MISO)

[PB3 (MOSI/OC2)
[PBZ {S8/0C1B)
[PB1 (OC1A)

M16

This page is intended to show user comments about the chip.

Your comment is welcome.

M64

M128

This page is intended to show user comments about the chip.
Your comment is welcome.

This page is intended to show user comments about the chip.
Your comment is welcome.

S
85083888 sz8§
coocaooooa § g g
oDu$$SES$SSQOWWW
S il - I
<000 o> oo
minininisininislsisEnlninlininisl
J— BB RBRLRBABRELES
PENO1 48 [PA3 {AD3)
BXDOARDN PEO T2 47 (1 PAA {AD4)
(TXDOEDO) PEL 3 46 [PAS (ADS)
[HCKOAING) PE2 (4 45 [1PAG {ADG)
{OC3MAINA) PESC] S 44 [JPAT (ADT)
(OC3BANT4) PE4 36 43 [PG2(ALE)
{0CaCANTS) PESTL 7 42 1PCT (A15)
(TanNTs) PE6 I 8 41 CIPCE (Al4)
(IC3NTT) PET IO 40 O PCs (A13)
(55} PEO 10 39 O PC4 (A12)
(8CK) PB1 D14 38 [IPC3 (A1)
(MOsH PE2 O 12 37 [APC2 A1)
(MISO) PR3)13 a6 [JPCT (A9}
{OC0) PB4 114 35 [TPCO (A8}
(OC14) PB5 (315 34 I PGIRD)
{DC1B)PB6E|G|\GJ¢»Q'—NBVLA{Qhmma-—z\?‘gjpﬁumm
o v 00NN NN NN S M,
D000 doooogoUoooog
5838 SIdSBc888888
& & O. |G (;".) % S # coaoooodo
o cE Liscassoon
He2 EEEE2yET
oR28 SEEE =
ol = Do 00
8 Dmx X
e o

AT90S1200

This chip is not really supported because it does not have internal memory. You can write your
program using asm and program the chip via bascom.

AT86RF401

This page is intended to show user comments about the chip.
Your comment is welcome.

Changes compared to BASCOM-8051

The design goal was to make BASCOM-AVR compatible with BASCOM-8051.

For the AVR compiler | had to remove some statements.
New statements are also added. And some statements were changed.

They need specific attention, but the changes to the syntax will be made available to BASCOM-
8051 too in the future.

Statements that were removed

most significant bit of a variable or the least significant bit of a variable.

CONST String were added to the CONST statement. | also changed it to be compatible
with QB.

DECLARE BYVAL has been added since real subprograms are now supported.

DIM You can now specify the location in memory of the variable.

Dim v as byte AT 100, will use memory location 100.

STATEMENT DESCRIPTION

$LARGE Not needed anymore.

$ROMSTART Code always starts at address 0 for the AVR. Added again in 1.11.6.2
$LCDHEX Use LCD Hex(var) instead.

$NOINIT Not needed anymore. Added in 1.11.6.2

$NOSP Not needed anymore

$NOBREAK Can't be used anymore because there is no object code that can be used for it.
$0OBJ Removed.

BREAK Can't be used anymore because there is no object code that can be used for it.
PRIORITY AVR does no allow setting priority of interrupts

PRINTHEX You can use Print Hex(var) now

LCDHEX You can use Lcd Hex(var) now

Statements that were added

STATEMENT DESCRIPTION

FUNCTION You can define your own user FUNCTIONS.

LOCAL You can have LOCAL variables in SUB routines or FUNCTIONS.

n New math statement. Var = 2 ~ 3 will return 2*2*2

SHIFT Because ROTATE was changed, | added the SHIFT statement. SHIFT works
just like ROTATE, but when shifted left, the LS BIT is cleared and the carry
doesn't go to the LS BIT.

LTRIM LTRIM, trims the leftmost spaces of a string.

RTRIM RTRIM, trims the rightmost spaces of a string.

TRIM TRIM, trims both the leftmost and rightmost spaces of a string.

Statements that behave differently

STATEMENT

DESCRIPTION

ROTATE

Rotate now behaves like the ASM rotate, this means that the carry will go to the

LanguageFundamentals

Characters from the BASCOM character set are put together to form labels, keywords, variables
and operators.

These in turn are combined to form the statements that make up a program.

This chapter describes the character set and the format of BASCOM program lines. In particular, it
discusses:

?2?2?The specific characters in the character set and the special meanings of some characters.
?2??The format of a line in a BASCOM program.

???7Line labels.

?2??Program line length.

Character Set
The BASCOM BASIC character set consists of alphabetic characters, numeric characters, and
special characters.

The alphabetic characters in BASCOM are the uppercase letters (A-Z) and lowercase letters (az) of
the alphabet.

The BASCOM numeric characters are the digits 0-9.
The letters AH can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM statements and expressions:

Character | Name

ENTER Terminates input of a line

Blank (or space)

Single quotation mark (apostrophe)

* Asterisks (multiplication symbol)
+ Plus sign

, Comma

- Minus sign

Period (decimal point)

/ Slash (division symbol) will be handled as \

Colon

Double quotation mark

; Semicolon

< Less than

= Equal sign (assignment symbol or relational operator)

> Greater than
\ Backslash (integer/word division symbol)
n Exponent

The BASCOM program line

BASCOM program lines have the following syntax:

[lline-identifier]] [[statement]] [[: statement]] ... [[comment]]

Using Line Identifiers
BASCOM support one type of lineddentifier; alphanumeric line labels:

An alphabetic line label may be any combination of from 1 to 32 letters and digits, starting with a
letter and ending with a colon.

BASCOM keywords are not permitted.

The following are valid alphanumeric line labels:

Alpha:

ScreenSUB:

Test3A:

Case is not significant. The following line labels are equivalent:
alpha:

Alpha:

ALPHA:

Line labels may begin in any column, as long as they are the first characters other than blanks on
the line.

Blanks are not allowed between an alphabetic label and the colon following it.

A line can have only one label. When there is a label on the line, no other identifiers may be used
on the same line. So the label is the sole identifier on a line.

BASCOM Statements
A BASCOM datement is either "executable" or " non-executable”.

An executable statement advances the flow of a programs logic by telling the program what to do
next.

Non executable statement perform tasks such as allocating storage for variables, declaring and
defining variable types.

The following BASCOM statements are examples of non-executable statements:
? REM or (starts a comment)
?DIM
A "comment" is a non-executable statement used to clarify a programs operation and purpose.
A comment is introduced by the REM statement or a single quote character(’).
The following lines are equivalent:
PRINT " Quantity remaining" : REM Print report label.
PRINT " Quantity remaining" *

More than one BASCOM statement can be placed on a line, but colons(:) must separate
statements, as illustrated below.

FOR I =1 TO 5: PRINT " Gday, mate." : NEXT |

Print report label.

BASCOM LineLength

If you enter your programs using the built-in editor, you are not limited to any line length, although it
is advised to shorten your lines to 80 characters for clarity.

Data Types

Every variable in BASCOM has a data type that determines what can be stored in the variable. The
next section summarizes the elementary data types.

Elementary Data Types

?2?7Bit (1/8 byte). A bit can hold only the value 0 or 1.
A group of 8 bits is called a byte.

?2?7Byte (1 byte).
Bytes are stores as unsigned 8-bit binary numbers ranging in value from 0 to 255.
?2?2Integer (two bytes).
Integers are stored as signed sixteen-bit binary numbers ranging in value from -32,768 to
+32,767.

?2??Word (two bytes).
Words are stored as unsigned sixteen-bit binary numbers ranging in value from 0 to 65535.

?227Long (four bytes).
Longs are stored as signed 32-bit binary numbers ranging in value from -2147483648 to
2147483647.

?227Single.
Singles are stored as signed 32 bit binary numbers. Ranging in value from
1.5 x 10245 to 3.4 x 10”38

?2??String (up to 254 bytes).
Strings are stored as bytes and are terminated with a 0-byte.
A string dimensioned with a length of 10 bytes will occupy 11 bytes.

Variables can be stored internal (default) , external or in EEPROM.

Variables

A variable is a name that refers to an object--a particular number.

A numeric variable, can be assigned only a numeric value (eitherinteger, byte, long, single or bit).
The following list shows some examples of variable assignments:

?2??A constant value:
A=5
c=11

?2??The value of another numeric variable:
abc = def
k=g

?2??The value obtained by combining other variables, constants, and operators: Temp =a + 5
Temp=C+5

????The value obtained by calling a function:
Temp = Asc(S)

Variable Names

A BASCOM variable name may contain up to 32 characters.

The characters allowed in a variable name are letters and numbers.

The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words are allowed.
For example, the following statement is illegal because AND is a reserved word.

AND =8

However, the following statement is legal:

ToAND =8

Reserved words include all BASCOM commands, statements, function names, internal registers
and operator names.

(see BASCOM Reserved Words , for a complete list of reserved words).
You can specify a hexadecimal or binary number with the prefix &H or &B.

a =&HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable, you must tell the compiler about it with the DIM statement.
Dim b1 As Bit, | as Integer, k as Byte , s As String * 10
The STRING type needs an additional parameter to specify the length.

You can also use DEFINT, DEFBIT, DEFBYTE ,DEFWORD ,DEFLNGor DEFSNG.

For example DEFINT c tells the compiler that all variables that are not dimensioned and that are
beginning with the character c are of the Integer type.

Expressions and Operators

This chapter discusses how to combine, modify, compare, or get information about expressions by
using the operators available in BASCOM.

Anytime you do a calculation you are using expressions and operators.

This chapter describes how expressions are formed and concludes by describing the following kind
ofoperators:

? Arithmetic operators, used to perform calculations.

? Relational operators, used to compare numeric or string values.

? Logical operators, used to test conditions or manipulate individual bits.
? Functional operators, used to supplement simple operators.

Expressions and Operators
An expression can be a numeric constant, a variable, or a single value
obtained by combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values.
The operators provided by BASCOM can be divided into four categories, as follows:
1. Arithmetic
2. Relational
3. Logical
4. Functional

Arithmetic
Arithmetic operators are +, -, *, \,/and "
? Integer

Integer division is denoted by the backslash (\).
Example: Z = X\'Y

? Modulo Arithmetic
Modulo arithmetic is denoted by the modulus operator MOD.
Modulo arithmetic provides the remainder, rather than the quotient, of an integer division.
Example: X = 10\ 4 : remainder = 10 MOD 4
? Overflow and division by zero
Division by zero, produces an error.

At the moment no message is produced, so you have to make sure yourself that this won't
happen.

RelationalOperators
Relational operators are used to compare two values as shown in the table below.

The result can be used to make a decision regarding program flow.

Operator | Relation Tested Expression
= Equality X=Y

< Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X <=Y

>= Greater than or equal to X>=Y

Logical Operators

Logical operators perform tests on relations, bit manipulations, or Boolean operators.

There four operators in BASCOM are :

Operator Meaning

NOT Logical complement
AND Conjunction

OR Disjunction

XOR Exclusive or

It is possible to use logical operators to test bytes for a particular bit pattern.

For example the AND operator can be used to mask all but one of the bits

of a status byte, while OR can be used to merge two bytes to create a particular binary value.

Example

A =63 And 19
PRINT A
A=100r9
PRINT A

Output
19
11

Floating point (ASM code used is supplied by Jack Tidwell)
Single numbers conforming to the IEEE binary floating point standard.
An eight bit exponent and 24 bit mantissa are supported.

Using four bytes the format is shown below:

3130 23 22 0
s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and
below are negative. The sign bit is 0 for positive numbers and 1 for
negative. The mantissa is stored in hidden bit normalized format so
that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.

You can also convert a single to an integer or word or vise versa:
Dim | as Integer, S as Single

S = 100.1'assign the single

I = S 'will convert the single to an integer

Here is a fragment from the Microsoft knowledge base about FP:

Floating-point mathematics is a complex topic that confuses many programmers. The tutorial below
should help you recognize programming situations where floating-point errors are likely to occur and
how to avoid them. It should also allow you to recognize cases that are caused by inherent floating-

point math limitations as opposed to
actual compiler bugs.

Decimal and Binary Number Systems
Normally, we count things in base 10. The base is completely

arbitrary. The only reason that people have traditionally used base
10 is that they have 10 fingers, which have made handy counting
tools.

The number 532.25 in decimal (base 10) means the following:

(5 *1072) + (3 * 10"1) + (2 * 10"0) + (2 * 1071) + (5 * 107-2)
500 + 30 + 2 + 2/10 + 5/100

In the binary number system (base 2), each column represents a power
of 2 instead of 10. For example, the number 101.01 means the following:

(1*272) + (0 *271) + (1 *270) + (0 * 2~1) + (1 * 2~-2)
4+0+1+0+1/4

= 5.25 Decimal

How Integers Are Represented in PCs

Because there is no fractional part to an integer, its machine
representation is much simpler than it is for floating-point values. Normal
integers on personal computers (PCs) are 2 bytes (16 bits) long with the
most significant bit indicating the sign. Long integers are 4 bytes long.
Positive values are straightforward binary numbers. For example:

1 Decimal = 1 Binary

2 Decimal = 10 Binary
22 Decimal = 10110 Binary, etc.

However, negative integers are represented using the two's complement
scheme. To get the two's complement representation for a negative
number, take the binary representation for the number's absolute value
and then flip all the bits and add 1. For example:

4 Decimal = 0000 0000 0000 0100
1111 1111 1111 1011 Flip the Bits
4 =1111 1111 1111 1100 Add 1

Note that adding any combination of two's complement numbers together
using ordinary binary arithmetic produces the correct result.

Floating-Point Complications

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. In fact, every number that is irrational in base 10 will also be irrational in any
system with a base smaller than 10.

For binary, in particular, only fractional numbers that can be represented in the form p/q, where q is
an integer power of 2, can be expressed exactly, with a finite number of bits.

Even common decimal fractions, such as decimal 0.0001, cannot be
represented exactly in binary. (0.0001 is a repeating binary fraction
with a period of 104 bits!)

This explains why a simple example, such as the following

SUM =0

FOR 1% = 1 TO 10000

SUM = SUM + 0.0001

NEXT 1%

PRINT SUM ' Theoretically = 1.0.

will PRINT 1.000054 as output. The small error in representing 0.0001
in binary propagates to the sum.

For the same reason, you should always be very cautious when making
comparisons on real numbers. The following example illustrates a
common programming error:

item1# = 69.82#
item2# = 69.20# + 0.62#
IF item1# = item2# then print "Equality!"

This will NOT PRINT "Equality!" because 69.82 cannot be represented exactly in binary, which
causes the value that results from the assignment to be SLIGHTLY different (in binary) than the
value that is generated from the expression. In practice, you should always code such comparisons
in such a way as to allow for some tolerance.

General Floating-Point Concepts

It is very important to realize that any binary floating point system can represent only a finite number
offloating point values in exact form. All other values must be approximated by the closest
representable value. The IEEE standard specifies the method for rounding values to the "closest"
representable value. BASCOM supports the standard and rounds according to the IEEE rules.

Also, keep in mind that the numbers that can be represented in IEEE are spread out over a very
wide range. You can imagine them on a number line. There is a high density of representable
numbers near 1.0 and-1.0 but fewer and fewer as you go towards 0 or infinity.

The goal of the IEEE standard, which is designed for engineering calculations, is to maximize
accuracy (to get as close as possible to the actual number). Precision refers to the number of digits
that you can represent. The IEEE standard attempts to balance the number of bits dedicated to the
exponent with the number of bits used for the fractional part of the number, to keep both accuracy
and precision within acceptable limits.

IEEE Details
Floating-point numbers are represented in the following form, where
[exponent] is the binary exponent:

X = Fraction * 2”(exponent - bias)

[Fraction] is the normalized fractional part of the number, normalized because the exponent is
adjusted so that the leading bit is always al. This way, it does not have to be stored, and you get
one more bit of precision. This is why there is an implied bit. You can think of this like scientific
notation, where you manipulate the exponent to have one digit to the left of the decimal point,
except in binary, you can always manipulate the exponent so that the first bit is a 1, since there are
only 1s and Os.

[bias] is the bias value used to avoid having to store negative exponents.

The bias for single-precision numbers is 127 and 1023 (decimal) for double-precision numbers.

The values equal to all 0's and all 1's (binary) are reserved for representing special cases. There
are other special cases as well, that indicate various error conditions.

Single Precision Examples

2 =1*2"1=0100 0000 0000 0000 ... 0000 0000 = 4000 0000 hex
Note the sign bit is zero, and the stored exponent is 128, or

100 0000 0 in binary, which is 127 plus 1. The stored mantissa is
(1.) 000 0000 ... 0000 0000, which has an implied leading 1 and

binary point, so the actual mantissa is 1.

2 =-1*2"1=1100 0000 0000 0000 ... 0000 0000 = CO00 0000 hex
Same as +2 except that the sign bit is set. This is true for all
IEEE format floating-point numbers.

4 =1*272 =0100 0000 1000 0000 ... 0000 0000 = 4080 0000 hex
Same mantissa, exponent increases by one (biased value is 129, or
100 0000 1 in binary.

6 =1.5* 272 = 0100 0000 1100 0000 ... 0000 0000 = 40C0 0000 hex

Same exponent, mantissa is larger by half -- it's

(1.) 100 0000 ... 0000 0000, which, since this is a binary
fraction, is 1-1/2 (the values of the fractional digits are 1/2,
1/4, 1/8, etc.).

1=1*270=0011 1111 1000 0000 ... 0000 0000 = 3F80 0000 hex
Same exponent as other powers of 2, mantissa is one less than
2 at 127, or 011 1111 1 in binary.

.75 =1.5* 221 = 0011 1111 0100 0000 ... 0000 0000 = 3F40 0000 hex
The biased exponent is 126, 011 1111 0 in binary, and the mantissa

is (1.) 100 0000 ... 0000 0000, which is 1-1/2.

2.5 =1.25* 271 = 0100 0000 0010 0000 ... 0000 0000 = 4020 0000 hex
Exactly the same as 2 except that the bit which represents 1/4 is
set in the mantissa.

0.1 =1.6 * 274 = 0011 1101 1100 1100 ... 1100 1101 = 3DCC CCCD hex

1/10 is a repeating fraction in binary. The mantissa is just shy of 1.6, and the biased exponent says
that 1.6 is to be divided by 16 (it is 011 1101 1 in binary, which is 123 n decimal). The true exponent
is 123 - 127 =-4, which means that the factor by which to multiply is 2**-4 = 1/16. Note that the
stored mantissa is rounded up in the last bit. This is an attempt to represent the unrepresentable
number as accurately as possible. (The reason that 1/10 and 1/100 are not exactly representable in
binary is similar to the way that 1/3 is not exactly representable in decimal.)

0 =1.0 * 22128 = all zeros -- a special case.

Other Common Floating-Point Errors

The following are common floating-point errors:

1. Round-offerror

This error results when all of the bits in a binary number cannot
be used in a calculation.

Example: Adding 0.0001 b 0.9900 (Single Precision)

Decimal 0.0001 will be represented as:

(1.)10100011011011100010111 * 2~(-14+Bias) (13 Leading Os in
Binary!)

0.9900 will be represented as:

(1.)11111010111000010100011 * 2*(-1+Bias)

Now to actually add these numbers, the decimal (binary) points must be aligned. For this they must
be Unnormalized. Here is the resulting addition:

.000000000000011010001101 * 20 < Only 11 of 23 Bits retained
+.111111010111000010100011 * 2”0

.111111010111011100110000 * 2”0

This is called a round-off error because some computers round when shifting for addition. Others
simply truncate. Round-off errors are important to consider whenever you are adding or multiplying
two very different values.

2. Subtracting two almost equal values

.1235
-1234

.0001

This will be normalized. Note that although the original numbers each had four significant digits, the
result has only one significant digit.

3. Overflow and underflow
This occurs when the result is too large or too small to be represented by the data type.

4. Quantizing error

This occurs with those numbers that cannot be represented in exact form by the floating-point
standard.

Rounding

When a Long is assigned to a single, the number is rounded according to the rules of the IEEE
committee.

For explanation: 1.500000 is exact the middle between 1.00000 and 2.000000. If x.500000 is
always rounded up, than there is trend for higher values than the average of all numbers. So their
rule says, half time to round up and half time to round down, if value behind LSB is exact
..500000000.

The rule is, round this .500000000000 to next even number, that means if LSB is 1 (half time) to
round up, so the LSB is going to 0 (=even), if LSB is 0 (other half time) to round down, that means
no rounding.

This rounding method is best since the abnsolute error is 0.

You can override the default IEEE rounding method by specifying the $LONG2FLOAT.LBX library
which rounds up to the next number. This is the method used up to 1.11.7.4 of the compiler.

The following table shows the difference in rounding methods. While the result seem strange at first,

the IEEE rounding gives the best result .

i IEEE 754 Ruumliny Nurrnal Ruurnding IEEE 754 Ruundiny Nurrnal Ruul
tivi | Wwingle | 4l tong | WSingle | v tong | dingle | U Lang i
DimErrE1zianyrrRin g i imrreR T ey e] dannaaaa: dans e D] aannaany sk
' 1BFFFELR of tewprale! 16977210 Dy 3AEE443 ! AARE TR) !

[| 1e7r7z10 1&???22& il i
L] [ELs] a): f
1677eReD -t 1673 1 1] 3
b Uk bcr ety DUk rororo LEk b sl e B 3

_h!ﬁ?TT el
Ty
16777804

.16??? L:':l 167 F7ed

0 50 el 5 5 B il
T =

1677728

1
a
=1

o
K) 1
_JEI??T"QQB]
1

I e il = R e == B

ARTTREAR -1 1eFTaEg

1RFFFEEN o
41} i

A2 i1 iy il
1677720 —1.' il =1
15????34 El. oy, e

1R FFIERR i H: !
1RTFFEEE ﬂ" o i1
BLESREELE = B i SIEE
16777238 0| 1l i
o ARTERESD L i: il
1RFFrE4N] BN 1 : n 2
167 re4n =11 i’ =1
ThF7PTEAY Hl 1m77 7y 1l =)
{] te7e7Raa il 1]

Arrays

An array is a set of sequentially indexed elements having the same type. Each element of an array
has a unique index number that identifies it. Changes made to an element of an array do not affect
the other elements.

The index must be a numeric constant, a byte, an integer, word or long.
The maximum number of elements is 65535.

The first element of an array is always one. This means that elements are 1-based.

Array s can be used on each place where a 'normal’ variable is expected.

Example:

‘create an array naned a, with 10 elenents (1 to 10)
Dim A(10) As Byte

‘create an integer

Dm C As Integer

"now fill the array

For C =1 To 10
‘assign array elenent
Alc) =C

' print it

Print A(c)

Next

'you can add an offset to the index too
c=0

Alc + 1) = 100

Print Alc + 1)

End

Strings

A string is used to store text. A string must be dimensioned with the length specified.
DIM S as STRING * 5

Will create a string that can stae a text with a maximum length of 5 bytes.

The space used is 6 bytes because a string is terminated with a null byte.

To assign the string:

s = "abcd"
To insert special characters into the string :
= "AB{027}cd"

The {ascii} will insert the ASCII value into the string.
The number of digits must be 3. s = "{27} will assign "{27}" to the string instead of escape character
27!

Casting

In BASCOM-AVR when you perform operations on variables they all must be of the same data type.
long = longl * long2 ' fa example

The assigned variables data type determines what kind of math is performed.

For example when you assign a long, long math will be used.

If you try to store the result of a LONG into a byte, only the LSB of the LONG will be stored into the
BYTE.

Byte = LONG
When LONG = 256 , it will not fit into a BYTE. The result will be 256 AND 255 = 0.

Of course you are free to use different data types. The correct result is only guaranteed when you
are using data types of the same kind or that that result always can fit into the target data type.

When you use strings, the same rules apply. But there is one exception:

Dim b as Byte
b =123 ' ok this is normal
b="A""b=65

When the target is a byte and the source variable is a string constant denoted by ", the ASCII value
will be stored in the byte. This works also for tests :

IF b = "A" then ' when b = 65

END IF

This is different compared to QB/VB where you can not assign a string to a byte variable.

SINGLE CONVERSION
When you want to convert a SINGLE into a byte, word, integer or long the compiler will automatic
convert the values when the source string is of the SINGLE data type.

integer = single

You can also convert a byte, word, integer or long into a SINGLE by assigning this variable to a
SINGLE.

single = long

Mixing ASM and BASIC

BASCOM allows you to mix BASIC with assembly.
This can be very useful in some situations when you need full control of the generated code.

Almost all assembly mnemonics are recognized by the compiler. The exceptions are: SUB,
SWAP,CALL and OUT. These are BASIC reserved words and have priority over the ASM
mnemonics. To use these mnemonics precede them with the! - sign.

For example :

Dim a As Byte At &H60 'A is stored at location &H60
Ldi R27 , $00 'Load R27 with MSB of address

Ldi R26 , $60 ‘'Load R26 with LSB of address

Ld R1, X 'load memory location $60 into R1
ISWAP R1 ‘swap nibbles

As you can see the SWAP mnemonic is preceded by a ! sign.

Another option is to use the assembler block directives:
$ASM

Ldi R27 , $00 ‘'Load R27 with MSB of address

Ldi R26 , $60 ‘'Load R26 with LSB of address

Ld R1, X ‘'load memory location $60 into R1

SWAP R1 'swap nibbles

$END ASM

A special assembler helper function is provided to load the address into the register X or Z. Y can
may not be used because it is used as the soft stack pointer.

Dim A As Byte 'reserve space
LOADADR a, X 'load address of variable named A into register pair X

This has the same effect as :
Ldi R26 , $60 'for example !
Ldi R27, $00 'for example !

Some registers are used by BASCOM

R4 and R5 are used to point to the stack frame or the temp data storage
R6 is used to store some bit variables:

R6 bit 0 = flag for integer/word conversion

R6 bit 1 = temp bit space used for swapping bits

R6 bit 2 = error bit (ERR variable)

R6 bit 3 = show/noshow flag when using INPUT statement

R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

To Load the address of a variable you must enclose them in brackets.

Dim B As Bit
Lds R16, {B} 'will replace {B} with the address of variable B

To refer to the bithumber you must precede the variable name by BIT.
Sbrs R16 , BIT. B 'notice the point!

Since this was the first dimensioned bit the bit number is 7. Bits are stored in bytes and the first
dimensioned bit goes in the LS bit.

To load an address of a label you must use :

LDI ZL, Low(lbl * 1)

LDI ZH , High(lbl * 1)

Where ZL = R30 and may be R24, R26, R28 or R30
And ZH = R31 and may be R25, R27, R29 or R31.
These are so called register pairs that form a pointer.

When you want to use the LPM instruction to retrieve data you must multiply the address with 2
since the AVR object code consist of words.

LDI ZL, Low(lbl * 2)
LDI ZH , High(lbl * 2)
LPM ; get data into RO
Lbl:

Atmel mnemonics must be used to program in assembly.

You can download the pdf from www.atmel.com that shows how the different mnemonics are used.
Some points of attention :

* All instructions that use a constant as a parameter only work on the upper 16 registers (r16 +31)
So LDI R15,12 WILL NOT WORK

* The instruction SBR register, K
will work with K from 0-255. So you can set multiple bits!

The instruction SBI port, K will work with K from 0-7 and will set only ONE bit in a IO-port register.

The same applies to the CBR and CBI instructions.

You can use constants too:
.equ myval = (10+2)/4

Idi r24,myval+2 '5

Idi r24,asc("A")+1 ; load with 66

Or in BASIC with CONST :

CONST Myval = (10+2) / 4
Ldir24,myvd

How to make your own libraries and call them from BASIC?

The files for this sample can be found as libdemo.bas in the SAMPLES dir and as mylib.lib in the
LIB dir.

First determine the used parameters and their type.
Also consider if they are passed by reference or by value

For example the sub test has two parameters:
x which is passed by value (copy of the variable)
y which is passed by reference(address of the variable)

In both cases the address of the variable is put on the soft stack which is

indexed by the Y pointer.

The first parameter (or a copy) is put on the soft stack first
To refer to the address you must use:

ldd r26 ,y + 0

Idd r27 ,y + 1

This loads the address into pointer X

The second parameter will also be put on the soft stack so:
The reference for the x variable will be changed :

To refer to the address of x you must use:
Idd r26 ,y + 2
Idd r27 ,y +3

To refer to the last parametery you must use

lddr26 ,y + 0
ldd r27 ,y + 1

Write the sub routine as you are used too but include the name within brackets []

[test]

test:

Idd r26,y+2 ; load address of x
ldd r27,y+3

Id r24,x ; get value into r24
inc r24 ; value + 1

st x,r24 ; put back

Idd r26,y+0 ; address of y
ldd r27,y+1

st x,r24 ; store

ret ; ready

[end]

Towrite a function goes the same way.
A function returns a result so a function has one additional parameter.

It is generated automatic and it has the name of the function.
This way you can assign the result to the function name

For example:

Declare Function Test(byval x as byte , y as byte) as byte

A virtual variable will be created with the name of the function in this case test
It will be pushed on the softstack with the Y-pointer.

To reference to the result or name of the function (test) the address will be:
y+0andy+1

Thefirstvariable x will bring thattoy + 2 andy + 3

And the third variable will cause that 3 parameters are saved on the soft stack
To reference to test you must use :

Idd r26 ,y + 4

ldd r27 ,y + 5

To reference to x
Idd r26 ,y + 2
Idd r27 ,y + 3
And to reference y
ldd r26 ,y + 0
ldd r27 ,y +1

When you use exit sub or exit function you also need to provide an additional label. It starts with
sub_and must be completed with the function / sub routine name. In our example:

sub_test:

When you use local variables thing become more complicated.

Each local variable address will be put on the soft stack too

When you use 1 local variable its address will become

Idd r26, y+0

ldd r27 ,y +1

All other parameters must be increased with 2 so the reference to y variable changes from
Iddr26 ,y+0tolddr26 ,y + 2

ldd r27 ,y+1toldd r27 ,y + 3

And of course also for the other variables.

When you have more local variables just add 2 for each.
Finally you save the file as a .lib file

Use the library manager to compile it into the Ibx format.
The declare sub / function must be in the program where you use the sub / function.

The following is a copy of the libdemo.bas file :

'define the used library
$lib "mylib.lib"

‘also define the used routines

$external Test
‘this is needed so the parameters will be placed correct on the stack

Declare Sub Test(byval X As Byte , Y As Byte)

‘reserve some space
Dim Z As Byte

‘call our own sub routine
Call Test(1 , 2)

'z willbe 2 in the used example
End

When you use ports in your library you must use.equ to specify the address:
equ EEDR=$1d
In R24, EEDR

This way the library manager know the address of the port during compile time.

As an alternative precede the mnemonic with a * so the code will not be compiled into the lib. The
address of the register will be resolved at un time in that case.

This chapter is not intended to learn you ASM programming. But when you find a topic is missing to
interface BASCOM with ASM £nd me an email.

Assemblermnemonics

BASCOM supports the mnemonics as defined by Atmel.

The Assembler accepts mnemonic instructions from the instruction set.

A summary of the instruction set mnemonics and their parameters is given here. For a detailed
description of the Instruction set, refer to the AVR Data Book.

Minus

Mnemonics Operands Description Operation Flags Clock

ARITHMETIC AND

LOGIC

INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd = Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd=Rd+Rr+C Z,C,N,V,H 1

SUB Rd, Rr Subtract without Rd = Rd- Rr Z,C,N,V,H 1
Carry

SuBI Rd, K Subtract Rd = Rd—K Z,C,N,V,H 1
Immediate

SBC Rd, Rr Subtract with Rd=Rd-Rr-C Z,C,N,V,H 1
Carry

SBCI Rd, K Subtract Rd=Rd-K-C Z,C,N,V,H 1
Immediate with
Carry

AND Rd, Rr Logical AND Rd =Rd - Rr Z,N,V 1

ANDI Rd, K Logical AND with Rd =Rd - K Z NV 1
Immediate

OR Rd, Rr Logical OR Rd=RdvRr Z N,V 1

ORI Rd, K Logical OR with Rd=RdvK Z,N\V 1
Immediate

EOR Rd, Rr Exclusive OR Rd = RdA Rr Z,N\V 1

COM Rd Ones Rd = $FF - Rd Z,C,N,V 1
Complement

NEG Rd Twos Rd = $00 - Rd Z,C,N,V,H 1
Complement

SBR Rd,K Set Bit(s) in Rd = Rd v K ZN,V 1
Register

CBR Rd,K Clear Bit(s) in Rd = Rd - ($FFh - Z N,V 1
Register K)

INC Rd Increment Rd=Rd+ 1 Z,N\V 1

DEC Rd Decrement Rd=Rd-1 ZNYV 1

TST Rd Test for Zero or Rd=Rd - Rd Z,N\V 1

CLR Rd Clear Register Rd = Rd A Rd ZN\V 1

SER Rd Set Register Rd = $FF None 1

ADIW Rdl, K6 Add Immediate to Rdh:Rdl = Rdh:RdlI Z,C,N,\V,S 2

Adiw 124, K6 Word +K

SBIW Rdl, K6 Subtract Rdh:Rdl = Rdh:RdlI Z,C,N,V,S 2

Sbiw R24,K6 Immediate from -K
Word

MUL Rd,Rr Multiply Unsigned R1, RO =Rd* Rr C 2%

BRANCH

INSTRUCTIONS

RIJMP K Relative Jump PC=PC+k+1 None 2

1IMP Indirect Jump to PC=2 None 2
@

JMP K Jump PC =k None 3

RCALL K Relative Call PC=PC+k+1 None 3
Subroutine

ICALL Indirect Call to (Z) PC=2z None 3

CALL K Call Subroutine PC =k None 4

RET Subroutine Return PC = STACK None 4

RETI Interrupt Return PC = STACK | 4

CPSE Rd,Rr Compare, Skip if if (Rd =Rr) PC = None 1/2
Equal PC+2o0r3

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with Rd-Rr-C Z,C,N,V,H 1
Carry

CPI Rd,K Compare with Rd -K Z,C,N,V,H 1
Immediate

SBRC Rr, b Skip if Bit in If (Rr(b)=0) PC = None 1/2
Register Cleared PC+2or3

SBRS Rr, b Skip if Bit in If (Rr(b)=1) PC = None 1/2
Register Set PC+2o0r3

SBIC P, b Skip if Bit in 1/0 If(I/O(P,b)=0) PC = None 2/3
Register Cleared PC+2o0r3

SBIS P, b Skip if Bit in 1/0 If(1/O(P,b)=1) PC = None 2/3
Register Set PC+2o0r3

BRBS s, k Branch if Status if (SREG(s) = 1) None 1/2
Flag Set then PC=PC+k + 1

BRBC s, k Branch if Status if (SREG(s) =0) None 1/2

Flag Cleared

then PC=PC+k + 1

BREQ K Branch if Equal if (Z=1) then PC = None 1/2
PC+k+1
BRNE K Branch if Not if (Z=0) then PC = None 1/2
Equal PC+k+1
BRCS K Branchif Carry if (C =1) then PC = None 1/2
Set PC+k+1
BRCC K Branchif Carry if (C = 0) then PC = None 1/2
Cleared PC+k+1
BRSH K Branch if Same or if (C =0) then PC = None 1/2
Higher PC+k+1
BRLO K Branch if Lower if (C =1)then PC = None 1/2
PC+k+1
BRMI K Branch if Minus if (N =1) then PC = None 1/2
PC+k+1
BRPL K Branch if Plus if (N =0) then PC = None 1/2
PC+k+1
BRGE K Branch if Greater if (N V=0) then PC None 1/2
or Equal, Signed =PC+k+1
BRLT K Branch if Less if (N V=1) then PC None 1/2
Than, Signed =PC+k+1
BRHS K Branch if H alf if (H=1) then PC = None 1/2
Carry Flag Set PC+k+1
BRHC K BranchifHalf if (H =0) then PC = None 1/2
CarryFlag PC+k+1
Cleared
BRTS K Branch if T Flag if (T =1) then PC = None 1/2
Set PC+k+1
BRTC K Branch if T Flag if (T =0) then PC = None 1/2
Cleared PC+k+1
BRVS K Branch if Overflow | if (V = 1) then PC = None 1/2
Flag is Set PC+k+1
BRVC K Branch if Overflow [if (V = 0) then PC = None 1/2
Flag is Cleared PC+k+1
BRIE K Branch if Interrupt if (1=1)thenPC = None 1/2
Enabled PC+k+1
BRID K Branch if Interrupt if (1=0)then PC = None 1/2
Disabled PC+k+1
DATA TRANSFER
INSTRUCTIONS
MOV Rd, Rr Copy Register Rd = Rr None 1
LDI Rd, K Load Immediate Rd = K None 1
LDS Rd, k Load Direct Rd = (k) None 2

LD Rd, X Load Indirect Rd = (X) None

LD Rd, X+ Load Indirect and Rd=(X), X=X+1 None
Post-Increment

LD Rd, -X Load Indirect and X = X-1, Rd =(X) None
Pre-Decrement

LD Rd,Y Load Indirect Rd = (Y) None

LD Rd, Y+ Load Indirect and Rd=(Y),Y=Y+1 None
Post-Increment

LD Rd, -Y Load Indirect and Y=Y-1, Rd = (Y) None
Pre-Decrement

LDD Rd,Y+q Load Indirect with Rd = (Y +Qq) None
Displacement

LD Rd, Z Load Indirect Rd = (2) None

LD Rd, Z+ Load Indirect and Rd =(2),Zz=2z+1 None
Post-Increment

LD Rd, -Z Load Indirect and Z=Z-1,Rd=(2) None
Pre-Decrement

LDD Rd, Z+q Load Indirect with Rd =(Z +q) None
Displacement

STS k, Rr Store Direct (k) = Rr None

ST X, Rr Store Indirect (X) =Rr None

ST X+, Rr Store Indirect and X)=Rr,X=X+1 None
Post-Increment

ST -X, Rr Store Indirect and X =X-1, (X) =Rr None
Pre-Decrement

ST Y, Rr Store Indirect (Y)=Rr None

ST Y+, Rr Store Indirect and Y)=Rr,Y=Y+1 None
Post-Increment

ST -Y, Rr Store Indirect and Y=Y-1,(Y)=Rr None
Pre-Decrement

STD Y+q,Rr Store Indirect with (Y+q)=Rr None
Displacement

ST Z,Rr Store Indirect (Z) =Rr None

ST Z+,Rr Store Indirect and (Z)=Rr,z2=2+1 None
Post-Increment

ST -Z,Rr Store Indirect and Z2=Z-1,(2)=Rr None
Pre-Decrement

STD Z+q,Rr Store Indirect with (Z+q)=Rr None
Displacement

LPM Load Program RO =(2) None

Memory

SES Set Signed Test S=1 S
Flag

CLS Clear Signed Test S=0 S
Flag

SEV Set Twos V=1 \
Complement
Overflow

CLV Clear Twos V=0 \Y
Complement
Overflow

SET Set T in SREG T=1 T

CLT Clear T in SREG T=0 T

SHE SetHalf Carry H=1 H
Flag in SREG

CLH Clear Half Carry H=0 H
Flag in SREG

NOP No Operation None

SLEEP Sleep None

WDR Watchdog Reset None

IN Rd, P In Port Rd =P None
ouT P, Rr Out Port P =Rr None
PUSH Rr Push Register on STACK = Rr None
Stack
POP Rd Pop Register from Rd = STACK None
Stack
BIT AND BIT-TEST
INSTRUCTIONS
LSL Rd Logical Shift Left Rd(n+1) Z,C,N,V,H
=Rd(n),Rd(0)=
0,C=Rd(7)
LSR Rd Logical Shift Right Rd(n) = Rd(n+1), Z,C,N,V
Rd(7) =0, C=Rd(0)
ROL Rd RotateLeft Rd(0) =C, Rd(n+1) Z,C,N,V,H
Through Carry =Rd(n),C=Rd(7)
ROR Rd Rotate Right Rd(7) =C,Rd(n) Z,C,N,V
Through Carry =Rd(n+1),C-Rd(0)
ASR Rd Arithmetic Shift Rd(n) = Rd(n+1), Z,C,N,V
Right n=0..6
SWAP Rd Swap Nibbles Rd(3..0) « Rd(7..4) None
BSET S Flag Set SREG(s) =1 SREG(s)
BCLR S Flag Clear SREG(s) = 0 SREG(s)
SBI P,b Set Bit in I/O I/IO(P, b) =1 None
Register
CBI P, b Clear Bit in 110 I/O(P, b) =0 None
Register
BST Rr, b Bit Store from T = Rr(b) T
Register to T
BLD Rd, b Bit load from T to Rd(b) =T None
Register
SEC Set Carry c=1 C
CLC ClearCarry Cc=0 C
SEN Set Negative Flag N=1 N
CLN Clear Negative N=0 N
Flag
SEZ Set Zero Flag zZ=1 z
CLz Clear Zero Flag Z=0 4
SEI Global Interrupt =1 |
Enable
CLI Global Interrupt 1=0 |

Disable

*) Not available in base-line microcontrollers

The Assembler is not case sensitive.

The operands have the following forms:

Rd: RO-R31 or R16-R31 (depending on instruction)
Rr: RO-R31

b: Constant (0-7)

s: Constant (0-7)

P: Constant (0-31/63)

K: Constant (0-255)

k: Constant, value range depending on instruction.
g: Constant (0-63)

Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions

ReservedWords

The following table shows the reserved BASCOM statements or characters.

A
|

$BAUD

$BAUD1

$BOOT
$CRYSTAL
$DATA

$DBG

$DEFAULT

$END

$EEPROM
$EXTERNAL
$INCLUDE

$LCD

$LCDRS
$LCDPUTCTRL
$LCDPUTDATA
$LCDVFO

$LIB

$MAP

$REGFILE
$SERIALINPUT
$SERIALINPUT1
$SERIALINPUT2LCD
$SERIALOUTPUT
$SERIALOUTPUT1
$TINY
SWAITSTATE
$XRAMSIZE
$XRAMSTART

1WRESET
1WREAD
1IWWRITE

ACK
ABS()
ALIAS
AND
ACOS
AS
ASC()
ASIN

AT
ATN
ATN2

BAUD
BCD()

BIN
BIN2GREY
BINVAL
BIT
BITWAIT
BLINK
BOOLEAN
BYTE
BYVAL

CALL
CAPTURE1
CASE
CHECKSUM
CHR()
CIRCLE

cLs

CLOSE
COMPARE1A
COMPARE1B
CONFIG
CONST
cos

COSH
COUNTER
COUNTERO
COUNTER1
COUNTER2
CPEEK()
CPEEKH()
CRC8
CRC16
CRYSTAL
CURSOR

DATA
DATES$

DBG
DEBOUNCE
DECR
DECLARE
DEFBIT

DEFBYTE
DEFLNG
DEFWORD
DEG2RAD
DEGSNG
DEFLCDCHAR
DEFINT
DEFWORD
DELAY

DIM

DISABLE
DISKSIZE
DISKFREESIZE
DISPLAY

DO

DOWNTO
DTMFOUT

ELSE
ELSEIF
ENABLE
END
EOF
ERAM
ERASE
ERR
EXIT
EXP
EXTERNAL

FIX

FLUSH

FOR

FOURTH
FOURTHLINE
FREEFILE
FUNCTION

GATE
GET
GETADC()
GETKBD
GETATKBD
GETRC5()
GLCDDATA
GLCDCMD
GOSUB
GOTO

GREY2BIN

HEXVAL()
HIGH()
HOME

12CINIT
I2CRECEIVE
12CSEND
I2CSTART
12CSTOP
I12CRBYTE
I12CWBYTE
IDLE

IF

INCR
INKEY
INP()
INPUT
INPUTBIN
INPUTHEX
INT

INTO

INT1
INTEGER
INTERNAL
INSTR

IS
ISCHARWAITING

LCASE()
LCD
LCDAT
LEFT
LEFT()
LEN()

LINE

LOAD
LOADLABEL
Loc

LOF

LOCAL
LOCATE
LOG

LOG10
LONG
LOOKUP()
LOOKUPSTR()

LOOP
LTRIM()
LOOKDOWN
LOW()
LOWER
LOWERLINE

MAKEBCD()
MAKEDEC()
MAKEINT()
MID()

MIN

MAX

MOD
MODE

NACK
NEXT
NOBLINK
NOSAVE
NOT

OFF
ON

OR
ouT
OUTPUT

PEEK()
POKE
PORTA
PORTB
PORTC
PORTD
PORTE
PORTF
PORTG
POWER
POWERDOWN
PRINT
PRINTBIN
PULSEOUT
PUT
PWM1A
PWM1B

RAD2DEG
RCS5SEND

RC6SEND
READ
READEEPROM
REM
RESET
RESTORE
RETURN
RIGHT
RIGHT()
ROTATE
ROUND
RTRIM()

SEEK
SELECT
SERIAL
SET
SERIN
SEROUT
SETFONT
SGN
SHIFT
SHIFTLCD
SHIFTCURSOR
SHIFTIN
SHIFTOUT
SHOWPIC
SHOWPICE
SIN

SINH
SONYSEND
SOUND
SPACE()
SPC
SPIINIT
SPIIN
SPIMOVE
SPIOUT
START
STEP
STR()
STRING()
STOP
STOP TIMER
suB
SWAP
SQR

TAN
TANH
THEN
TIMES
THIRD
THIRDLINE
TIMERO
TIMER1
TIMER2
TO

TRIM()

UCASE()
UNTIL
UPPER
UPPERLINE

VAL()
VARPTR()

WAIT
WAITKEY/()
WAITMS
WAITUS
WATCHDOG
WRITEEEPROM
WEND

WHILE

WORD

XOR
XRAM

Error Codes

The following table lists errors that can occur.

Error | Description

1 Unknown statement

2 Unknown structure EXIT statement
3 WHILE expected

4 No more space for IRAM BIT

5 No more space for BIT

6 . expected in filename

7 IF THEN expected

8 BASIC source file not found

9 Maximum 128 aliases allowed

10 Unknown LCD type

11 INPUT, OUTPUT, 0 or 1 expected
12 Unknown CONFIG parameter

13 CONST already specified

14 Only IRAM bytes supported

15 Wrong data type

16 Unknown Definition

17 9 parameters expected

18 BIT only allowed with IRAM or SRAM
19 STRING length expected (DIM S AS STRING * 12 ,for example)
20 Unknown DATA TYPE

21 Out of IRAM space

22 Out of SRAM space

23 Out of XR AM space

24 Out of EPROM space

25 Variable already dimensioned

26 AS expected

27 parameter expected

28 IF THEN expected

29 SELECT CASE expected

30 BIT's are GLOBAL and can not be erased
31 Invalid data type

32 Variable not dimensioned

33 GLOBAL v ariable can not be ERASED
34 Invalid number of parameters

35 3 parameters expected

36 THEN expected

37 Invalid comparison operator

38 Operation not possible on BITS

39 FOR expected

40 Variable can not be used with RESET
41 Variable can not be used with SET

42 Numeric parameter expected

43 File not found

44 2 variables expected

45 DO expected

46 Assignment error

a7 UNTIL expected

50 Value doesn't fit into INTEGER

51 Value doesn't fit into WORD

52 Value doesn't fit into LONG

60 Duplicate label

61 Label not found

62 SUB or FUNCTION expected first

63 Integer or Long expected for ABS()

64 , expected

65 device was not OPEN

66 device already OPENED

68 channel expected

70 BAUD rate not possible

71 Different parameter type passed then declared
72 Getclass error. This is an internal error.
73 Printing this FUNCTION not yet supported
74 3 parameters expected

80 Code does not fit into target chip

81 Use HEX(var) instead of PRINTHEX

82 Use HEX(var) instead of LCDHEX

85 Unknown interrupt source

86 Invalid parameter for TIMER configuration
87 ALIAS already used

88 0 or 1 expected

89 Out of range : must be 1-4

90 Address out of bounds

91 INPUT, OUTPUT, BINARY, or RANDOM expected
92 LEFT or RIGHT expected

93 Variable not dimensioned

94 Too many bits specified

95 Falling or rising expected for edge

96 Prescale value must be 1,8,64,256 or 1024
97 SUB or FUNCTION must be DECLARED first
98 SET or RESET expected

99 TYPE expected

100 No array support for IRAM variables

101 Can'tfind HW-register

102 Error in internal routine

103 = expected

104 LoadReg error

105 StoreBit error

106 Unknown register

107 LoadnumValue error

108 Unknown directive in device file

109 = expected in include file for . EQU

110 Include file not found

111 SUB or FUNCTION not DECLARED

112 SUB/FUNCTION name expected

113 SUB/FUNCTION already DECLARED

114 LOCAL only allowed in SUB or FUNCTION
115 #channel expected

116 Invalid register file

117 Unknown interrupt

200 .DEF not found

201 Low Pointer register expected

202 .EQU not found, probably using functions that are not supported by the selected chip
203 Error in LD or LDD statement

204 Error in ST or STD statement

205 } expected

206 Library file not found

207 Library file already registered

210 Bit definition not found

211 External routine not found

212 LOW LEVEL, RISING or FALLING expected

213 String expected for assignment

214 Size of XRAM string 0

215 Unknown ASM mnemonic

216 CONST not defined

217 No arrays allowed with BIT/BOOLEAN datatype
218 Register must be in range from R16-R31

219 INTO-INT3 are always low level triggered in the MEGA
220 Forward jump out of range

221 Backward jump out of range

222 lllegal character

223 * expected

224 Index out of range

225 () may not be used with constants

226 Numeric of string constant expected

227 SRAM start greater than SRAM end

228 DATA line must be placed after the END statement
229 End Sub or End Function expected

230 You can not write to a PIN register

231 TO expected

232 Not supported for the selected micro

233 READ only works for normal DATA lines, not for EPROM data
234 ") block comment expected first

235 '(block comment expected first

236 Value does not fit into byte

238 Variable is not dimensioned as an array
239 Invalid code sequence because of AVR hardware bug
240 END FUNCTION expected

241 END SUB expected

242 Source variable does not match the target variable
243 Bit index out of range for supplied data type
244 Do not use the Y pointer

245 No arrays supported with IRAM variable
246 No more room for .DEF definitions

247 . expected

248 BYVAL should be used in declaration
249 ISR alreadydefined

250 GOSUB expected

251 Label must be named SECTIC

252 Integer or Word expected

253 ERAM variable can not be used

254 Variable expected

255 Z or Z+ expected

256 Single expected

257 " expected

258 SRAM string expected

259 - not allowed for a byte

260 Value larger than string length

261 Array expected

262 ON or OFF expected

263 Array index out of range

264 Use ECHO OFF and ECHO ON instead
265 offset expected in LDD or STD like Z+1
266 TIMERO, TIMER1 or TIMER2 expected
267 Numeric constant expected

268 Param must be in range from 0-3

269 END SELECT expected

270 Address already occupied

Newbieproblems

322 Data type not supported with statement

323 Label too long

324 Chip not supported by 12C slave library

325 Pre-scale value must be 1,8,32,128,256 or 1024
326 #ENDIF expected

327 Maximum size is 255

328 Not valid for SW UART

999 DEMO/BETA only supports 2048 bytes of code

Other error codes are internal ones. Please report them when you get them.

When you are using the AVR without knowledge of the architecture you can experience some
problems.

4 can not set a pin high or low
4 can not read the input on a pin

The AVR has 3 registers for each port. A port normally consist of 8 pins. A port is named with a
letter from AF.

All parts have PORTB.

When you want to set a single pin high or low you can use the SET and RESET statements. But
befare you use them the AVR chip must know in which direction you are going to use the pins.

Therefore there is a register named DDRx for each port. In our sample it is named DDRB. When
you write a O to the bit position of the pin you can use the pin as an input. When you write a 1 you
can use it as output.

After the direction bit is set you must use either the PORTXx register to set a logic level or the PINx
register to READ a pin level.

Yes the third register is the PINx register. In our sample PINB.

For example :

DDRB = &B1111_0000 ' upper nibble is output, lower nibble is input
SET PORTB.7 'will set the MS bit to +5V

RESET PORTB.7 'will set MS bit to 0 V

To read a pin :
Print PINB.O 'will read LS bit and send it to the RS 232

You may also read from PORTx but it will return the value that was last written to it.

To read or write whole bytes use :
PORTB = 0 'write 0 to register making all pins low
PRINT PINB 'print input on pins

| want to write a special character but they are not printed correct:
Well this is not a newbie problem but | put it here so you could find it.

Some ASCII characters above 127 are interpreted wrong depending on country settings. To print
the right value use : PRINT "Test{123}?"

The {xxx} will be replaced with the correct ascii character.

You must use 3 digits otherwise the compiler will think you want to print {12} for example. This
should be {012}

Links

Tips and tricks

This section describes tips and tricks received from users. Here are some links to software or information that might be useful:

Kyle Kronyak : Using all the RAM from an external RAM chip. A WINZIP clone to ZIP and UNZIP software
I have found a way to use the 607 bytes of external SRAM that are normally not available when
using hardware SRAM support with BASCOM-AVR. It's actually quite simple. Basically the user just
has to disconnect A15 from /CE on the SRAM module, and tie /CE to ground. This makes the chip
enabled all the time. Addresses 1-:32768 will then be available! The reason is because normally
when going above 32768, the A15 pin would go high, disabling the chip. When A15 is not
connected to /CE, the chip is always enabled, and allows the address number to "roll over".
Therefore address 32162 is actually 0, 32163 is actually 1, 32164 is actually 2, etc. | have only
tested this on a 32k SRAM chip. It definitely won't work on a 64k chip, and | believe it already works
on any chip below 32k without modification of the circuit.

http://ipsoft.cjb.net/

Programming problems
72 When you have unreliable results, use a shielded LPT cable

?? The AVR chips have a bug, if the erase is not complete.. It tend's to hang at some point.
sometimes although the system reports erased but blank check report "not empty". As per
Atmel Data Errrta You must drop the vcc by 0.5V (a diode 1N4148 in Series) if the erase
is not happening. (Such Chip's are unreliable and hence can be used only if you are sure
). This can happen after you have programmed the chip many times

$ASM

$BAUD

Action
Start of inline assembly code block.

Syntax
$ASM

Remarks

Use $ASM together with $END ASM to insert a block of assembler code in your BASIC code. You
can also precede each line with the ! sign.

Most ASM mnemonics can be used without the preceding! too.

See also the chapter Mixing BASIC and Assembly and assembler mnemonics

Example
Dim C As Byte

Loadadr C , X 'load address of variable C into register X
$asm

Ldi R24,1 'load register R24 with the constant 1
St X, R4 ;store 1 into variable c

$end Asm
Print C
End

Action

Instruct the compiler to override the baud rate setting from the options menu.

Syntax
$BAUD =var

Remarks

Var The baud rate that you want to use.

var : Constant.

The baud rate is selectable from the Compiler Settings. It is stored in a configuration file. The
$BAUD statement is provided for compatibility with BASCOM-8051.

In the generated report, you can view which baud rate is actually generated.

When you simulate a program you will not notice any problems when the baud rate is not set to the
value you expected. In real hardware a wrong baud rate can give weird results on the terminal
emulator screen. For best results use a XTAL that is a multiple of the baud rate.

See also
$CRYSTAL , BAUD

Example

$baud = 2400

$crystal = 14000000 ' 14 MHz crystal

Print "Hello"

"Now change the baud rate in a program

Baud = 9600 '

Print "Did you change the terminal enulator baud rate too?"
End

| $BAUD1
Action
Instruct the compiler to set the baud rate for the second hardware UART.

Syntax
$BAUD1 =var

Remarks

Var I The baud rate that you want to use.

var : Constant.

In the generated report, you can view which baud rate is actually generated.

When you simulate a program you will not notice any problems when the baud rate is not set to the
value you expected. In real hardware a wrong baud rate can give weird results on the terminal
emulator screen. For best results use a XTAL that is a multiple of the baud rate.

See also
$CRYSTAL, BAUD , $BAUD

Example

$baudl = 2400

$crystal = 14000000 ' 14 Mz crystal

Open "COM2:" For BINARY As #1

Print#1, "Hello"

"Now change the baud rate in a program

Baudl = 9600 '

Print#1, "Did you change the terminal enulator baud rate too?"
O ose #1

End

$BGF

Action
Includes a BASCOM Graphic File.

Syntax
$BGF "file"

Remarks

file | The file name of the BGF file to include.

Use SHOWPIC to display the BGF file.
See also
SHOWPIC, PSET , CONFIG GRAPHLCD

Example

Dim X as Byte, Y as Byte

For X =0 To 10

ForY =0 To 10

Pset X, Y, 1 'make a nice block
Next

Next

End

$BOOT

Action

Instruct the compiler to include boot loader support.

Syntax
$BOOT =address

Remarks

address | The boot loader address.

Some new AVR chips have a special boot section in the upper memory of the flash.
By setting some fuse bits you can select the code size of the boot setion.
The code size also determines the address of the boot loader.

With the boot loader you can reprogram the chip when a certain condition occurs.
The sample checks a pin to see if a new program must be loaded.
When the pin is low there is a jump to the boot address.

The boot code must always be located at the end of your program.

It must be written in ASM since the boot loader may not access the application flash rom. This
because otherwise you could overwrite your running code!

The example is written for the M163. You can use the Upload file option of the terminal emulator to
upload a new hex file. The terminal emulator must have the same baud rate as the chip. Under
Options, Monitor, set the right upload speed and set a monitor delay of 20. Writing the flash take
time so after every line a delay must be added while uploading a new file.

See also
BOOT128.BAS example and BOOT128X.BAS example from the sample dir.

Partial Example
Look at the BOOT.BAS example for the boot loader section.

' BOQT. BAS

Boot | oader exanple for the ML63

set fusebit FE to 512 bytes for bootspace for this exanple

"At start up a nessage is displayed. Wien you nmake PIND.7 low the

boot| oader will be started

This program serves as an exanple. It can be changed for other chips.
Especially the page size and the boot entry location mght need a change

"Qur conmunication settings
$crystal = 4000000
$baud = 19200

Print "Checking bootl oader"

Portd. 7 = 1

If Pind.7 = 0 Then

Print "Entering bootl oader"

jmp $1e00 ' nmke a junp to the boot code location. See the datasheet for
the entrypoint

End If

Print "Not entering bootloader”

"you code would continue here
End

$CRYSTAL

Action

Instruct the compiler to override the crystal frequency options setting.

Syntax
$CRYSTAL =var

Remarks

$DATA

var | Frequency of the crystal.

var : Constant.

The frequency is selectable from the Compiler Settings. It is stored in a configuration file. The
$CRYSTAL directive overrides this setting.

See also
$BAUD , BAUD

Example

$baud = 2400
$crystal = 4000000
Print "Hello"

End

Action

Instruct the compiler to store the data in the DATA lines following the $DATA directive, in code
memory.

Syntax
$DATA

Remarks

The AVR has built-in EEPROM. With the WRITEEEPROM and READEEPROM statements, you
can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that hold the data
that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to program the EEPROM.

The compiler must know which DATA must go into the code memory or the EEP file and therefore
two compiler directives were added.

$EEPROM and DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be stored in
the EEP file.

To switch back to the default behavior of the DATA lines, you must use the $DATA directive.

The READ statement that is used to read the DATA info may only be used with normal DATA lines.
It does not work with DATA stored in EEPROM.

See also
$SEEPROM, READEEPROM , WRITEEEPROM

ASM

NONE

Example
' READDATA. BAS
' Copyright 1999-2002 MCS El ectronics

Dim A As Integer , Bl As Byte , Count As Byte
DmS As String * 15

DmL As Long

Restore Dtal 'point to stored data

For Count = 1 To 3 'for nunber of data itens
Read Bl : Print Count ; " " ; Bl
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for nunber of data itens
Read A : Print Count ; " "; A

Next

Restore Dt a3
Read S : Print S
Read S : Print S

Restore Dt a4
Read L : Print L '"long type

End

Dt al:

Data &B10 , &HFF , 10
Dt a2:

Data 1000% , -1%

Dt a3:

Data "Hello" , "World"

"Note that integer values (>255 or <0) nust end with the %sign
‘"also note that the data type nust nmatch the variable type that is
"used for the READ statenent

Dt a4:

Dat a 123456789&

"Note that LONG values nust end with the &sign

"Also note that the data type nust match the variable type that is used
"for the READ statenent

$DBG

Action
Enables debugging output to the hardware UART.

Syntax
$DBG

Remarks

Calculating the hardware, software and frame space can be a difficult task.

With $DBG the compiler will insert characters for the various spaces.

To the Frame space ‘F’ will be written. When you have a frame size of 4, FFFF will be written.

To the Hardware space ‘H’ will be written. If you have a hardware stack space of 8, HHHHHHHH
will be written to this space.

To the software space ‘S’ will be written. If you have a software stack space of 6 SSSSSS will be
written.

The idea is that when a character is overwritten, it is being used. So by watching the spaces you
can determine if the space is used or not.

With the DBG statement a record is written to the HW UART. The record must be logged toa file so
it can be analyzed by the stack analyzer.

Make the following steps to determine the proper values:
?? 72??Make the frame space 40, the softstack 20 and the HW stack 50
?? 72??Add $DBG to the top of your program
?? 72??Add a DBG statement to every Subroutine or Function

?? 72?20pen the terminal emulator and open a new log file. By default it will have the name of
your current program with the .log extension

?? 222?Run your program and notice that it will dump information to the terminal emulator

?? 72??When your program has executed all sub modules or options you have build in, turn off
the file logging and turn off the program

?? 72??Choose the Tools Stack analyzer option
?? 22?2A window will be shown with the data from the log file
?? 72??Press the Advise button that will determine the needed space. Make sure that there is at

least one H, S and F in the data. Otherwise it means that all the data is overwritten and that
you need to increase the size.

?? 72??Press the Use button to use the advised settings.

As an alternativeyou can watch the space in the simulator and determine if the characters are
overwritten or not.

The DBG statement will assign an internal variable named __ SUBROUTINE
Because the name of a SUB or Function may be 32 long, this variable uses 33 bytes!
___SUBROUTINE will be assigned with the name of the current SUB or FUNCTION.
When you first run a SUB named Test1234 it will be assigned with Test1234

When the next DBG statement is in a SUB named Test, it will be assigned with Test.
The 234 will still be there so it will be shown in the log file.

s £

Sub FS 55 HS Frame space |Soft stack | HW stack | -]
TEST 1 4 4 a 55550008 ¥l
TEST 1 4 4 1 55550805 ¥in
TEST 1 4 4 a SE550u0n Wl
TEST 1 4 4 1 55550u0% ¥ix
TEST 1 4 4 a 555500, Pulx

TEST 1 4 4 I 5SS50x0% Whi gl
TEST 1 4 4 8 55550u0 ¥l
TEST 1 4 4 1 555500 ix
TEST 1 4 4 a 5555080 B

=

Advise I i Hardware stack 4 Software stack [
Frame space 1

Every DBG record will be shown as a row.
The columns are:

Cdumn Description

Sub Name of the sub or function from where the DBG was used
FS Used frame space

SS Used software stack space

HS Used hardware stack space

Frame space Frame space

Soft stack Soft stack space

HW stack Hardware stack space

The Framespace is used to store temp and local variables.

It also stores the variables that are passed to subs/functions by value.

Because PRINT , INPUT and the FP num<>String conversion routines require a small buffer, the
compiler always is using 16 bytes of frame space.

When the advise is to use 2 bytes of frame space, the setting will be 16+2=18.

For example when you use : print var, var need to be converted into a string before it can be printed
or shown with LCD.

An alternative for the buffer would be to seup a temp buffer and free it once finished. This gives
more code overhead.

In older version of BASCOM the start of the frame was used for the buffer but that gave conflicts
when variables were printed from an ISR.

The buffer solution will be changed in a future version of BASCOM when a different approach will
be used.

See also
DBG

$DEFAULT

Action

Set the default for data types dimensioning to the specified type.

Syntax

$DEFAULT =var

Remarks

$SEEPLEAVE

Var | SRAM, XRAM, ERAM

Each variable that is dimensioned will be stored into SRAM, the internal memory of the chip. You
can override it by specifying the data type.

Dim B As XRAM Byte , will store the data into external memory.

When you want all your variables to be stored in XRAM for example, you can use the statement :

$DEFAULT XRAM
Each Dim statement will place the variable in XRAM in that case.

To switch back to the default behavior, use $END $DEFAULT

See also
NONE

ASM

NONE

Example

$def aul t Xram

DmA As Byte , B As Byte , C As Byte
"a,b and c will be stored into XRAM

$default Sram
Dim D As Byte
"D will be stored in internal nenory, SRAM

Action

Instructs the compiler not to recreate or erase the EEP file.

Syntax
$EEPLEAVE

Remarks

When you want to store data in the EEPROM, and you use an external tool to create
the EEPfile, youcanuse the $EEPLEAVE directive.

Normally the EEP file will be created or erased, but the directive will not touch any
existing EEPfile.

Otherwise you would erase an existing EEP file, created with another tool.

See also
$EEPROMHEX

Example
NONE

$EEPROM

Action

Instruct the compiler to store the data in the DATA lines following the $DATA directive in an EEP
file.

Syntax
$EEPROM

Remarks

The AVR has build in EEPROM. With the WRITEEEPROM and READEEPROM statements, you
can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that hold the data
that must be stored in the EEPROM.

A separate file is generated with the EEP extension. This file can be used to program the EEPROM.
The build in STK200/300 programmer supports the EEP file.

The compiler must know which DATA must go into the code memory or the EEP file and therefore
two comgler directives were added.

$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be stored in
the EEP file.

To switch back to the default behavior of the DATA lines, you must use the $DATA directive. In fact
you need to switch back with $DATA always to the normal mode after your last DATA line when you

are using $EEPROM.
When you use the normal mode there is no need to add $DATA or to switch back with $DATA.

It is important to know that the RESTORE and READ statements do NOT work with DATA lines that
are stored in the EPROM.

RESTORE and READ only work with normal DATA lines.
The $SEEPROM directive is only added to allow you to create a memory image of the EPROM.
To store and retrieve data from EPROM yai should use an ERAM variable :

Dim Store As Eram Byte , B As Byte
B = 10 'assign value to b

Store = B 'value is stored in EPROM !
B = Store 'get the value back

See also
$DATA, WRITEEEPROM , READEEPROM

ASM

NONE

Example

Dm B As Byte

Restore Lbl 'point to code data
Read B

Print B

Restore Lbl 2

Read B

Print B

End

Lbl :
DATA 100

$eeprom ' the following DATA lines data wll
Dat a 200

$data 'switch back to normal
Lbl 2:
Dat a 300

go to the EEP 'file

$EEPROMHEX

Action

Instruct the compiler to store the data in the EEP file in Intel HEX format instead of binary format.
Syntax

$EEPROMHEX

Remarks

The AVR has build in EEPROM. With the WRITEEEPROM and READEEPROM statements, you
can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that hold the data
that must be stored in the EEPROM. $EEPROM must be used to create a EEP file that holds the
data.

The EEP file is by default a binary file. When you use the STK500 you need an Intel HEX file. Use
$EEPROMHEX to create an Intel Hex EEP file.

$EEPROMHEX must be used together with SEEPROM.

See also
SEEPROMLEAVE

Example

$eeprom ' the followi ng DATA lines data will go to the EEP file
Data 200 , 100,50

$dat a

This would create an EEP file of 3 bytes. Wth the values 200,100 and 50.
Add $eepromhex in order to create an Intel Hex file.

This is how the EEP filecontent |ooks when using $eepronmhex

: 0A00000001020304050A141E283251
: 00000001FF

SEXTERNAL

Action
Instruct the compiler to include ASM routines from a library.

Syntax

$EXTERNAL Myroutine [, myroutine2]

Remarks

You can place ASM routines in a library file. With the $EXTERNAL directive you tell the compiler
which routines must be included in your program.

An automatic search will be added later so the $EXTERNAL directive will not be needed any
longer.

See also
$LIB

Example

' LI BDEMO. BAS

' (c) 2002 MCS Electronics

"In order to let this work you nust put the nylib.lib file in the LIB dir
"And conpile it to a LBX

"define the used library

$lib "nylib.Ibx"

'you can also use the original ASM :
"$LIB "mylib.LIB"

"al so define the used routines
$external Test

"this is needed so the paraneters will be placed correct on the stack
Decl are Sub Test(byval X As Byte , Y As Byte)

reserve sone space
Dm Z As Byte

‘call our own sub routine
Call Test(1 , 2)

'z will be 2 in the used exanple
End

$INC

Action

Includes a binary file in the program at the current position.

Syntax

$INC label , size | nosize , "file"

$INCLUDE

Action

Includes an ASCII file in the program at the current position.

Remarks

Label The name of the label you can use to refer to the data.

Nosize Specify either nosize or size. When you use size, the size of the data will be
included. This way you know how many bytes you can retrieve.

File Name of the file which must be included.

Use RESTORE to get a pointer to the data. And use READ, to read in the data.
The $INC statement is an alternative for the DATA statement.
While DATA works ok for little data, it is harder to use on large sets of data.

Example

" (c) 2004 MCS Electronics
" $INC demp

do not confuse $inc with INC and $I NCLUDE

"ml62def . dat"
4000000

$regfile
$crystal

Dm Size As Word , WAs Wird , B As Byte

Restore L1 ' set pointer to |abel
Read Size ' get size of the data

Print Size ; " bytes stored at |abel L1"
For W=1 To Size

Read B : Print Chr (b);

Next

End
"include sonme data here

$inc L1, Size , "c:\test.bas"
"when you get an error, insert a file you have on your system

Syntax

$INCLUDE "file"

Remarks

File Name of the ASCII file, which must contain valid BASCOM statements.
This option can be used if you make use of the same routines in many programs.
You can write modules and include them into your program.
If there are changes to make you only have to change the module file, not all your
BASCOM programs.
You can only include ASCII files!

Example

' (c) 1999-2002 MCS Electronics

' file: | NCLUDE. BAS

' denp: $I NCLUDE

Print "I NCLUDE. BAS"

"Note that the file 123.bas contains an error

$include "123. bas" "include file that prints Hello
Print "Back in |NCLUDE. BAS"
End

To get the program working rename the file a_rename.bas into a.bas
The file a.bas is located in the samples dir.

| $LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

$LCDPUTCTRL

Action

Specifies that LCD control output must be redirected.

Syntax

$LCDPUTCTRL = label

Remarks

Label The name of the assembler routine that must be called when a control byte is printed

with the LCD statement. The character must be placed in R24.

Syntax

$LCD =[&H]address

Remarks

Address The address where must be written to, to enable the LCD display and the RS
line of the LCD display.
The db0-db7 lines of the LCD must be connected to the data lines D0O-D7. (or
is 4 bit mode, connect only D4-D7)
The RS line of the LCD can be configured with the LCDRS statement.
On systems with external RAM, it makes more sense to attach the LCD to the
data bus. With an address decoder, you can select the LCD display.

See also

$LCDRS

Example

REM W& use a STK200 board so use the followi ng addresses

$LCD = &HCO00 'writing to this address will nmake the Eline of the LCD
"high and the RS line of the LCD high.

$LCDRS = &HBOOO 'writing to this address will make the Eline of the LCD
" hi gh.

Cs
LCD "Hello world"

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTDATA

Example

"define chip to use
$regfile = "8535def.dat"

"define used crystal
$crystal = 4000000

" di mensi on used variabl es
DmS As String * 10

Dm W As Long

"inform the conpiler which routine nust be called to get serial
characters

$l cdput data = Myout put

$l cdputctrl = Myoutputctrl
"make a never ending |oop
Do

LCD "test”

Loop

End

‘custom character handling routine

"instead of saving and restoring only the used registers

and wite full ASM code, we use Pushall and PopAll to save and 'restore
all registers so we can use all BASIC statenents

' $LCDPUTDATA requires that the character is passed in R24

Myout put:

Pushal | 'save all registers
"your code here

Popal |l 'restore registers
Ret urn

Myout put Ctrl :
Pushal | 'save all registers

"your code here

Popal |
Ret urn

restore

registers

$LCDPUTDATA

Action
Specifies that LCD data output must be redirected.

Syntax

$LCDPUTDATA =label

Remarks

Label The name of the assembler routine that must be called when a character is printed

with the LCD statement. The character must be placed in R24.

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTCTRL

Example

‘define chip to use
$regfile = "8535def.dat"

"define used crystal
$crystal = 4000000

" di nensi on used variabl es
DmS As String * 10
Dim W As Long

"inform the conpiler which routine nust be called to get serial
‘characters

$l cdput data = Myout put

$l cdputctrl = Myoutputctrl
"make a never ending |oop
Do

LCD "test”

Loop

End

‘custom character handling routine

"instead of saving and restoring only the used registers

"and wite full ASM code, we use Pushall and PopAll to save and
all registers so we can use all BASIC statenents

' $LCDPUTDATA requires that the character is passed in R4

restore

Myout put:

Pushal | 'save all registers
"your code here

Popal | 'restore registers
Ret urn

Myout put Ctrl :

Pushal | 'save all registers
"your code here

Popal | 'restore registers
Return

| $LCDRS

Action

Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

Syntax

$LCDRS =[&H]address

Remarks

Address The address where must be written to, to enable the LCD display.
The db0-db7 lines of the LCD must be connected to the data lines D0-D7.
(or is 4 bit mode, connect only D4-D7)
On systems with external RAM, it makes more sense to attach the LCD to
the data bus. With an address decoder, you can select the LCD display.

See also

$LCD

Example

REM W use a STK200 board so use the follow ng addresses

$LCD = &HOO00 'writing to this address will nake the Eline of the LCD
"high and the RS line of the LCD high.

$LCDRS = &HBOOO 'writing to this address will make the Eline of the LCD
" hi gh.

Cs
LCD "Hello world"

$LCDVFO

Action

Instruct the compiler to generate very short Enable pulse for VFO displays.

Syntax
$LCDVFO

Remarks

VFO based displays need a very short Enable pulse. Normal LCD displays need a longer pulse. To
support VFO displays this compiler directive has been added.

The display need to be instruction compatible with normal HD44780 based text displays.

ASM

NONE
See also

NONE

Example
NONE

$LIB

Action

Informs the compiler about the used libraries.

Syntax
$LIB "libnamel" [, "libname2"]

Remarks

Libnamel is the name of the library that holds ASM routines that are used by your program. More
filenames can be specified by separating the names by a comma.

The libraries will be searched when you specify the routines to use with the $SEXTERNAL directive.
The search order is the same as the order you specify the library names.

The MCS.LBX will be searched last and is always included so you don't need to specify it with the
$LIB directive.

Because the MCS.LBX is searched last you can include duplicate routines in your own library. Now
these routines will be used instead of the ones from the default MCS.LBX library. This is a good
way when you want to enhance the MCS.LBX routines. Just copy the MCS.LIB to a new file and
make the changes in this new file. When we make changes to the library your changes will be
preserved.

Creating your own LIB file

A library file is a simple ASCII file. It can be created with the BASCOM editor, notepad or any other
ASCII editor.

The file must include the following header information. It is not used yet but will be later.

copyright= Your name

www = optional location where people can find the latest source
email = your email address

comment = AVR compiler library

libversion = the version of the library in the format : 1.00

date = date of last modification

statement= A statement with copyright and usage information

The routine must start with the name in brackets and must end with the [END].
The following ASM routine example is from the MYLIB.LIBlibrary.

[test]

Test:

Idd r26,y+2 ; load address of X
Idd r27,y+3

Id r24,x ; get value into r24
Incr24 ; value + 1

St x,r24 ; put back

Idd r26,y+0 ; address pf Y

ldd r27,y+1

st x,r24 ; store
ret ; ready
[end]

After you have saved your library in the LIB subdirectory you must compile it
with the LIB Manager. Or you can include it with the LIB extension in which
caseyoudon’'t haveto compileit.

Abouttheassembler.

When you reference constants that are declared in your basic program you
need to putastar(*) beforetheline.

‘basicprogram
CONST myconst =7

‘asmlib
*sbi portb, myconst

By adding the *, the line will be compiled when the basic program is
compiled. It will not be changed into object code in the LBX file.

When you use constants you need to use valid BASIC constants:
Ldir24,12

Ldir24,1+1

Ldir24,&B001

Ldir24,0b001

Ldi r24,&HFF

Ldi r24,$FF

Ldi r24,0xFF

Other syntax is NOT supported.

See also
$EXTERNAL

Example

LI BDEMO. BAS

(c) 2002 MCS Electronics
"In order to let this work you nust put the nylib.lib file in the LIB dir
"And conpile it to a LBX

"define the used library
$lib "mylib.lib" "the original asm will be used not the conpiled object
code

"also define the used routines
$external Test

"this is needed so the paraneters will be placed correct
Decl are Sub Test(byval X As Byte , Y As Byte)

'reserve sone space
Dm Z As Byte

‘call our own sub routine
Call Test(1 , 2)

'z will be 2 in the used exanple
End

on the stack

$SMAP | SNOINIT

_ Action
Action Instruct the compiler to generate code without initialization code.
Will generate label info in the report.
Syntax
Syntax $NOINIT
$MAP
Remarks
Remarks $NOINIT could be used together with SROMSTART to generate boot loader code.
_The $MAP directive will put an entry for eac_h line number with the address into the report file. This See also
info can be used for debugging purposes with other tools.
$ROMSTART
See also
NONE ASM
For a simple project the following code will be generated for a 2313:
ASM RJMP_BASICSTART
NONE RETI
RETI
Example il
RETI
$MAP RETI
RETI
RETI
RETI
RETI
RETI
_BASICSTART:

; disable the watchdog timer

Idi _templ$1F

outWDTCR,_temp1l

Idi _templ1,$17

OutWDTCR,_temp1l

;Init stackpointer

Ldi R24,$DF ; hardware stack pointer
Out SPL,R24

Idi YL,$C8 ; softstack pointer

Idi ZL,$98

Mov _SPL,ZL ; point to start of frame data
Clr YH

Mov_SPH,YH

Ldi ZL,$7E ;number of bytes

Ldi ZH,$00

Ldi XL,$60 ; start of RAM

Ldi XH,$00

CIr R24

_ClearRAM:

St X+,R24 ; clear

Sbiw ZL,1

Brne _ClearRAM

CIr R6 ; clear internal used flags
i Dim X As Byte

A X = 1

Ldi _templ,$01

Sts $0060,R24 ; write value to memory

As you can see this program just assigns 1 to a byte named X.

First the interrupt vectors are setup then the watchdog timer is cleared , the stacks are set up, the
memory is cleared and an internal register R6 is cleared.

After that the program begins and you can see that 1 is written to variable X.

Now with $NOINIT the code would look like this :

_BASICSTART:

; disable the watchdog timer

Idi _templ,$1F

outWDTCR,_temp1

Idi _temp1,$17

outWDTCR,_templ

;Init stackpointer

Ldi R24,$DF ; hardware stack pointer
Out SPL,R24

Idi YL,$C8 ; softstack pointer

Idi ZL,$98

Mov _SPL,ZL ; point to start of frame data
Clr YH

Mov_SPH,YH

Ldi ZL,$7E ;number of bytes

Ldi ZH,$00

Ldi XL,%60 ; start of RAM

Ldi XH,$00

Clr R24

_ClearRAM:

St X+,R24 ; clear

Shiw ZL,1

Brne _ClearRAM

CIr R6 ; clear internal used flags
i Dim X As Byte

X = 1

Ldi _templ1,$01

Sts $0060,R24 ; write value to memory

As you can see the difference is that the interrupt vectors are not setup.

The intention for the $NOINIT directive is to create support for a boot loader. As the boot loader
needs are not studied yet, the $NOINIT will most likely be changed in the near future.

$NORAMCLEAR

Action
Instruct the campiler to not generate initial RAM clear code.

Syntax
$NORAMCLEAR

Remarks

Normally the SRAM is cleared in the initialization code. When you don’t want the SRAM to be
cleared(set to 0) you can use this directive.

Because all variables are automatically set to 0 or ""(strings) without the $SNORAMCLEAR, using
$NORAMCLEAR will set the variables to an unknown value. That is, the variables will probably set
to FF but you cannot count on it.

See also
$NOINIT

| $PROG

Action

Directive to auto program the lock and fuse bits.

Syntax
$PROG LB, FB, FBH , FBX

Remarks

While the lock and fusebits make the AVR customizable, the settings for your project can give some
problems.

The $PROG directive will create a file with the pojectname and the PRG extension.

Every time you program the chip, it will check the lock and fuse bit settings and will change them if
needed.

So in a new chip, the lock and fusebits will be set automaticly. A chip that has been programmed
with the desired settings will not be changed.

The programmer has an option to create the PRG file from the current chip settings.

The LB, FH, FBH and FBX values are stored in hexadecimal format in the PRJ file.
You may use any notation as long as it is a numeric constant.

Some chips might not have a setting for FBH or FBX, or you might not want to set all value. In that
case, do NOT specify the value. For example:

$PROG &H20 ,,,

This will only write the Lockbit settings.
$PROG ,,&H30,

This will only write the FBH settings.

LB Lockbit settings

FB Fusebit settings

FBH Fusebit High settings
FBX Extended Fusebit settings

Sometimes the datasheet refers to the Fusebit as the Fusebit Low settings.

The $PROG setting is only supported by the AVRISP, STK200/300, Sample Electronics and
Universal MCS Programmer Interface.

See also
Programmers

SREGFILE | $SROMSTART

Action Action

Instruct the compiler to use the specified register file instead of the selected dat file. Instruct the compiler to generate a hex file that starts at the specified address.
Syntax

Syntax $ROMSTART =address

$REGFILE = "name"

Remarks
Remarks Address The address where the code must start. By default the first address is 0.
Name The name of the register file. The register files are stored in the BASCOM-AVR The bin file will still begin at address 0..
application directory and they all end with the DAT extension.
The register file holds information about the chip such as the internal registers .
and interrupt addresses. The $ROMFILE could be used to locate code at a different address for example for a boot loader.
See also

The $REGFILE statement overrides the setting from the Options menu.

The settings are stored in a <project>.CFG file and the directive is added for compatibility with NONE
BASCOM-8051

ASM
The $REGFILE directive must be the first statement in your program. It may not be put into an NONE
included file since only the main source file is checked for the $SREGFILE directive.
Example
See also P
$ROVSTART = &H4000
NONE
ASM
NONE
Example

$REGFI LE = "8515DEF. DAT"

$SERIALINPUT

Action

Specifies that serial input must be redirected.

End

'custom character
"instead of saving

handl i ng

routine

and restoring only the

we use Pushall

"and wite full ASM code,

used registers

and PopAl |

Syntax

$SERIALINPUT =label

Remarks

Label The name of the assembler routine that must be called when a character is needed

from the INPUT routine. The character must be returned in R24.

With the redirection of the INPUT command, you can use your own input routines.
This way you can use other devices as input devices.
Note that the INPUT staement is terminated when a RETURN code (13) is received.

By default when you use INPUT or INKEY(), the compiler will expect data from the COM port. When
you want to use a keyboard or remote control as the input device you can write a custom routine
that puts the data into register R24 once it asks for this data.

See also
$SERIALOUTPUT

Example

$serial i nput. bas
" (c) 1999 MCS Electronics
' denpnstrates $SERI ALI NPUT redirection of serial input

"define chip to use
$regfile = "8535def. dat"

"define used crystal
$crystal = 4000000

"di nensi on used variables
Dm S As String * 10
Dm W As Long

"inform the conpiler which routine nust be called to get serial
characters

$serialinput = Myinput

"make a never ending |oop

Do

"ask for nane

I nput "name " , S

Print S

"error is set on tine out
Print "Error " ; FErr

Loop

"all registers so we can use all BASIC statenents

to save and

"$SERIALINPUT requires that the character is passed back in R24

Myi nput:

Pushal | 'save all registers
W= 0 'reset counter

Myi nput 1:

I ncr W'increase counter

Shis USR, 7 ' Wait for character

Rj mp nyi nput2 'no charac waiting so check again
Popal | 'we got sonething

Err = 0 'reset error

In _tenpl, UDR ' Read character from UART
Return "end of routine

Myi nput 2:

If W> 1000000 Then "with 4 Mz ca 10 sec delay
rimp Myinput_exit "waited too |ong

El se

Goto Myinputl "try again
End If

Myi nput _exi t:

Popal | 'restore registers

Err = 1 'set error variable
Idi R24, 13 'fake enter so INPUT wll end
Ret urn

restore

$SERIALINPUT1

Action

Specifies that serial input of the second UART must be redirected.

$SERIALINPUT2LCD

Syntax

$SERIALINPUT1 =label

Remarks

Label The name of the assembler routine that must be called when a character is needed

from the INPUT routine. The character must be returned in R24.

With the redirection of the INPUT command, you can use your own input routines.
This way you can use other devices as input devices.

Note that the

INPUT statement is terminated when a RETURN code (13) is received.

By default when you use INPUT or INKEY(), the compiler will expect data from the COM2 port.
When you want to use a keyboard or remote control as the input device you can write a custom
routine that puts the data into register R24 once it asks for this data.

See also

$SERIALOUTPUT1

Action

This compiler directive will redirect all serial input to the LCD display instead of echo-ing to the
serial port.

Syntax
$SERIALINPUT2LCD

Remarks

You can also write your own custom input or output driver with the $SERIALINPUT and
$SERIALOUTPUT statements, but the $SERIALINPUT2LCD is handy when you use a LCD
display.

See also
$SERIALINPUT, $SERIALOUTPUT

Example

$serialinput2lcd

Dim v as Byte

ds

I nput "Nunber " , V 'this will go to the LCD display

$SERIALOUTPUT |

$SERIALOUTPUT1

Action

Specifies that serial output must be redirected.

Syntax
$SERIALOUTPUT =label

Remarks

Action

Specifies that serial output of the second UART must be redirected.

Syntax
$SERIALOUTPUT1 =label

Remarks

Label The name of the assembler routine that must be called when a character is send to
the serial buffer (UDR).

The character is placed into R24.

Label The name of the assembler routine that must be called when a character is send to
the serial buffer (UDR1).

The character is placed into R24.

With the redirection of the PRINT and other serial output related commands, you can use your own
routines.

This way you can use other devices as output devices.
See also
$SERIALINPUT, $SERIALINPUT2LCD

Example

$seri al out put = Myout put

"your program goes here
Do

Print "Hello"

Loop

End

nyout put:

"perform the needed actions here

'"the data arrives in R24
"just set the output to PORTB
lout porthb,r24

ret

With the redirection of the PRINT and other serial output related commands, you can use your own
routines.

This way you can use other devices as output devices.
See also
$SERIALINPUT1

| $SIM

Action

Instruct the compiler to generate empty wait loops for the WAIT and WAITMS statements. This to
allow faster simulation.

Syntax
$SIM

Remarks

Simulation of a WAIT statement can take a long time especially when memory view windows are
opened.

The $SIM compiler directive instructs the compiler to not generate code for WAITMS and WAIT.
This will of course allows faster simulation.

When your application is ready you must remark the $SIM directive or otherwise the WAIT and
WAITMS statements will not work as expected.

When you forget to remove the $SIM option and you try to program a chip you will receive a
warning that $SIM was used.

See also
NONE

ASM

NONE

Example
$SI M

Do

Wait 1
Loop

$TINY

Action
Instruct the compiler to generate initialize code without setting up the stacks.

Syntax
$TINY

Remarks

The tiny11 for example is a powerful chip. It only does not have SRAM. BASCOM depends on
SRAM for the hardware stack and software stack.

When you like to program in ASM you can use BASCOM with the $TINY directive.
Some BASCOM statements will also already work but the biggest part will not work.

BASCOM will support a subset of the BASCOM statements and function to be used with the chips
without SRAM. There will be a special tiny.lib that will use little registers and will have at most a 3
level deep call since tiny chips do have a 3 level deep hardware stack that may be used for cdls.

Note that the generated code is not yet optimized for the tiny parts. The $tiny directive is just a start
of the tiny parts implementation!

No support is available for this feature until the tiny.lib is implemented.

See also
NONE

ASM
NONE

Example

$tiny
dim X AS iram BYTE, y AS iram BYTE
X=1:Y=2:X=x+yYy

SWAITSTATE

$XRAMSIZE

Action

Compiler directive to activate external SRAM and to insert a WAIT STATE for a slower ALE signal.

Syntax
SWAITSTATE

Remarks
The $WAITSTATE can be used to override the Compiler Chip Options setting.

See also
NA

Example
$WAI TSTATE

Action

Specifies the size of the external RAM memory.

Syntax

$XRAMSIZE =[&H] size

Remarks

Size | Size of external RAM memory chip.

size : Constant.

The size of the chip can be selected from the Options Compiler Chip menu.
The $XRAMSIZE overrides this setting. It is important that $XRAMSTART precedes $XRAMSIZE

See also
$XRAMSTART

Example
$XRAMSTART = &H300

$RAMSI ZE = &H1000
DIM x AS XRAM Byte 'specify XRAM to store variable in XRAM

$XRAMSTART

Action

Specifies the location of the external RAM memory.

Syntax
$XRAMSTART =[&H]address

Remarks

IWIRECOUNT

Action

This statement reads the number of 1wire devices attached to the bus.

Syntax
var2 = 1WIRECOUNT()
var2 = IWIRECOUNT(port , pin)

Address The (hex)-address where the data is stored.

Or the lowest address that enables the RAM chip.

You can use this option when you want to run your code in systems
with external RAM memory.

address : Constant.

By default the extended RAM will start after the internal memory so the lower addresses of the
external RAM can't be used to store information.

When you want to protect an area of the chip, you can specify a higher address for the compiler to
store the data. For example, you can specify &H400. The first dimensioned variable will be placed
in address &H400 and not in &H260.

It is important that when you use $XRAMSTART and $XRAMSIZE that $XRAMSTART comes
before $XRAMSIZE.

See also
$XRAMSIZE
Example
$XRAMSTART = &H400
$XRAMSI ZE = &H1000
Dim B As XRAM Byte

Remarks

var2 A WORD variable that is assigned with the number of devices on the
bus.

port The PIN port name like PINB or PIND.

pin The pin number of the port. In the range from 0-7. May be a numeric
constant or variable.

The variable must be of the type word or integer.

You can use the lwirecount() function to know how many times the 1wsearchNext() function should
be called to get all the ID's on the bus.

The 1lwirecount function will take 4 bytes of SRAM.
__1w_bitstorage , Byte used for bit storage :
lastdeviceflagbitO

id_bit bit 1

cmp_id_bit bit 2

search_dir bit 3

___lwid_bit_number, Byte

___1lwlast_zero, Bte

___lwlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.
_lwire_Count : (calls _1WIRE, _1WIRE_SEARCH_FIRST , _1WIRE_SEARCH_NEXT)

Parameters passed : R24 : pin number, R30 : port, Y+0,Y+1 : 2 bytes of soft stack, X : pinter to
the frame space

Returns Y+0 and Y+1 with the value of the count. This is assigned to the target variable.

See also
1IWWRITE , IWRESET, 1IWREAD , 1IWSEARCHFIRST, 1IWSEARCHNEXT

Example

" 1wi reSear ch. bas

' (c) 2000 MCS Electronics Print Err

' revision b, 27 dec 2000 "err =1 when the ID passed n reg_no() does NOT exist
B e e LR ' optinal call it with pinnunber line 1lwerify reg_no(1),pinb,1
Config 1wire = Portbh.0 "use this pin "As for the other 1wire statenents/functions, you can provide the port
'On the STK200 junper B.0 nust be inserted and pin nunber as anoption
"W = 1wirecount(pinb , 1) 'for exanple look at pin PINB.1
"The following internal bytes are used by the scan routines End
'___lw bitstorage , Byte used for bit storage
' lastdeviceflag bit 0
"id_bit bit 1

' cnp_id_bit bit 2

' search_dir bit 3

' ___lwid_bit_nunmber, Byte

___ 1wl ast_zero, Byte

__ 1wl ast _di screpancy , Byte
__Iwire_data , string * 7 (8 bytes)
"[DIM variables used]

'we need sone space from at least 8 bytes to store te ID
Dim Reg_no(8) As Byte

"we need a loop counter and a word/integer for counting the IDs on the
bus
Dm| As Byte , WAs Wrd

"Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I =1 To 8 'print the nunber
Print Hex(reg_no(i));

Next

Print

Do

"Now search for other devices
Reg_no(1) = 1wsearchnext()
For I =1 To 8

Print Hex(reg_no(i));

Next

Print

Loop Until Err =1

"When ERR = 1 is returned it neans that no device is found anynore
"You could also count the nunber of devices

W= 1wi recount ()

"I't is IMPORTANT that the 1wirecount function returns a word/integer
'"So the result variable nust be of the type word or integer

'"But you nmmy assign it to a byte or long too of course

Print W

'as a bonus the next routine

" first fill the array with an existing nunber

Reg_no(1) = 1wsearchfirst()

" unremark next line to chance a byte to test the ERR flag
'"Reg_no(1l) = 2

"now verify if the number exists

Iwerify Reg_no(1)

IWRESET

Action

This statement brings the 1wire pin to the correct state, and sends a reset to the bus.

Syntax

1WRESET

1WRESET , PORT , PIN

Remarks

1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an error
occurred

Port The register name of the input port. Like PINB, PIND.

Pin The pin number to use. In the range from G7. May be a numeric constant
or variable.

The variable ERR is set when an error occurs.
New is support for multi 1-wire devices on different pins.
To use this you must specify the port and pin that is used for the communication.

The 1wreset, 1wwrite and lwread statements will work together when used with the old syntax. And
the pin can be configured from the compiler options or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESETport , pin

1WWRITE var/constant ,bytes] , port, pin

var = IWREAD(bytes) , for the configured 1 wire pin

var = IWREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD , IWWRITE

Example

' 1IWRE. BAS (c) 2002 MCS Electronics

denonstrates 1lweset, 1wwite and 1w ead()

" pull -up of 4K7 required to VCC from Porth.2

' DS2401 serial button connected to Portb.2

when only bytes are used, use the following lib for smaller code
$lib "nmcsbyte.lib”

Config 1wire = Portbh.0 "use this pin
'"On the STK200 junper B.0 nust be inserted

Dm Ar (8) As Byte , A As Byte , | As Byte
Do
Wait 1

lwreset 'reset the device

Print Err "print error 1 if error
Iwwrite &H33 'read ROM conmand

For I =1 To 8

Ar(i) = 1wread() 'place into array

Next

"You could also read 8 bytes a time by unremarking the next Iline

"and by deleting the for next above
"Ar(1) = 1wead(8) 'read 8 bytes

For I =1 To 8

Print Hex(ar (i)); 'print output
Next

Print 'linefeed

Loop

'NOTE THAT WHEN YOU COWPILE THIS SAMPLE THE CODE WLL RUN TO THI S PO NT
'"THI' S because of the DO LOOP that is never terminated!!!

"New is the possibility to use nore than one 1 wre bus
'"The follow ng syntax nust be used:

For I =1 To 8
Ar(i) =0 'clear array to see that it works
Next

lwreset Pinb , 2 'use this port and pin for the second device

iwrite &H33 , 1 , Pinb , 2 '"note that now the number of bytes nust be
speci fied!

"lwwrite Ar(1) , 5,pinb,2

‘reading is also different

A (1) = 1wread(8 , Pinb , 2) 'read 8 bytes from portB on pin 2

For I =1 To 8
Print Hex(ar (i));
Next

"you could create a loop with a variable for the bit munber !
For I =0 To 3 '"for pin 03

lwreset Pinb , |

Iwwrite &H433 , 1 , Pinb , |

A (1) = 1wread(8 , Pinb , I)

For A =1 To 8

Print Hex(ar (a));

Next

Print

Next

End

IWREAD

Action
This statement reads data from the 1wire bus into a variable.

Syntax
var2 = 1IWREAD([bytes])
var2 = 1IWREAD(bytes , port, pin)

Remarks

var2 Reads a byte from the bus and places it into var2.
Optional the number of bytes to read can be specified.

Port The PIN port name like PINB or PIND.

Pin The pin number of the port. Inthe range from 0-7. Maybe a numeric
constant or variable.

New is support for multi 1-wire devices on different pins.

To use this you must specify the port pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the old syntax. And
the pin can be configured from the compiler options or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :

1WRESET port, pin

1WWRITE var/constant , bytes, port, pin

var = IWREAD(bytes, port, pin) for reading multiple bytes

See also
1WWRITE , IWRESET

Example

' 1IWRE. BAS (c) 2002 MCS Electronics

denonstrates 1weset, lwwite and 1w ead()

" pull -up of 4K7 required to VCC from Porth.2

' DS2401 serial button connected to Portb.2

when only bytes are used, use the following lib for smaller code
$lib "nmcsbyte.lib”

Config 1wire = Portbh.0 "use this pin
'"On the STK200 junper B.0 nust be inserted

Dm Ar (8) As Byte , A As Byte , | As Byte
Do
Wait 1

lwreset 'reset the device

Print Err "print error 1 if error
Iwwrite &H33 'read ROM conmand

For I =1 To 8

Ar(i) = 1wread() 'place into array

Next

"You could also read 8 bytes a time by unremarking the next Iline

"and by deleting the for next above
"Ar(1) = 1wead(8) 'read 8 bytes

For I =1 To 8

Print Hex(ar (i)); 'print output
Next

Print 'linefeed

Loop

'NOTE THAT WHEN YOU COWPILE THIS SAMPLE THE CODE WLL RUN TO THI S PO NT
'"THI' S because of the DO LOOP that is never terminated!!!

"New is the possibility to use nore than one 1 wre bus
'"The follow ng syntax nust be used:

For I =1 To 8
Ar(i) =0 'clear array to see that it works
Next

lwreset Pinb , 2 'use this port and pin for the second device

iwrite &H33 , 1 , Pinb , 2 '"note that now the nunber of bytes nust be
speci fied!

"lwwrite Ar(1) , 5,pinb,2

‘reading is also different

A (1) = 1wread(8 , Pinb , 2) 'read 8 lytes from portB on pin 2

For I =1 To 8
Print Hex(ar (i));
Next

"you could create a loop with a variable for the bit nunber !
For I =0 To 3 '"for pin 03

lwreset Pinb , |

Iwwrite &H433 , 1 , Pinb , |

A (1) = 1wread(8 , Pinb , I)

For A =1 To 8

Print Hex(ar (a));

Next

Print

Next

End

IWSEARCHFIRST

Action
This statement reads the first ID from the 1wire bus into a variable(array).

Syntax
var2 = 1WSEARCHFIRST()
var2 = 1WSEARCHFIRST(port , pin)

Remarks

var2 A variable or array that should be at least 8 bytes long that will be
assigned with the 8 byte ID from the first 1wire device on the bus.

port The PIN port name like PINB or PIND.

pin The pin number of the port. In the range from 0-7. Maybe a numeric
constant or variable.

The lwireSearchFirst() function must be called once to initiate the ID retrieval process. After the
1wireSearchFirst() function is used you should use successive function calls to the
lwireSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a nul may be returned as
a value and the nul is also used as a string terminator.

| would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.
___1w_bitstorage , Byte used for bit storage :
lastdeviceflagbit0

id_bit bit 1

cmp_id_bit bit 2

search_dir bit 3

___lwid_bit_number, Byte

__ 1lwlast_zero, Byte

___lwlast_discrepancy , Byte

ASM

The following asm routines are called from mcs.lib.

_1wire_Search_First : (calls_1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)
Parameters passed : R24 : pin number, R30 : port, X : address of target array
Returns nothing.

See also
1IWWRITE , IWRESET, 1IWREAD , IWSEARCHNEXT, 1IWIRECOUNT

Example

" 1wi r eSear ch. bas
' (c) 2000 MCS Electronics
revision b, 27 dec 2000
Config 1wire = Portbh.0 '"use this pin
'On the STK200 junper B.0 nust be inserted
'The following internal bytes are used by the scan routines
__ 1w bitstorage , Byte used for bit storage
| astdeviceflag bit 0
"id_bit bit 1
' cnp_id_bit bit 2
search_dir bit 3
___Iwid_bit_nunber, Byte
___1wlast_zero, Byte
__ 1wl ast _di screpancy , Byte
__Iwire_data , string * 7 (8 bytes)

[DIM variabl es used]
'we need sonme space from at |east 8bytes to store the ID
Dim Reg_no(8) As Byte

"we need a loop counter and a word/integer for counting the IDs on the
bus
Dm | As Byte , WAs Wrd

"Now search for the first device on the bus
Reg_no(1) = lwsearchfirst()

For I =1 To 8 '"print the number
Print Hex(reg_no(i));

Next

Print

Do

"Now search for other devices
Reg_no(1) = 1lwsearchnext ()
For I =1 To 8

Print Hex(reg_no(i));

Next

Print

Loop Until Err =1

"Wen ERR = 1 is returned it neans that no device is found anynore
"You could also count the nunber of devices

W= 1wi recount ()

"I't is IMPORTANT that the 1wirecount function returns a word/integer
"So the result variable nust be of the type word or integer

'"But you may assign it to a byte or long too of course

Print W

"as a bonus the next routine

" first fill the array with an existing nunber

Reg_no(1l) = lwsearchfirst()

" unremark next line to chance a byte to test the ERR flag

'"Reg_no(1l) = 2
"now verify if the nunmber exists
lwerify Reg_no(1)

Print Err
"err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnunber line lwerify reg_no(1l),pinb,1

"As for the other 1wire statenents/functions, you can provide the
and pin number as anoption

"W = 1wirecount(pinb , 1) 'for exanple look at pin PINB. 1

End

port

| IWSEARCHNEXT

Action
This statement reads the next ID from the 1wire bus into a variable(array).

Syntax
var2 = 1IWSEARCHNEXT()
var2 = 1IWSEARCHNEXT(port , pin)

Remarks

var2 A variable or array that should be at least 8 bytes long that will be
assigned with the 8 byte ID from the next 1wire device on the bus.

Port The PIN port name like PINB or PIND.

Pin The pin number of the port. In the range from 0-7. May be a numeric
constant or variable.

The lwireSearchFirst() function must be called once to initiate the ID retrieval process. After the
1wireSearchFirst() function is used you should use successive function calls to the
lwireSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a nul may be returned as
a value and the nul is also used as a string terminator.

I would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.
__1w_bitstorage , Byte used for bit storage :
lastdeviceflagbit0

id_bit bit 1

cmp_id_bit bit 2

search_dir bit 3

___lwid_bit_number, Byte

__lwlast_zero, Byte

___lwlast_discrepancy , Byte

ASM

The following asm routines are called from mcs.lib.

_lwire_Search_Next : (calls _1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)
Parameers passed : R24 : pin number, R30 : port , X : address of target array
Returns nothing.

See also

Example

B I e '"Reg_no(1) = 2
- "now verify if the nunber exists

' 1w reSearch. bas lwerify Reg_no(1)
' (c) 2000 MCS Electronics Print Err

revision b, 27 dec 2000 "err =1 when the ID passed n reg_no() does NOT exist
B e I ' optinal call it with pinnunber line lwerify reg_no(1),pinb,1
Config 1wire = Portbh.0 "use this pin "As for the other 1wire statenents/functions, you can provide the port
'On the STK200 junper B.0 nust be inserted and pin number as anoption

"W = 1wirecount(pinb , 1) 'for exanple look at pin PINB.1

"The following internal bytes are used by the scan routines End
'___lw bitstorage , Byte used for bit storage

| astdeviceflag bit 0

"id_bit bit 1

amp_id_bit bit 2

search_dir bit 3
___1wid_bit_nunber, Byte

___ 1wl ast_zero, Byte

__ 1wl ast _di screpancy , Byte
___Iwire_data , string * 7 (8 bytes)

[DIM variabl es used]
"we need sone space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the IDs on the
bus
Dm | As Byte , WAs Wrd

"Now search for the first device on the bus
Reg_no(1l) = 1wsearchfirst()

For I =1 To 8 'print the nunber
Print Hex(reg_no(i));

Next

Print

Do

"Now search for other devices
Reg_no(1) = 1wsearchnext()
For I =1 To 8

Print Hex(reg_no(i));

Next

Print

Loop Until Err =1

"When ERR = 1 is returned it neans that no device is found anynore
"You could also count the number of devices

W= 1wi recount ()

"It is IMPORTANT that the 1wirecount function returns a word/integer
'"So the result variable nust be of the type word or integer

'"But you may assign it to a byte or long too of course

Print W

"as a bonus the next routine

" first fill the array with an existing nunber

Reg_no(1l) = 1wsearchfirst()

" unremark next line to chance a byte to test the ERR flag

| IWVERIFY

Action

This verifies if an ID is available on the 1wire bus.

Syntax
1WVERIFYar(1)
Remarks

| Ar(1) A byte array that holds the ID to verify.

Returns ERR set to 0 when the ID is found on the bus otherwise it will be 1.

ASM

The following asm routines are called from mcs.lib.
_1wire_Search_Next : (calls _1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)

See also
1IWWRITE , IWRESET, 1IWREAD , 1IWSEARCHFIRST, 1IWIRECOUNT

Example

" 1wi r eSear ch. bas
' (c) 2000 MCS Electronics
' revision b, 27 dec 2000

Config 1wire = Portb.0 "use this pin
'On the STK200 junper B.0 nust be inserted

The following internal bytes are used by the scan routines

'___lw bitstorage , Byte used for bit storage
' lastdeviceflag bit 0
"id_bit bit 1

' cnp_id_bit bit 2

' search_dir bit 3

' 1wid_bit_nunber, Byte

___ 1wl ast_zero, Byte

__ 1wl ast _di screpancy , Byte
__Iwire_data , string * 7 (8 bytes)

[DIM variabl es used]
‘we need sone space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID s on the
bus
Dm | As Byte , WAs Wrd

'Now search for the first device on the bus
Reg_no(1l) = lwsearchfirst()

For I =1 To 8 '"print the number
Print Hex(reg_no(i));

Next

Print

Do

"Now search for other devices
Reg_no(1) = 1lwsearchnext()
For I =1 To 8

Print Hex(reg_no(i));

Next

Print

Loop Until Err =1

"When ERR = 1 is returned it neans that no device is found anynore
"You could also count the number of devices

W= 1wirecount ()

"It is IMPORTANT that the 1wirecount function returns a word/integer
"So the result variable nust be of the type word or integer

'"But you may assign it to a byte or long too of course

Print W

'as a bonus the next routine

" first fill the array with an existing nunber
Reg_no(1) = lwsearchfirst()
" unremark next line to chance a byte to test the ERR flag

'"Reg_no(1l) = 2
"now verify if the nunber exists
lwerify Reg_no(1)

Print Err
"err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnunber line lwerify reg_no(1l),pinb,1

"As for the other 1wire statenents/functions, you can provide the port
and pin number as anoption

"W = 1wirecount(pinb , 1) 'for exanple look at pin PINB. 1

End

IWWRITE

Action
This statement writes a variable to the 1wire bus.

Syntax

1IWWRITE varl

1WWRITE varl, bytes

1WWRITE varl , bytes , port, pin

Remarks

varl Sends the value of varl to the bus. The number of bytes can be specified
too but this is optional.

bytes The number of bytes to write. Must be specified when port and pin are
used.

port The name of the PORT PINXx register like PINB or PIND.

pin The pin number in the range from 0-7. May be a numeric constant or
variable.

New is support for multi 1-wire devices on different pins.

To use this you must specify the port and pin that are used for the communication.

The 1wreset, 1wwrite and lwread statements will work together when used with the old syntax. And
the pin can be configured from the compiler options or with the CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESETport, pin

1WWRITE var/constant, bytes, port, pin

var = IWREAD(ytes, port, pin) ,for reading multiple bytes

See also
1WREAD , IWRESET

Example

' 1IWRE. BAS (c) 2000 MCS Electronics

denonstrates 1lweset, 1wwite and 1w ead()

" pull -up of 4K7 required to VCC from Porth.2

' DS2401 serial button connected to Portb.2

when only bytes are used, use the following lib for smaller code
$lib "nmcsbyte.lib”

Config 1wire = Portb.0 "use this pin
'On the STK200 junper B.0 nust be inserted
Dm Ar (8) As Byte , A As Byte , | As Byte

Do

Wait 1

lwr eset 'reset the device

Print Err "print error 1 if error
iwwrite &H33 'read ROM command

For I =1 To 8

A (i) = lwread() 'place into array

Next

"You could also read 8 bytes a time by unremarking the next Iline

"and by deleting the for next above
"Ar(1) = 1wead(8) 'read 8 bytes

For I =1 To 8

Print Hex(ar (i)); 'print output
Next

Print 'linefeed

Loop

'NOTE THAT WHEN YOU COWPILE THIS SAMPLE THE CODE WLL RUN TO THI S PO NT
'"THI' S because of the DO LOOP that is never terminated!!!

"New is the possibility to use nore than one 1 wre bus
"The following syntax nust be used:

For I =1 To 8

A (i) 0 'clear array to see that it works

Next

lwreset Pinb , 2 'use this port and pin for the second device

iwrite &H33 , 1 , Pinb , 2 '"note that now the nunber of bytes nust be
speci fied!

"lwwrite Ar(1) , 5,pinb,2

‘reading is also different

Ar(1l) = 1lwread(8 , Pinb , 2) 'read 8 bytes from portB on pin 2

For I =1 To 8
Print Hex(ar (i));
Next

"you could create a loop with a variable for the bit nunber !
For I =0 To 3 "for pin 03

lwreset Pinb , |

iwrite &H33 , 1 , Pinb , |

A (1) lwread(8 , Pinb , 1)

For A 1 To 8

Print Hex(ar(a));

Next

Print

Next

End

ALIAS

Action
Indicates that the variable can be referenced with another name.

ABS)

Action

Returns the absolute value of a numeric signed variable.

Syntax

var = ABS(var2)

Syntax

newvarALIAS oldvar

Remarks

Oldvar Name of the variable such as PORTB.1
newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name.

See also
CONST

Example

Config Pinb.1 = CQutput
Direction Alias Portb.1 "now you can refer to PORTB.1 with the variable
direction

Do

Set Direction 'has the same effect as SET PORTB. 1
Waitms 1

Reset Directopn

Loop

End

Remarks
Var Variable that is assigned the absolut e value of var2.
Var2 The source variable to retrieve the absolute value from.

var : Integer , Long or Single.

var2 : Integer, Long or Single.

The absolute value of a number is always positive.

See also
NONE

Asm

Calls: _abs16 for an Integer and _abs32 for a Long
Input: R16-R17 for an Integer and R16-R19 for a Long
Output:R16-R17 for an Integer and R16-R19 for a Long
Calls _Fltabsmem for a single from the fp_trig library.

Example

Dim a as Integer, c as Integer
a = -1000

¢ = Abs(a)

Print c

End

ACOS

Action

Returns the arccosine of a single in radians.

Syntax
var =ACOS (x)

Remarks

Var A single variable that is assigned with the ACOS of variable x.

X The single to get the ACOS of. Input is valid from —1 to +1 and returns ?
to 0

If Input is < -1than ? and input is > 1 than O will returned.

If Input is cause of rounding effect in singleoperations a little bit over 1 or -1, the value for
1.0 (-1.0) will be returned. This is the reason to give the value of the limit-poin t back, if Input
is beyond limit. Generally the user have to take care, that Input to this function lies within -1
to +1.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , COS, SIN, TAN , ATN ,ASIN , ATN2

Example

DmS As Single , x As Single, y As Single
x= 0.5 : S= Acos(x)

Print S

| ASC

Action

Assigns a numeric variable with the ASCII value of the first character of a string.
Syntax

var = ASC(string)

Remarks

Var Target numeric variable that is assigned.

String String variable or constant from which to retrieve the ASCII value.

var : Byte, Integer, Word, Long.
string : String, Constant.

Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

See also
CHR

Asm
NONE

Example

Dm a as byte, s as String * 10
s = "ABC

a = Asc(s)

Print a '"will print 65

End

ASIN

Action

Returns the arcsine of a single in radians.

Syntax

var =ASIN(x)

Remarks

Var A single variable that is assigned with the ASIN of variable x.

X The single to get the ASIN of. Input is valid from —1 to +1 and returns -?/2

to +?/2.
If Input is < -1 than -?/2 and input is > 1 than ?/2willreturned.

If Input is cause of rounding effect in singleoperations a little bit over 1 or -1, the value for
1.0 (-1.0) will be returned. This is the reason to give the value of the limit-point back, if Input
is beyond limit. Generally the user have to take care, that Input to this function lies within -1
to +1.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , COS, SIN, TAN , ATN ,ACO

[0)]
>
o
Z
N

Example

DmS As Single , x As Single, y As Single
x= 0.5 : S= Asin(x)

Print S

ATN
Action
Returns the Arctangent of a single in radians.
Syntax
var =ATN (single)
Remarks
Var A numeric variable that is assigned with the arctangent of variable single.
Single The single variable to get the arctangent of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , COS, SIN, TAN

Example

Dm S As Single

S = Atn(1) * 4

Print S' prints 3.141593 PI

ATN2

Action

ATN2 is a four-quadrant arc-tangent.
While the ATN-function returns from -?/2 (-90°) to ?/2 (90°), the ATN2 function returns the whole

range of a circle from -? (-180°) to +? (180°). The result depends on the ratio of Y/X and the signs
of Xand Y.

Syntax
var =ATN2(y, x)
Remarks
Var A single variable that is assigned with the ATN2 of variable single.
X The single variable with the distance in x-direction.
Y The single variable with the distance in y-direction
PI
-PI
III
-PI/2
SignY Sign X ATN2
Quadrant g 9
| + + 0to?/2
1 + - ?/2to ?
] - - -?/2t0-?
v - + 0to—-?/2

If you go with the ratio Y/X into ATN you will get same result for X greater zero (right side
in coordinate system) as with ATN2. ATN2 uses X and Y and can give information of the
angle of the point over 360° in the coordinates system.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , COS, SIN, TAN , ATN

Example

Dm S As Single
S = Atn2(y, x)
Print S

x As Single,

y As Single

BASEG64DEC

BAUD

Action
ConvertsBase-64 data into the original data.

Syntax

Result = Base64Dec(source)

Action
Changes the baud rate for the hardware UART.

Syntax
BAUD =var
BAUD #x , const

Remarks
Result A string variable that is assigned with the un-coded string.
Source The source string that is coded with base-64.

Base- 64 is not an encryption protocol. It sends datain 7 -bit ASCll dataformat. MIME,
web servers,and other Internet servers and clients use Base-64coding.

The provided Base64Dec() function is a decoding function. It was written to add
authentication to the webserver sample.

When the webserver asks for authentication, the client will send the user and password
unencrypted, but base-64 coded to the webserver.

Base 64 coded strings are always in pairs of 4 bytes. These 4 bytes represent 3 bytes.

See also
CONFIG TCPIP, GETSOCKET, SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPWRITESTR, CLOSESOCKET, SOCKETLISTEN

Example
Config Tcpip = Int0 , Mac = 00.00.12.34.56.78 , Ip = 192.168.0.10 , Submask =

Remarks

Var The baud rate that you want to use.

X The channel number of the software uart.

Const A numeric constant for the baud rate that you want to use.

Do not confuse the BAUD statement with the $BAUD compiler directive.
And do not confuse $CRYSTAL and CRYSTAL

$BAUD overrides the compiler setting for the baud rate and BAUD will change the current baud
rate.

BAUD = ... will work on the hardware UART.
BAUD #x, yyyy will work on the software UART.

See also
$CRYSTAL, $BAUD

Asm
NONE

Example

$baud = 2400

$crystal = 14000000 ' 14 Mz crystal

Print "Hello"

'Now change the baudrate in a program

Baud = 9600 '

Print "Did you change the ternminal enulator baud rate too?"
End

BCD

Action

Converts a variable stored in BCD format into a string.
Syntax

PRINT BCD(var)
LCDBCD(var)

Remarks

BIN

Action

Convert a numeric variable into the binary string representation.

Syntax

Var = Bin(source)

Remarks

Var | Variable to convert.

Var The target string that will be assigned with the binary
representation of the variable source.

varl : Byte, Integer, Word, Long, Constant.

When you want to use an 12C clock device which stores its values in BCD forma you can use this
function to print the value correctly.

BCD() displays values with a leading zero.

The BCD() function is intended for the PRINT/LCD statements.
Use the MAKEBCD function to convert variables from decimal to BCD.
Use the MAKEDEC function to convert variables from BCD to decimal.

See also
MAKEDEC , MAKEBCD

Asm

Calls: _BcdStr

Input: X hold address of variable

Output: RO with number of bytes, frame with data.

Example

Dim A As Byte

A = 65

Print A' 65
Print Bcd(a) ' 41
End

Source The numeric variable that will be converted.

The BIN() function can be used to display the state of a port.

When the variable source has the value &B10100011 the string named var will be assigned with
"10100011".

It can be easily printed to the serial port.

See also
HEX, STR , VAL , HEXVAL , BINVAL

ASM

NONE

Example

Dim A As Byte
A = &H14

Print Bin(a)
Prints 00010100

BINVAL

Action
Converts a string representation of a binary number into a number.

Syntax

var = Binval(s)

Remarks

Var A numeric variable that is assigned with the value of s.

S Variable of the string type. Should contain only 0 and 1 digits.

See also

Example

Dm a as byte, s As String * 10
s = "1100"

a = BinVal (s) 'convert string
Print A" 12

End

| BIN2GREY
Action

Returns the Grey-code of a variable.

Syntax

varl = bin2grey (var2)

Remarks

varl Variable that will be assigned with the Grey code.
var2 A variable that will be converted.

Grey code is used for rotary encoders. Bin2grey() works with byte , integer, word and long
variables.

The data type of the variable that will be assigned determines if a byte, word or long conversion will
be done.

See also
GREY2BIN

ASM

Depending on the data type of the target variable the following routine will be called from mcs.lbx:
_grey2Bin for bytes , _grey2bin2 for integer/word and _grey2bin4 for longs.

Example

' (c) 2001-2004 MCS Electronics

This sanple show the Bin2G ey and G ey2Bin functions

' Credits to Josef Franz Vogel for an inproved and word/|ong extended
version

'Bin2CGey() converts a byte,integer,word or long into grey code.
'"Grey2Bin() converts a grey code into a binary value

Dim B As Byte ' could be word,integer or long too

Print "BIN" ; Spc(8) ; "GREY"
For B = 0 To 15

Print B; Spc(10) ; Bin2grey(b)
Next

Print "GREY" ; Spc(8) ; "BIN
For B =0 To 15

Print B; Spc(10) ; Grey2bin(b)
Next

End

BLOAD

Action
Writes the Content of a File into SRAM

| BITWAIT

Action

Wait until a bit is set or reset.

Syntax

BITWAITx , SET/RESET

Remarks

X | Bit variable or internal register like PORTB.x , where x ranges from 0-7.

Syntax

BLoad sFileName, wSRAMPointer

Remarks

sFileName (String) Name of the File to be read

When using bit variables make sure that they are set/reset by software otherwise your program will
stay in a loop.

When you use internal registers that can be set/reset by hardware such as PORTB.0 this doesn't
apply since this state can change as a result from for example a key press.

See also
NONE

Asm

Calls: NONE

Input: NONE

Output: NONE

Code : shown for address 0-31

labell:

Shic PINB.O,label2
Rjmp labell
Label2:

Example

Dm A As Bit

Bitwait A, Set 'wait until bit a is set

Bitwait Portbh.7 , Reset "wait until bit 7 of Port B is O.
End

WSRAMPointer (Word) Variable, which holds the SRAM Address to which the content

of the file should be written

This function writes the content of a file to a desired space in SRAM. A free handle is needed for
this function.

See also
INITEFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , EREEFILE ,
EILEDATE, FILETIME , FILEDATETIME , DIR , FILELENWRITE , INPUT

ASM

Calls _BlLoad

Input X: Pointer to string with filename Z: Pointer to Long-variable,
which holds the start position of
SRAM

Output r25: Errorcode C-Flag: Set on Error

Example

‘now the good old bsave and bl oad

Dm Ar (100) As Byte , | As Byte

For I =1 To 100

A(i) =1 ' fill the array

Next

Wait 2

W= Varptr(ar(1))
Bsave "josef.img" , W, 100

For I =1 To 100
Ar(i) =0 ' reset the array
Next

Bl oad "josef.img" , W' Josef you are ammzing !

For |
Print
Next
Print

BSAVE

Action
Save a range in SRAM to a File

Syntax

BSave sFileName, wSRAMPointer, wLength

Remarks

sFileName (String) Name of the File to be written

wWSRAMPointer (Word) Variable, which holds the SRAM Address, from where SRAM
should be written to a File

wLength (Word) Count of Bytes from SRAM, which should be written to the file

This function writes a range from the SRAM to a file. A free file handle is needed for this function.

See also

INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,

FILEATTR , SEEK , BLOAD , KILL , DISKFREE , DISKSIZE , GET, PUTFILEDATE , EILETIME ,

EILEDATETIME , DIR , FILELENWRITE , INPUT

ASM

Calls _BSave

Input X: Pointer to string with filename Z: Pointer to Long-variable,
which holds the start position of
SRAM

r20/r21: Count of bytes to be written

Output r25: Errorcode C-Flag: Set on Error

Example

‘now the good old bsave and bl oad

Dm Ar (100) As Byte , | As Byte

For I =1 To 100

A(i) =1 ' fill the array

Next

Wait 2

W= Varptr(ar(1))

Bsave "josef.img" , W, 100
For I =1 To 100

Ar(i) =0 ' reset the array
Next

Bl oad "josef.ing

For I =1 To 10
Print Ar(i) ; " "
Next

Print

E

Josef

you are anmazing

BYVAL

Action
Specifies that a variable will be passed by value.

Syntax

Sub Test(BYVAL var)

Remarks

Var | Variable name

The default for passing variables to SUBS and FUNCTIONS, is by reference(BYREF). When you
pass a variable by reference, the address is passed to the SUB or FUNCTION. When you pass a
variable by Value, a temp variable is created on the frame and the address of the copy is passed.

When you pass by reference, changes to the variable will be made to the calling variable.

When you pass by value, changes to the variable will be made to the copy so the original value will
not be changed.

By default passing by reference is used.
Note that calling by reference will generate less code.

See also

ASM
NONE

Example
Decl are Sub Test(Byval X As Byte, Byref Y As Byte, Z As Byte)

| CALL
Action

Call and execute a subroutine.

Syntax

CALL Test [(varl,var-n)]

Remarks

Varl Any BASCOM variable or constant.

vVarn Any BASCOM variable or constant.

Test Name of the subroutine. In this case Test.

You can call sub routines with or without passing parameters.

It is important that the SUB routine is DECLARED before you make the CALL to the subroutine. Of
course the number of declared parameters must match the number of passed parameters.

Itis also important that when you pass constants to a SUB routine, you must DECLARE these
parameters with the BYVAL argument.

With the CALL statement, you can call a procedure or subroutine.
For example: Call Test2

The call statement enables you to implement your own statements.

You don't have to use the CALL statement:
Test2will also call subroutine test2

When you don't supply the CALL statement, you must leave out the parenthesis.
So Call Routine(x,y,z) must be written as Routine Xx,y,x

Unlike normal SUB programs called with the GOSUB statement, the CALL statement enables you
to pass variables to a SUB routine that may be local to the SUB.

See also

Example

Dm A As Byte , B As Byte 'dinension sone variables

Decl are Sub Test(bl As Byte , Byval B2 As Byte)'declare the SUB program
A = 65 '"assign a value to variable A

Call Test(a , 5) 'call test with parameter A and constant

Test A, 5 'alternative call
Print A 'now print the new val ue

End

Sub Test(bl As Byte , Byval B2 As Byte) 'use the sane variable nanmes as
"the declared one

Print BL "print it

Print Bcd(b2)

Bl = 10 'reassign the variable

B2 = 15 'reassign the variable

End Sub

One important thing to notice is that you can change b2 but that the change will not be reflected to
the calling program!
Variable A is changed however.

This is the difference between the BYVAL and BYREF argument in the DECLARE ration of the SUB
program.

When you use BYVAL, this means that you will pass the argument by its value. A copy of the
variable is made and passed to the SUB program. So the SUB program can use the value and
modifyit, but the change will not be reflected to the calling parameter. It would be impossible too
when you pass a numeric constant for example.

If you do not specify BYVAL, BYREF will be used by default and you will pass the address of the
variable. So when yai reassign B1 in the above example, you are actually changing parameter A.

CHECKSUM

Action

Returns a checksum of a string.

Syntax
PRINT Checksum(var)
b = Checksum(var)

Remarks
Var A string variable.
B A numeric variable that is assigned with the checksum.

The checksum is computed by counting all the bytes of the string variable.

Checksums are often used with serial communication.

The checksum is a byte checksum. The following VB code is equivalent :
Dim Check as Byte

Check = 255

For x =1 To Len(s$)

Check = check — ASC(mid$(s$,x,1))

Next

See also
CRC8, CRC16

Example

Dm S As String * 10 'dim variable
S = "test" 'assign variable

Print Checksun{s) 'print value (192)
End

CHR

Action

Convert a numeric variable or a constant to a string with a length of 1 character. The character
represents the ASCII value of the numeric value.

Syntax

PRINT CHR(var)
s = CHR(var)

Remarks

Var Numeric variable or numeric constant.

S A string variable.

When you want to print a character to the screen or the LCD display,
you must convert it with the CHR() function.

When you use PRINT numvar, the value will be printed.

When you use PRINT Chr(numvar), the ASCII character itself will be printed.

The Chr() function is handy in combination with the LCD custom characters where you ca redefine
characters 0-7 of the ASCII table.

See also
ASC()

Example

Dim A As Byte 'dim variable

A = 65 'assign variable

Lcd A 'print value (65)

Lower | ine

Lcd Hex(a) 'print hex value (41)

Lcd Chr(a) 'print ASCII character 65 (A)
End

CIRCLE
Action
Draws a circle on a graphic display.
Syntax
CIRCLEXxO0,y0) , radius, color
Remarks
X0 Starting horizontal location of the line.
YO Starting vertical location of the line.
Radius Radius of the circle
Color Color of the circle
Example

' (c) 2001- 2004 MCS Electronics
' T6963C graphic display support denp 240 * 128

The connections of the LCD used in this denp
LCD pin connected to
' 1 G\D G\D

"2 GND GN\D

'3 +5V +5V

-9V -9V potneter
/WR PORTC. 0

/RD PORTC. 1

/ CE PORTC. 2

C D PORTC. 3

"9 NC not conneted
'10 RESET PORTC. 4
'11-18 DO-D7 PA

'19 FS PORTC. 5

'20 NC not connected

o~ o o b

$crystal = 8000000

"First we define that we use a graphic LCD

' Only 240*64 supported yet

Config Graphlcd = 240 * 128 , Dataport = Porta , Control port
=2, d=3, W =0, Rd=1, Rset =4, Fs =5, Mde =
'The dataport is the portname that is connected to the data |
LCD

'The controlport is the portnane which pins are used to control the |cd
"CE, CD etc. are the pin nunber of the CONTROLPORT.

' For exanple CE =2 because it is connected to PORTC. 2

'"mode 8 gives 240 / 8 = 30 colums , node=6 gives 240 / 6 = 40 colums

= Portc , Ce
8
ines of the

"Dim variables (y not used)
Dm X As Byte , Y As Byte

"Clear the screen will both clear text and graph display
ds

'Other options are
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor O f

Wait 1
"locate works like the normal LCD |ocate statenent
' LOCATE LINE, COLUMN LINE can be 18 and colum 030

Locate 1 , 1

' Show some text

Lcd "MCS El ectronics”

"And sone othe text on line 2

Locate 2 , 1 : Lcd "T6963c support”

Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "wite this to the lower Iine"

Wait 2

Cs Text

use the new LINE statenent to create a box

" LI NE(X0, YO) - (X1,Y1), on/off

Line(0O , 0) -(239 , 127) , 255 ' diagonal Iline

Line(0O , 127) -(239 , 0) , 255 ' diagonal line

Line(0, 0) -(240 , 0) , 255 ' horizontal upper line
Line(0O , 127) -(239 , 127) , 255 'horizontal lower line
Line(0O, 0) -(0 , 127) , 255 ' wvertical left line
Line(239 , 0) -(239 , 127) , 255 ' wvertical right line

Wait 2
' draw a line using PSET X Y, ON OFF

' PSET on.off paramis 0 to clear a pixel and any other value to turn it

on

For X = 0 To 140

Pset X, 20 , 255 ' set the pixel
Next

For X = 0 To 140
Pset X , 127 , 255 ' set the pixel
Next

Wait 2

‘circle tine

‘circle(X Y), radius, color

"X,y is the mddle of the circle,color nust be 255 to show a pixel
to clear a pixel

For X =1 To 10

Circle(20 , 20) , 20 , 255 ' show circle

Wait 1

Circle(20 , 20) , 20, O 'renobve circle

Wait 1

Next

Wait 2

and 0

"Now it is time to show a picture
" SHOWPI C X, Y, | abel
points to a label that holds the inmmge data
0, Plaatje

' The | abel
Showpic O ,
Showpic 0 ,
Wait 2

Ods Text
End

" This | abel
Pl aatj e:
"$BGF will

"You could

64

cl ear

Pl aatje '

the text

hol ds the nmage data

put the bitmap into the program at
$bgf "ncs. bgf"

insert

ot her

picture data here

this

show 2 since we have a big display

| ocation

CLS

Action
Clear the LCD display and set the cursor to home.

Syntax
CLS

Syntax for graphical LCD

CLS
CLS TEXT

CLS GRAPH

Remarks

Clearing the LCD display does not clear the CG-RAM in which the custom characters are stored.

For graphical LCD displays CLS will clear both the text and the graphical display.

See also

Example

COs 'Clear LCD display

Lcd "Hel |l 0" 'show this fanpus text
End

CLOCKDIVISION

Action

Will set the system clock division available in the MEGA chips.

Syntax
CLOCKDIVISON =var

Remarks

Var Variable or numeric constant that sets the clock division. Valid values
are from 2-129.
A value of 0 will disable the division.

On the MEGA 103 and 603 the system clock frequency can be divided so you can save power for
instance. A value of 0 will disable the clock divider. The divider can divide from 2 to 127. So the
other valid values are from 2- 127.

Some routines that rely on the system clock will not work proper anymore when you use the divider.

WAITMS for example will take twice the time when you use a value of 2.

See also
POWERSAVE

Example

$BAUD = 2400

Cl ockdi vision = 2
END

CLOSE

Action

Closes an opened device.

Syntax

OPEN Uevice" for MODE As #channel
CLOSE #channel

Remarks

Device The default device is COM1 and you don't need to open a channel to use
INPUT/OUTPUT on this device.

With the implementation of the software UART, the compiler must know to which
pin/device you will send/receive the data.

So that is why the OPEN statement must be used. It tells the compiler about the pin
you use for the serial input or output and the baud rate you want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 is : COM1:
Some chips have 2 UARTS. You can use COM2: to open the second HW UART.

The format for the software UART is: COMpin:speed,8,N,stop bits[,INVERTED]
Where pin is the name of the PORT-pin.

Speed must be specified and stop bits can be 1 or 2.

An optional parameter ,INVERTED can be specified to use inverted RS-232.

Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin PORTD.1 for
output with 9600 baud, 1 stop bit and withinverted RS-232.

MODE You can use BINARY or RANDOM for COM1 and COM2, but for the software UART
pins, you must specify INPUT or OUTPUT.

Channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device ae PRINT , INPUT and INPUTHEX , INKEY, WAITKEY.

Every opened device must be closed using the CLOSE #channel statement. Of course, you must
use the same channel number.

The best place for the CLOSE statement is at the end of your program.

The INPUT statement in combination with the software UART, will not echo characters back
because there is no default associated pin for this.

For the AVR -DOS filesystem, you may place the CLOSE at any place in your program. This
because the filesystem supports real fle handles.

See also
OPEN, PRINT

Example

' (c) 2000 MCS Electronics
' OPEN. BAS

denonstrates software UART

$crystal = 10000000 'change to the value of the XTAL you have installed

Dm B As Byte

"Optional you can fine tune the calculated bit delay

"Why would you want to do that?

Because chips that have an internal oscillator may not

run at the speed specified. This depends on the voltage, tenp etc.
"You can either change $CRYSTAL or you can use

' BAUD #1, 9610

In this exanple file we use the DT006 from www. simstick.com

"This allows easy testing with the existing serial port

'The MAX232 is fitted for this exanple.

'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related
statements

"W will use the software UART.

Wai t ms 100

'open channel for output
Open "cond. 1: 19200, 8, n, 1" For Output As #1
Print #1 , "serial output”

"Now open a pin for input

Open "cond. 0: 19200, 8, n, 1" For |nput As #2

"since there is no relation between the input and output pin
"there is NO ECHO while keys are typed

Print #1 , "Number"
'get a nunber
Input #2 , B

"print the nunber
Print #1 , B

"now loop until ESC is pressed

"Wth INKEY() we can check if there is data available
'"To use it with the software UART you nust provide the channel
Do

"store in byte

B = I nkey(#2)

"when the value > 0 we @t sonething

If B >0 Then

Print #1 , Chr(b) 'print the character

End If

Loop Until B = 27

Cl ose #2
Cl ose #1

" OPTIONAL you mmy use the HARDWARE UART

'The software UART will not work on the hardware UART pins
'so you nust choose other pins

‘use normal hardware UART for printing

"Print B

"When you dont want

to use a level i

"You can specify ,INVERTED :
' Open "cond.0:300,8,n,1,inverted" For
"Now the logic is inverted and there

'But the distance of
End

the wires nust

nverter such as

I nput As #2
is no need for a level

be shorter

with this

the MAX 232

converter

CONFIG

The CONFIG statement is used to configure the hardware devices.

CLOSESOCKET
Action
Closesasocketconnection.
Syntax
CloseSocket socket
Remarks
Socket The socket number you want to close in the range of 0-3. When the

socketis already closed, no action will be performed.

You mustclose asocket whenyoureceive the SOCK_CLOSE_WAIT status.
You may also close a socket if that is needed by your protocol.
Youwillreceive aSOCK_CLOSE_WAIT status when the server closes the connection.

When you use CloseSocket you actively close the connection.

Note that it is not needed to wait for a SOCK_CLOSE_WAIT message in order to close
asocketconnection.

After you have closed the connection, you need to use GetSocket in order to use the
socketnumberagain.

See also

TCPWRITE, TCPWRITESTR, TCPREAD, SOCKETLISTEN

Example

Cl osesocket | ' close the connection

DIRECTIVE RE-USABLE
CONFIG 1WIRE NO
CONFIG ACI YES
CONFIG ADC NO
CONFIG ATEMU NO
CONFIG BCCARD NO
CONFIG CLOCK NO
CONFIG COM1 YES
CONFIG COM2 YES
CONFIG DATE NO
CONFIG DEBOUNCE NO
CONFIG GRAPHLCD NO
CONFIG 12CDELAY NO
CONFIG 12CSLAVE NO
CONFIG INTx YES
CONFIG KBD NO
CONFIG KEYBOARD NO
CONFIGLCD NO
CONFIGLCDBUS NO
CONFIG LCDMODE NO
CONFIGLCDPIN NO
CONFIG RC5 NO
CONFIG PORT YES
CONFIG SERIALIN NO
CONFIG SERIALINI NO
CONFIG SERIALOUT NO
CONFIG SERIALOUT1 NO
CONFIG SERVOS NO
CONFIG PS2EMU NO
CONFIG SDA NO
CONFIG SCL NO
CONFIG SPI NO

CONFIGTCPIP NO
CONFIG TIMERO YES
CONFIG TIMER1 YES
CONFIG TIMER?2 and 3 YES
CONFIG WATCHDOG YES
CONFIG WAITSUART NO
CONFIG X10 NO

Some CONFIG directives are intended to be specified once. Others can be used multiple times. For
example you can specify that a port must be set to input after you have specified that it is used as
an input.

You cannot change the LCD pins during run time. In that case the last specification will be used or
an error message will be display ed.

CONFIG1IWIRE

Action

Configure the pin to use for 1WIRE statements and override the compiler setting.
Syntax

CONFIG 1WIRE =pin

Remarks

Pin | The port pin to use such as PORTB.0 I

The CONFIG 1WIRE statement, only overrides the compiler setting.

You can configure only one pin for the 1WIRE statements because the idea is that you can attach
multiple 1WIRE devices to the 1WIRE bus.

You can however use multiple pins and thus multiple busses. Al 1wire commands and functions
need the port and pin in that case.

The 1wire commands and function will automatically set the DDR and PORT register bits to the
proper state. You do not need to bring the pins into the right state yourself.

It is important that you use a pull up resistor of 4K7 ohm on the 1wire pin. The build in pull up
resistor of the AVR is not sufficient.

Also notice that some 1lwire chips also need +5V.

See also
1WRESET, 1WREAD , IWWRITE

Example
Config IWRE = PORTB.0 'PORTB.0 is used for the twire bus
1IVRESET 'reset the bus

CONFIG ACI

Action

Configures the Analog Comparator.

Syntax

CONFIG ACI =ON|OFF, COMPARE = ON|OFF, TRIGGER=TOGGLE|RISING|FALLING
Remarks

ACI Can be switched on or off
COMPARE Can be on or off.
When switched ON, the TIMERL1 in capture mode will trigger on ACI too.
TRIGGER Specifies which comparator events trigger the analog comparator interrupts.
See also
NONE
Example
NONE

CONFIG ADC

Action

Configures the A/D converter.

Syntax

CONFIG ADC = single, PRESCALER = AUTO, REFERENCE = opt

Remarks

ADC Running mode. May be SINGLE or FREE.

PRESCALER A numeric constant for the clock divider. Use AUTO to let the compiler
generate the best value depending on the XTAL

REFERENCE Some chips like the M163 have additional reference options.
Value may be OFF , AVCC or INTERNAL. See the data sheets for the
different modes.

See also

GETADC

ASM

The following ASM is generated

In _temp1,ADCSR ; get settings of ADC

Ori _templ, XXX ; or with settings

Out ADCSR,_temp1 ; write back to ADC register

Example

Config Adc = Single , Prescaler = Auto, Reference = Internal

CONFIGATEMU

Action
Configures the PS/2 keyboard data and clock pins.

Syntax
CONFIG ATEMU= int,DATA =data, CLOCK=clock

Remarks

Int TheinterruptusedsuchasINTOor INT1.

DATA The pin that is connected to the DATA line. This must be the same
pin as the used interrupt.

CLOCK The pin that is connected to the CLOCK line.

Male Female 5-pin DIN (AT/XT):
1 - Clock

(Plug) (Socket) 2 - Data

3 - Not
Implemented

4 - Ground

5 - +bv

Male Female 6-pin Mini-DIN (PS/2):
1 - Data

(Plug) (Socket) 2 - Not Implemented
3 - Ground

4 - +bv

5 - Clock

6 - Not Implemented

Old PC’s are equipped with a 5 -pin DIN female connector. Newer PC’s have a 6 -pin
mini DIN female connector.

The male sockets must be used for the connection with the micro.

Besides the DATA and CLOCK you need to connect from the PC to the micro, you need
to connect ground. You can use the +5V from the PC to power your microprocessor.

The config statement will setup an ISR that is triggered when the INT pin goes low.
This routine you can find in the library.

The ISR will retrieve a byte from the PC and will send the proper commands back to
the PC.

The SENDSCANKBD statementallows you to send keyboard commands.

Note that unlike the mouse emulator, the keyboard emulator is also recognized after
your PC has booted.

See also
SENDSCANKBD

Example

' PS2_KBDEMJL. BAS
' (c) 2002-2004 MCS Electronics
' PS2 AT Keyboard enul ator

$regfile = "2313def.dat"
$crystal = 4000000
$baud = 19200

$lib "ncsbyteint. | bx" use optional |ib since we use only bytes

‘configure PS2 AT pins
Enable Interrupts ' you need to turn on interrupts yourself since an INT

is used

Config Atemu = Intl , Data = Pind.3 , Clock = Pinb.0
B used interrupt

B e pin connected to DATA

' M- pin connected to clock
"Note that the DATA nust be connected to the used interrupt pin

Waitms 500 ' optional delay

"rcall _AT_KBD_INIT
Print "Press t for test, and set focus to the editor w ndow'
Dim Key2 As Byte , Key As Byte

Do

Key2 = Waitkey() ' get key from term nal

Sel ect Case Key2

Case "t"

Wai tms 1500

Sendscankbd Mark ' send a scan code

Case El se

End Sel ect

Loop

Print Hex(key)

Mark: ' send mark

Data 12 , &H3A , &HFO , &H3A , &HIC , &HFO , &HIC , &H2D , &HFO , &H2D ,
&H42 , &HFO , &H42

' N send 12 bytes

""mar kK

CONFIG CLOCK
Action
Configures the timer to be used for the TIME$ and DATES$ variables.
Syntax
CONFIG CLOCK = soft|USER [, GOSUB = SECTIC]
Remarks
Soft Use SOFT for using the software based clock routines. Use USER to write/use your
own code in combination with an 12C clock chip for example.
Sectic This option allows to jump to a user routine with the label sectic.

Since the interrupt occurs every second you may handle various tasks in the sectic
label. It is important that you use the name SECTIC and that you return with a
RETURN statement from this label.

The usage of the optional SECTIC routine will use 30 bytes of the hardware stack.
This option only works with the SOFT clock mode. It does not work in USER mode.

When you use the CONFIG CLOCK directive the compiler will DIM the following variables
automatic : _sec, _min, _hour, _day , _month, _year

The variables TIME$ and DATES$ will also be dimensioned. These are special variables since they
are treated different. See TIME$and DATES.

The _sec, _min and other internal variables can be changed by the user too.

But of course changing their values will change the DATE$/TIMES$ variables.

The compiler also creates an ISR that gets updates once a second. This works only for the 8535,
M163 and M103 and M603, or other AVR chips that have a timer that can work in asynchrony
mode.

For the 8535, timer2 is used. It can not be used my the user anymore! This is also true for the other
chips async timer.

Notice that you need to connect a 32768 Hz crystal in order to use the timer in async mode, the
mode that is used for the clock timer.

When you choose the USER option, only the internal variables are created. With the USER option
you need to write the clock code yourself.

See the datetime.bas example that shows how you can use a DS1307 clock chip for the date and
time generation.

Numeric Values to calculate with Date and Time:

?7??2??SecOfDay: (Type LONG) Seconds elapsedsince Midnight.00:00:00 startwith
0to85399at23:59:59.

7????SysSec: (Type LONG) Seconds elapsed since begin of century (at2000-01-
01!).00:00:00at2000-01-01 startwith0t02147483647 (overflow of LONG-
Type) at2068-01-1903:14:07

7????DayOfYear: (Type WORD) Days elapsed since first January of the current
year.
First January start with O to 364 (365 in a leap year)

7??2??SysDay: (Type WORD) Days elapsed since begin of century (at 2000-01-011!).
2000-01-01 starts with 0to36524at2099-12-31

7?2?2?DayOfWeek: (Type Byte) Days elapsed since Monday of current week. Monday
start with O to Sunday = 6

With the numeric type calculations with Time and date are possible. Type 1 (discrete

Bytes) and 2 (Strings) can be converted to an according numeric value. Than Seconds
(at SecOfDay and SysSec) or Days (at DayOfYear, SysDay), can be added or
subtracted. The Result can be converted back.

See also
TIMES$, DATE$, CONFIG DATE

ASM

The following ASM routines are called from datetime.lib
_soft_clock. This is the ISR that gets called once per second.

Example

MECACLOCK. BAS

(c) 2000- 2004 MCS H ectronics
'This exanple shows the new TIMES and DATE$ reserved variables
'Wth the 8535 and timer2 or the MegalO3 and TIMERO you can
‘easily inplenent a clock by attaching a32768 Hz xtal to the tiner
"And of course some BASCOM code

"This exanple is witten for the STK300 with MO3
Enable Interrupts

"[configure LCD|

$l cd = &HX00 'address for E and RS

$lcdrs = &H8000 'address for only E

Config Lcd = 20 * 4 'nice display frombg nicro

Config Ledbus = 4 "we run it in bus node and | hooked up only db4-db7
Config Lcdnode = Bus 'tell about the bus node

"[now init the clock]
Config Date = Mdy , Separator =/ ' ANSI-For mat

Config Clock = Soft "this is how sinple it is
' The above statenent will bind in an ISR so you can not use the TIMER anynore!
‘"For the MLO3 in this case it neans that TIMERO can not be used by the user anynore

‘assign the date to the reserved date$
"The format is MV DD YY
Dat eb = "11/11/00"

‘assign the time, format in hh:mmss nilitary format(24 hours)
"You may not use 1:2:3 !! adding support for this would mean overhead
"But of course you can alter the library routines used

Ti me$ = "02:20: 00"

‘clear the LCD display
C's

Do

Home ' cursor hone

Lcd Date$; " " ; Time$ 'show the date and tine
Loop

'The clock routine does use the following internal variables:

'_day , _nonth,
' These are all
day = 1

"For the _year variable only the year

End

_year
byt es.

, _sec, _hour, _mn

You can assign or

use them directly

is stored, not the century

CONFIG COM1

Action
Configures the UART of AVR chips that have an extended UART like the M8.

Syntax

CONFIG COM1 =dummy,
synchrone=0|1,parity=none|disabled|even|odd,stopbits=1|2,databits=4|6|7|8|9,clockpol=0|1

Remarks

synchrone 0 for synchrone operation (default) and 1 for asynchrone operation.
Parity None, disabled, even or odd

Stopbits The number of stopbits : 1 or 2

Databits The number of databits : 4,5,7,8 or 9.

Clockpol Clock polarity. 0 or 1.

Note that not all AVR chips have the extended UART.

CONFIG COM2

CONFIG DATE

Action

Configures the UART of AVR chips that have a second extended UART like the M128.

Syntax

CONFIG COM2 =dummy,

synchrone=0|1,parity=none|disabled|even|odd, stopbits=1|2,databits=4|6|7|8|9,clockpol=0|1

Action

Configure the Format of the Date String for Input to and Output from BASCOM — Date
functions

Syntax
CONFIG DATE = DMY , Separator = char

Remarks

synchrone [O for synchrone operation (default) and 1 for asynchrone operation.
Parity None, disabled, even or odd

Stopbits The number of stopbits : 1 or 2

Databits The number of databits : 4,5,7,8 or 9.

Clockpol Clock polarity. 0 or 1.

Remarks

DMY The Day, month and year order. Use DMY, MDY or YMD.

Char A character used to separate the day, month and year.
Use /, - or. (dot)

Note that not all AVR chips have two extended UARTS.

The next table shows the common formats of date and the associated statements.

Country Format Statement

American mm/dd/yy Config Date = MDY, Separator =/
ANSI yy.mm.dd Config Date = YMD, Separator =
Britisch/French dd/mm/yy Config Date = DMY, Separator =/
German dd.mm.yy Config Date = DMY, Separator =
Italian dd-mm-yy Config Date = DMY, Separator = -
Japan/Taiwan yy/mm/dd Config Date = YMD, Separator =/
USA mm-dd-yy Config Date = MDY, Separator = -

When you live in Holland you would use :
CONFIG DATE = DMY, separator =-

This would print 24-04-02 for 24 November 2002.
When you line in the US, you would use :
CONFIG DATE = MDY , separator =/

This would print 04/24/02 for 24 November 2002.

See also

SysDay
SysSec , SysSecElapsed , Time, Date

Example

Config Clock = Soft

Config Date = YMD , Separator = . " ANSI-Format | CONFIG DEBOUNCE
Action
Configures the delay time for the DEBOUNCE statement.
Syntax
CONFIG DEBOUNCE = time
Remarks
| Time | A numeric constant which specifies the delay time in mS.

When debounce time is not configured, 25 mS will be used as a default.

See also
DEBOUNCE

Example

' DEBOUN. BAS

' Denpnstrates DEBOUNCE

Confi g Debounce = 30 'when the config statenment is not used a default of
25n5 will be used

' Debounce Pind.0 , 1 , Pr "try this for branching when high(1)
Debounce Pind. 0 , 0, Pr , Sub
Debounce Pind.0 , 0, Pr , Sub

' A---- label to branch to
R S Branch when P1.0 goes |ow0)
L Exam ne P1.0

"When Pind.0 goes low junmp to subroutine Pr
"Pind.0 nust go high again before it junps again
"to the label Pr when Pind.0 is |ow

Debounce Pind.0 , 1, Pr 'no branch
Debounce Pind. 0 , 1, Pr "will result in a return wthout gosub
End

Pr:
Print "PIND.0O was/is |ow
Ret urn

CONFIG I2CDELAY

Action

Compiler directive that overrides the internal 12C delay routine.

Syntax

CONFIG I12CDELAY =value

Remarks

value A numeric value in the range from 1 to 255.

A higher value means a slower 12C clock.

For the 12C routines the clock rate is calculated depending on the used crystal. In order to make it
work for all 12C devices the slow mode is used. When you have faster 12C devices you can specify
a low value.

By default a value of 5 is used. This will give a 200 kHZ clock.
When you specify 10, 10 uS will be used resulting in a 100 KHz clock.

ASM

The 12C routines are located in the i2c.lib/i2c.lbx files.

See also
CONFIG SCL , CONFIG SDA

Example

CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line
CONFI G | 2CDELAY = 5

See 12C exanple for nore details.

" (c) 1999-2000 MCS Electronics

file: 12C BAS
denp: | 2CSEND and | 2CRECEI VE

Decl are Sub Wite_eeprom byval Adres As Byte , Byval Value As Byte)
Decl are Sub Read_eeprom(byval Adres As Byte , Value As Byte)

Const Addressw = 174 'slave wite address
Const Addressr = 175 'slave read address

Dim Bl As Byte , Adres As Byte , Value As Byte 'dim byte

Call Wite_eeprom 1, 3) 'wite value of three to address 1 of EEPROM

Call Read_eeprom(1 , Value) : Print Value 'read it back
Call Read_eeprom(5 , Value) : Print Value '"again for address 5

R now wite to a PCF8474 |/ O expander -------

| 2csend &H40 , 255 'all outputs high
| 2creceive &H40 , Bl 'retrieve input

Print "Received data " ; Bl 'print it
End

Rem Note That The Slaveaddress |s Adjusted Automaticly Wth
| 2crecei ve
Rem This Means You Can Specify The Baseaddress O The Chip.

"sanple of witing a byte to EEPROM AT2404

Sub Wite_eeprom byval Adres As Byte , Byval Value As Byte)
| 2cstart 'start condition

| 2cwbyt e Addressw 'slave address

| 2cwbyte Adres 'asdress of EEPROM

| 2cwbyte Value 'value to wite

I2cstop 'stop condition

Waitms 10 'wait for 10 milliseconds

End Sub

"sanple of reading a byte from EEPROM AT2404

Sub Read_eeprom byval Adres As Byte , Value As Byte)
| 2cstart 'generate start

| 2cwbyt e Addressw 'slave adsress

| 2cwbyt e Adres 'address of EEPROM

| 2cstart 'repeated start

| 2cwbyt e Addressr 'slave address (read)

I 2crbyte Value , Nack 'read byte

| 2cstop 'generate stop

End Sub

| 2csend &

CONFIG [2CSLAVE

Action

Configures the 12C slave mode.

Syntax

CONFIG I2CSLAVE =address , INT =interrupt, TIMER =tmr

\

Remarks

Address The slave address you want to assign to the 12C slave chip. This is an
address that must be even like 60. So 61 cannot be used.

Interrupt The interrupt that must be used. This is INTO by default.

Tmr The timer that must be used. This is TIMERO by default.

While the interrupt can be specified, you need to change the library code when you use a non-
default interrupt. For example when you like to use INT1 instead of the default INTO.

The same applies to the TIMER. You need to change the library when you like to use another timer.

Example

' 12C SLAVE LIBRARY DEMO
' PCF8574 enul ator
' (c) 2002 MS Electronics

"This program shows how you could use the 12C slave library to create a
PCF8574

'The PCF8574 is an |10 extender chip that has 8 pins.

"The pins can be set to a logic level by witing the address followed by
a val ue

"In order to read from the pins you need to make them '1' first

"This program uses a AT90S2313, PORTB is used as the PCF8574 PORT
"The slave library needs INTO and TIMERO in order to work.

"SCL is PORTD. 4 (TO)

"SDA is PORTD.2 (INTO)

"Use 10K pull up resistors for both SCL and SDA

"The Slave library will only work for chips that have TO and | NTO
connected to the sane PORT.

'These chips are : 2313,2323, 2333,2343,4433,tiny22, tinyl2,tinyl5, M
'The other chips have build in hardware |2C(slave) support.

"specify the XTAL connected to the chip

$crystal = 3684000

'specify the used chip
$regfile = "2313def. dat"

"specify the slave address. This is &H40 for the PCF8574
'"You always need to specify the address used for wite. In this case &H40

'The config i2cslave command will enable the global interrupt enable flag
|

Config | 2csl ave = &B01000000 ' sane as &H40

"A byte nanmed _i2c_slave_address_received is generated by the conpiler.
"This byte will hold the received address.

"A byte named _i2c_slave_address is generated by the conpiler.
"This byte nust be assigned with the slave address of your choice

"the following constants will be created that are used by the slave
library:

' _i2c_pinmask = &H14

' _i2c_slave_port = Portd

' _i2c_slave_pin = Pind

' _i2c_slave_ddr = Ddrd

' _i2c_slave_scl = 4

' _i2c_slave_sda = 2

These values are adjusted automatic depending on the selected chip.
You do not need to worry about it, only provided as additional info

by default the PCF8574 port is set to input
Config Portb = Input
Portb = 255 "all pins high by default

'"DIM a byte that is not needed but shows how you can store/wite the |12C
DATA
Dim Bf ake As Byte

"enpty | oop

Do

' you could put your other program code here

"In any case, do not use END since it wll disable interrupts
Loop

here you can wite your other program code
'"But do not forget, do not use END. Use STOP when needed

trrd

The following |labels are called from the slave library
RN RN RN R RN RN RN RN NN R R R RN

"When the master wants to read a byte, the following label is always
cal |l ed
"You nust put the data you want to send to the master in wariable _al

which is register R16
| 2c_mast er _needs_dat a:

"when your code is short, you need to put in a waitns statenent
'"Take in mind that during this routine, a wait state is active and the

master will wait
"After the return, the
Config Portb = Input '

_al = Pinb ' Get input
Return

When the naster wites

wai tstate is ended
make it an input
from portB and assign it

a byte, the following label is allways called

"It is your task to retrieve variable _Al and do sonething with it
'"_Al is register R16 that ould be destroyed/altered by BASIC statenents

For that reason it is

| 2c_mast er _has_dat a:

inmportant that you first save this variable

"when your code is short, you need to put in a waitns statenent
"Take in mnd that during this routine, a wait state is a&tive and the

master will wait
"After the return, the

wai tstate is ended

Bfake = _al ' this is not needed but it shows how you can store _Al in a

byte

"after you have stored the received data into bFake, you can alter R16

Config Portb = OQutput '
Portb = _al 'assign _Al
Return

make it a output since it could be an input
(R16)

trrrnd

"You could sinply extend this sanple so it will use 3 pins of PORT D for

the address selection
'For exanple portD. 1 ,
sel ection

portd.2 and portD.3 could be used for the address

"Then after the CONFIG |2CSLAVE = &H40 statenent, you can put code |ike:

'Dim switches as Byte
"switches = PIND ' get

dim byte
dip switch value

"switches = switches and &H1110 ' we only reed the lower nibble without

_i2c_slave_address = &HA0 + switches

set the proper address

CONFIGINTX

Action
Configures the way the interrupts 0,1 and 4-7 will be triggered.

Syntax
CONFIG INTx =state
Where X can be 0,1 and 4 to 7 in the MEGA chips.

Remarks

state LOW LEVEL to generate an interrupt while the pin is held low. Holding the
pin low will generate an interrupt over and over again.

FALLING to generate an interrupt on the falling edge.

RISING to generate an interrupt on the rising edge..

The MEGA has also INTO-INT3. These are always low level triggered so there is no need
/possibility forconfiguration.

The number of interrupt pins depend on the used chip. Most chips only have int0 and int1.

Example

'Sanple for the MEGA103
Config INT4 = LOW LEVEL

End

CONFIG GRAPHLCD

Action
Configures the Graphical LCD display.

Syntax

Config GRAPHLCD = type , DATAPORT = port, CONTROLPORT=port, CE= pin ,CD = pin , WR
= pin, RD=pin, RESET= pin, FS=pin, MODE = mode

Remarks
Type This must be 240 * 64, 128* 128, 128 * 64, 160 * 48 or 240 * 128.
For SED displays use 128 * 64sed or 120* 64SED
Dataport This is the name of the port that is used to put the data on the LCD data pins db0O-db7.

PORTA for example.

Controlport This is the name of the port that is used to control the LCD control pins. PORTC for

example
Ce The pin number that is used to enable the chip on the LCD.
Cd The pin number that is used to control the CD pin of the display.
WR The pin number that is used to control the /WR pin of the display.
RD The pin number that is used to control the /RD pin of the display.
FS The pin number that is used to control the FS pin of the display.
Not needed for SED based displays.
RESET The pin number that is used to control the RESET pin of the display.
MODE The number of columns for use as text display. Use 8 for X pixels / 8 = 30 columns for

a 240 pixel screen. When you specify 6, 240 / 6 = 40 columns can be used.

This is a first implementation for Graphic support. It is based on the T6963C chip that is
used in many displays. At the moment there is only support for pin mode. That is, the LCD
is controlled by changing logic levels on the pins.

Memory mapped or bus mode will be added later. But pin mode can be used with any
micro so that is why this is first implemented.

The following connections were used:
PORTA.O to PORTA.7 to DB0O-DB7 of the LCD
PORTC.5 to FS, font select of LCD

PORTC.2 to CE, chip enable of LCD
PORTC.3 to CD, code/data select of LCD
PORTC.0 to WR of LCD, write

PORTC.1 to RD of LCD, read

PORTC.4 to RESET of LCD, reset LCD

The LCD used from www.conrad.de needs a negative voltage for the contrast.

Two 9V batteries were used with a pot meter.
Some displayshave a Vout that can be used for the contrast(Vo)

The T6963C displays have both a graphical area and a text area. They can be used
together. The routines use the XOR mode to display both text and graphics layered over
each other.

The statements that can be used with the graphical LCD are :
CLS, will clear the graphic display and the text display

CLS GRAPH will clear only the graphic part of the display
CLS TEXT will only clear the text part of the display

LOCATErow,column Will place the cursor at the specified row and column

The row may vary from 1 to 16 and the column from 1 to 40. This depends on the size and
mode of the display.

CURSOR ON/OFFBLINK/NOBLINK can be used the same way as for text displays.

LCD can also be the same way as for text displays.

SHOWPIC X, Y , Label where X and Y are the column and row and Label is the label
where the picture info is placed.

PSET X, Y, color Will set or reset a pixel. X can range from 0239 and Y from 9-63. When
color is 0 the pixel will turned off. When it is 1 the pixel will be set on.

$BGF "file.bgf" 'inserts a BGF file at the current location

LINE(x0,y0) — (x1,y1) , color Will draw a line from the coordinate x0,y0 to x1,y1.
Color must be 0 to clear the line and 255 for a black line.

The Graphic routines are located in the glib.lib or dib.lbx files.

You can hard wire the FS and RESET and change the code from the glib.lib file so these pins can
be used for other tasks.

See also

Example

' (c) 2001 MCS Electronics
T6963C graphic display support deno

' The connections of the LCD used in this dem
"LCD pin connected to

' 1 G\D G\D 'The |abel points to a label that holds the image data

'2 G\D G\D Showpic 0, O, Plaatje
'3 +5V +5V

"4 -9V -9V potneter Wait 1

'5 /VWR PORTC. 0 Cs Text ' clear the text
'6 /RD PORTC. 1 End

"7 | CE PORTC. 2

'8 C D PORTC 3
"9 NC not conneted

'10 RESET PORTC. 4 "This label holds the nage data

'11-18 DO-D7 PA Pl aatj e:

'19 FS PORTC. 5 "$BGF will put the bitmap into the program at this |ocation
'20 NC not connected $bgf "ncs. bgf”

"You could insert other picture data here

"First we define that we use a graphic LCD

Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce
=2, d=383, W =0, Rd=1, Reset =4 , Fs =5 , Mde = 8

'The dataport is the portnane that is connected to the data lines of the
LCD

'The controlport is the portnane which pins are used to control the |cd
"CE, CD etc. are the pin nunber of the CONTROLPORT.

' For exanple CE =2 because it is connected to PORTC. 2

"Dim variables (y not used)
Dm X As Byte , Y As Byte

"Clear the screen will both clear text and graph display
ds

'"Other options are

' CLS TEXT to clear only the text display

' CLS GRAPH to clear only the graphical part

"locate works like the normal LCD |ocate statenent
' LOCATE LINE, COLUMN LINE can be 8 and colum 030
Locate 1 , 1

' Show sone text

Lcd "MCS El ectronics"

"And sone othe text on line 2
Locate 2 , 1 : Lcd "T6963c support”

‘wait 1 sec
Wait 1

' draw a line using PSET X Y, ON OFF

' PSET on.off param is 0 to clear a pixel and ay other value to turn it
on

For X = 0 To 140

Pset X, 20 , 255 ' set the pixel

Next

Wait 1

"Now it is time to show a picture
" SHOWPI C X, Y, | abel

CONFIGKEYBOARD

CONFIGKBD
Action
Configure the GETKBD() function and tell which port to use.
Syntax

CONFIG KBD = PORTx , DEBOUNCE = value [, DELAY = value]

Remarks

Action

Configure the GETATKBD() function and tell which port pins to use.
Syntax

CONFIG KEYBOARD = PINX.y , DATA = PINX.y , KEYDATA = table

PORTX The name of the PORT to use such as PORTB or PORTD.

DEBOUNCE By default the debounce value is 20. A higher value might be needed. The
maximum is 255.

Delay An optional parameter that will cause Getkbd() to wait the specified amount of
time after the key is detected. This parameter might be added when you call
GetKbd() repeatedly in a loop. Because of noise and static electricity, wrong
values can be returned. A delau of say 100 mS, can eliminate this problem.

Remarks

KEYBOARD The PIN that serves as the CLOCK input.

DATA The PIN that serves as the DATA input.
KEYDATA The label where the key translation can be found.

The AT keyboard returns scan codes instead of normal ASCII codes. So a
translation table s needed to convert the keys.

BASCOM allows the use of shifted keys too. Special keys like function keys
are not supported.

The GETKBD() function can be used to read the pressed key from a matrix keypad attached to a
port of the uP.

You can define the port with the CONFIG KBD statement.

In addition to the default behavior you can configure the keyboard to have 6 rows instead of 4 rows.

CONFIG KBD = PORTx , DEBOUNCE = value , rows=6, row5=pinD.6, row6=pind.7
This would specify that row5 is connected to pind.6 and row7 to pind.7
Note that you can only use rows=6. Other values will not work.

See also
GETKBD

The AT keyboard can be connected with only 4 wires: clock,data, gnd and vcc.
Some info is displayed below. This is copied from an Atmel datasheet.
The INTO or INT1 shown can be in fact any pin that can serve as an INPUT pin.

The application note from Atmel works in interrupt mode. For BASCOM | rewrote the code so that
no interrupt is needed/used.

Mo

AVR e 1 ey Kayboard
T
torl:I'TIT-I:In] == ‘bt
Pay Data - -
SND _-L G 1 ‘é—

Tabie 1. AT Keyboard Connactor Pin Assignmants

4 2 3 o "
1@4 ‘.3
AT Computer - !
DIN41524, Female at 6-pin Mini DIN P52 Style
Signals Computer, 5-pin DIN 180° Famale at Computer
Clock 1 5
Data Z 1
nc a 28
GND 4 3
+5Y 5 4
Shigld Shell Shett

See also

CONFIG LCD

Action

Configure the LCD display and override the compiler setting.
Syntax

CONFIG LCD = LCDtype

Remarks

LCDtype The type of LCD display used. This can be :
40*4,16*1,16*2,16* 4,16 * 4,20 * 2 or 20 * 4 or 16 * 1a or 20*4A.
Default 16 * 2 is assumed.

When you have a 16 * 2 display, you don't have to use this statement.

The 16 * 1a is special. It is used for 2 * 8 displays that have the address of line 2, starting at
location &H8.

The 20*4A is also special. It uses the addresses &H00, &H20, &H40 and &H60 for the 4 lines.

Example

Config Led = 40 * 4

Lcd "Hello" 'display on LCD
Fourthline 'select line 4
Lcd "4" 'display 4

End

| CONFIG LCDBUS

CONFIG LCDMODE

Action
Configures the LCD data bus and overrides the compiler setting.
Syntax
CONFIG LCDBUS = constant
Remarks
| Constant | 4 for 4-bit operation, 8 for 8-bit mode (default) I

Use this statement together with the $LCD = address statement.

When you use the LCD display in the bus mode the default is to connect all the data lines. With the
4-bit mode, you only have to connect data lines d7-d4.

See also
CONFIGLCD

Example

$l cd = &HCO00 'address of enable and RS signal
$l cdrs = &HB00 'address of enable signal
Config Lcdbus = 4 "4 bit node

Lcd "hello"

Action

Configures the LCD operation mode and overrides the compiler setting.

Syntax

CONFIG LCDMODE = type

Remarks

Type PORT will drive the LCD in 4-bit port mode and is the default.
In PORT mode you can choose different PIN's from different PORT's to connect to
the upper 4 data lines of the LCD display. The RS and E can also be connected to a
user selectable pin. This is very flexible since you can use pins that are not used by
your design and makes the board layout simple. On the other hand, more software
is necessary to drive the pins.
BUS will drive the LCD in bus mode and in this mode is meant when you have
external RAM and so have an address and data bus on your system. The RS and E
line of the LCD display can be connected to an address decoder. Simply writing to
an external memory location select the LCD and the data is sent to the LCD display.
This means the data-lines of the LCD display are fixed to the data-bus lines.
Use$LCD = address and $LCDRS = address, to specify the addresses that will
enable the E and RS lines.

See also

CONFIGLCD, $LCD , $LCDRS

Example

Config LCDMODE = PORT 'the report wll show the settings
Config LCDBUS = 4 '4 bit node

LCD "hello"

CONFIG LCDPIN

Action

Override the LCD-PIN select options.

Syntax

CONFIG LCDPIN = PIN , DB4= PN,DB5=PN, DB6=PN, DB7=PN, E=PN, RS=PN
CONFIG LCDPIN = PIN , PORT=PORTX, E=PN, RS=PN

CONFIGPS2EMU

Remarks

PN The name of the PORT pin such as PORTB.2 for example.

PORTX When you want to use the LCD in 8 bit data, pin mode, you must specify the PORT
to use.

Action

Configures the PS2 mouse data and clock pins.

Syntax
CONFIG PS2EMU= int, DATA = data, CLOCK=clock

You can override the PIN selection from the Compiler Settings with this statement, so a second
configuration lets you not choose more pins for a second LCD display.

The config command is preferred over the menu settings since the code makes clear which pins are
used. The CONFIG statement overrides the Options setting.

See also
CONFIGLCD

Example

CONFI G LCDPIN = PIN , DB4= PORTB. 1, DB5=PORTB. 2, DB6=PORTB. 3,
DB7=PORTB. 4, E=PORTB. 5, RS=PORTB. 6

The above example must be typed on one line.

Remarks
Int TheinterruptusedsuchasINTOoOr INT1.
DATA The pin that is connected to the DATA line. This must be the same
pin as the used interrupt.
CLOCK The pin that is connected to the CLOCK line.
Fernala 5-pin DIN
Maly PR (ATIXT):
“ "') 1 - Clock
I i | J 2 - Data
(i.. B * o i "3_“ 3 - Not
A T Implemented
(Pl frncken) 4 - Ground
5 - +5v
alw Farmale Glgyzwnl—DlN
o, mar | esi
g g 1- Data
i = ﬂ} 4" "1 2 - Not
- : u A]
1, a 155! Implemented
-. " ey 3 - Ground
(Flug) ookt 4 - 45y
5 - Clock
6 - Not
Implemented

Old PC’s are equipped with a5 -pin DIN female connector. Newer PC’s have a 6 -pin
mini DIN female connector.

The male sockets must be used for the connection with the micro.

Besides the DATA and CLOCK you need to connect from the PC to the micro, you need
to connect ground. You can use the +5V from the PC to power your microprocessor.

The config statement will setup an ISR that is triggered when the INT pin goes low.
This routine you can find in the library.

The ISR will retrieve a byte from the PC and will send the proper commands back to
the PC.

Mouseup:

The SENDSCAN and PS2MOUSEXY statements allow you to send mouse commands. Data 3, &H08 , &HOO , &HO1 mouse up by 1 unit

Note that the mouse emulator is only recognized after you have booted your PC.
Mouse devices can not be plugged into your PC once it has booted. Inserting a mouse
or mouse device when the PC is already booted, may damage your PC.

See also
SENDSCAN, PS2MOUSEXY

Example

' PS2_EMJL. BAS
' (c) 2003-2004 MCS Electronics
' PS2 Mouse enul ator

$regfile = "2313def. dat"
$crystal = 4000000
$baud = 19200

$lib "ncsbyteint.lbx" ' use optional lib since we use only bytes
"configure PS2 pins

Config Ps2emu = Intl , Data = Pind.3 , Clock = Pinbh. 0

R e used interrupt

B pin connected to DATA

' A- pin connected to clock
"Note that the DATA nust be connected to the used interrupt pin

Waitms 500 ' optional delay

Enable Interrupts ' you need to turn on interrupts yourself since an INT
is used

Print "Press wu,d,l,r,b, or t"

Dim Key As Byte

Do

Key = Waitkey() ' get key from termnal
Sel ect Case Key

Case "u" : Ps2mpusexy 0 , 10 , O up

Case "d" : Ps2mpusexy 0 , -10 , 0 ' down

Case "I" : Ps2mousexy -10 , 0, 0 ' left

Case "r" : Ps2mpusexy 10 , 0, 0 "' right

Case "b" : Ps2mousexy 0 , 0 , 1 ' left button pressed
Ps2mousexy 0, 0 , 0 ' left button released

Case "t" : Sendscan Mouseup ' send a scan code

Case El se

End Sel ect

Loop

CONFIG SDA

CONFIG RC5
Action
Overrides the RC5 pin assignment from the Option Compiler_Settings.
Syntax
CONFIG RC5 =pin [, TIMER=2]
Remarks
Pin The port pin to which the RC5 receiver is connected.
TIMER Must be 2. The micro must have a timer2 when you want to use this

option. This additional parameter will cause that TIMER2 will be used
instead of the default TIMERO.

When you use different pins in different projects, you can use this statement to override the Options
Compiler setting for the RC5 pin. This way you will remember which pin you used because it is in
your code and you do not have to change the settings from the options. In BASCOM-AVR the
settings are also stored in the project.CFG file.

See also

GETRCS

Example
CONFIG RC5 = PIND.5 'PORTD.5 is the RC5 input line

Action

Overrides the SDA pin assignment from the Option Compiler Settings.

Syntax

CONFIG SDA =pin

Remarks

Pin | The port pin to which the I2C-SDA line is connected. I

When you use different pins in different projects, you can use this statement to override the Options
Compiler setting for the SDA pin. This way you will remember which pin you used becauseit is in

your code and you do not have to change the settings from the options. In BASCOM-AVR the
settings are also stored in the project.CFG file.

See also
CONFIG SCL, CONFIG I2CDELAY

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line
See 12C exanple for nore details.

CONFIG SCL

Action

Overrides the SCL pin assignment from the Option Compiler Settings.

Syntax

CONFIG SCL =pin

Remarks

Pin | The port pin to which the I2C-SCL line is connected. I

When you use different pins in different projects, you can use this statement to override the Options
Compiler setting for the SCL pin. This way you will remember which pin you used because it is in

your code and you do not have to change the settings from the options. Of course BASCOM-AVR
also stores the settings in a project.CFG file.

See also
CONFIG SDA, CONFIG I2CDELAY.

Example
CONFIG SCL = PORTB.5 'PORTB.5 is the SCL line

CONFIG SERIALIN

Action

Configures the hardware UART to use a buffer for input

Syntax

CONFIG SERIALIN = BUFFERED , SIZE = size

Remarks

size A numeric constant that specifies how large the input buffer should be. The space is

taken from the SRAM.

The following internal variables will be generated :

_RS_HEAD_PTRO, a byte counter that stores the head of the buffer

_RS_TAIL_PTRO, a byte counter that stores the tail of the buffer.

_RS232INBUFO0, an array of bytes that serves as a ring buffer for the received characters.

ASM

Routines called from MCS.LIB :

_GotChar. This is an ISR that gets called when ever a character is received.
When there is no room for the data it will not be stored.

So the huffer must be emptied periodic by reading from the serial port using the normal statements
like INKEY() and INPUT.

Since URXC interrupt is used by _GotChar, you can not use this interrupt anymore. Unless you
modify the _gotchar routine of course.

See also
CONFIG SERIALOUT

Example

' RS232BUFFER. BAS

' (c) 2000-2004, MCS Electronics

This exanple shows the difference between normal and buffered
seri al | NPUT

$crystal = 4000000

$baud = 9600

"first conpile and run this program with the |ine below remarked
Config Serialin = Buffered , Size = 20

"dim a variable
Dim Name As String * 10

"the enabling of interrupts is not needed for the nornal serial npde
"So the line below nust be remarked to for the first test
Enabl e Interrupts

Print "Start"
Do

'get a char from the UART
Name = | nkey()

If Err = 0 Then 'was there a char?
Print Name 'print it
End If

Wait 1 "wait 1 second

Loop

"You will see that when you slowy enter characters in the terninal
emul at or

"they will be received/displayed.

"When you enter them fast you will see that you |oose sone chars

"NOW renove the remarks from line 11 and 18

"and conpile and program and run again

"This tinme the chars are received by an interrupt routine and are
"stored in a buffer. This way you will not |oose characters providing
t hat

"you enpty the buffer

'So when you fast type abcdefg, they will be printed after each other
with the

"1 second delay

"Using the CONFIG SERI AL=BUFFERED, SIZE = 10 for exanple wll

'use sonme SRAM nenory

'"The following internal variables will be generated

' _Rs_head_ptrO BYTE , a pointer to the location of the start of the
buf fer

' _Rs_tail_ptr0O BYTE , a pointer to the location of tail of the buffer
' _RS232I NBUFO BYTE ARRAY , the actual buffer with the size of SIZE

CONFIG SERIALIN1

Action

Configures the second hardware UART to use a buffer for input

Syntax

CONFIG SERIALIN1 = BUFFERED , SIZE = size

Remarks

Size A numeric constant that specifies how large the input buffer should be. The space is

taken from the SRAM.

The following internal variables will be generated :

_RS_HEAD_PTR1, a byte counter that stores the head of the buffer

_RS_TAIL_PTR1, a byte counter that stores the tail of the buffer.

_RS232INBUF1, an array of bytes that serves as a ring buffer for the received characters.

ASM

Routines called from MCS.LIB :

_GotCharl. This is an ISR that gets called when ever acharacter is received.
When there is no room for the data it will not be stored.

So the buffer must be emptied periodic by reading from the serial port using the normal statements
like INKEY() and INPUT.

Since URXCL interrupt is used by _GotCharl, you can not use this interrupt anymore. Unless you
modify the _gotcharl routine of course.

See also
CONFIG SERIAIQUT]

Example

' RS232BUFFERL. BAS

' (c) 2000-2004, MCS Electronics

This exanple shows the difference between nornal and buffered
serial | NPUT

Works only for chips with 2 UARTS

$regfile = "ml6ldef. dat”

$crystal = 4000000

$baud = 9600

"first conpile and run this program with the |ine below remarked
Config Serialinl = Buffered , Size = 20
"dim a variable

Dim Name As String * 10

Open "conm2:" For Binary As #1

"the enabling of interrupts is not needed for the nornal serial npde
"So the line below nust be remarked to for the first test
Enabl e Interrupts

Print "Start"

Do

‘get a char from the UART
Name = | nkey (#1)

If Err = 0 Then '"was there a char?
Print #1 , Name 'print it
End If

Wait 1 'wait 1 second

Loop

Cl ose #1

"You will see that when you slowy enter characters in the terninal
enmul at or

"they will be received/displayed.

"When you enter them fast you will see that you |oose sone chars

"NOW renove the remarks from line 11 and 18
"and conpile and program and run again
"This time the chars are received by an interrupt routine and are

"stored in a buffer. This way you will not |oose characters providing
t hat

'you enpty the buffer

'So when you fast type abcdefg, they will be printed after each other
with the

"1 second delay

"Using the CONFI G SERI AL1=BUFFERED, SIZE = 10 for exanple wll

'use sonme SRAM nenory

"The following internal variables will be generated

' _Rs_head_ptrl BYTE , a pointer to the location of the start of the
buf fer

' _Rs_tail_ptrl BYTE , a pointer to the location of tail of the buffer
' _RS232I NBUF1 BYTE ARRAY , the actual buffer with the size of SIZE

CONFIG SERIALOUT

Action

Configures the hardware UART to use a buffer for output

Syntax

CONFIG SERIALOUT = BUFFERED , SIZE = size

Remarks

size A numeric constant that specifies how large the output buffer should be. The space

is taken from the SRAM.

The following internal variables will be used when you use CONFIG SERIALOUT
_RS_HEAD_PTRWO , byte that stores the head of the buffer

_RS_TAIL_PTRWO , byte that stores the tail of the buffer

_RS2320UTBUFO, array of bytes for the ring buffer that stores the printed data.

ASM

Routines called from MCS.LIB :

_CHECKSENDCHAR. This is an ISR that gets called when ever the transmission buffer is empty.

Since UDRE interrupt is used , you can not use this interrupt anymore. Unless you modify the
_CheckSendChar routine of course.

When you use the PRINT statement to send data to the serial port, the UDRE interrupt will be
enabled. And so the _CheckSendChar routine will send the data from the buffer.

See also
CONFIG SERIALIN

Example

' RS232BUFFEROUT. BAS
' (c) 2000-2004 MCS Electronics
' Sanpl e denonstrates how to use a serial output buffer

$baud = 9600
$crystal = 4000000

"setup to use a serial output buffer
"and reserve 20 bytes for the buffer
Config Serialout = Buffered , Size = 20

"It is inmportant since UDRE interrupt is used that you enable the
interrupts

Enabl e Interrupts

Print "Hello world"

Do

Wait 1
'notice that using the UDRE interrupt will

wai ting |oops |ike waitns
Print "test"

Loop

End

sl own down execution of

CONFIG SERIALOUT1
Action
Configures the second hardware UART to use a buffer for output
Syntax
CONFIG SERIALOUT1 = BUFFERED , SIZE = size
Remarks
Size A numeric constant that specifies how large the output buffer should be. The space

is taken from the SRAM.

The fallowing internal variables will be used when you use CONFIG SERIALOUT
_RS_HEAD_PTRW1 , byte that stores the head of the buffer

_RS_TAIL_PTRW1 , byte that stores the tail of the buffer

_RS2320UTBUF1, array of bytes for the ring buffer that stores the printed data.

ASM
Routines called from MCS.LIB :
_CHECKSENDCHARL. This is an ISR that gets called when ever the transmission buffer is empty.

Since UDREL interrupt is used , you can not use this interrupt anymore. Unless you modify the
_CheckSendCharl routine of course.

When you use the PRINT statement to send data to the serial port, the UDREL1 interrupt will be
enabled. And so the _CheckSendCharl routine will send the data from the buffer.

See also
CONFIG SERIALINT

Example

' RS232BUFFEROUT1. BAS

' (c) 2000-2004 MCS Electronics

' Sanpl e denonstrates how to use a serial output buffer on the second UART
"this sanple will only work for chips with a seond UART like the ML61 and

$regfile = "mi6ldef.dat”
$baudl = 9600
$crystal = 4000000

'setup to use a serial output buffer
"and reserve 20 bytes for the buffer
Config Serialoutl = Buffered , Size = 20
Open "ConR:" For Binary As #1

"It is inportant since UDRE interrupt is used that you enable the

interrupts

Enabl e Interrupts | CONFIG SPI
Print #1 , "Hello world" .
Do Action
Vait 1 Configures the SPI related statements.
‘notice that using the UDRE interrupt wll slown down execution of
waiting loops Iike waitms Syntax for software SPI
Print #1 , "test"” CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , SS = PIN|[NONE, CLOCK = PIN
Loop
End
Syntax for hardware SPI
CONFIG SPI = HARD, DINTERRUPT=ON|OFF, ATA ORDER = LSB|MSB , MASTER = YES|NO ,
Close #1 POLARITY = HIGH|LOW , PHASE = 0|1, CLOCKRATE = 4|16|64|128 , NOSS=1|0
Remarks
SPI SOFT for software emulation of SPI, this allows you to choose the PINS to use.

Only works in master mode.

HARD for the internal SPI hardware, that will use fixed pins of the
microprocessor.

DIN Data input or MISO. Pin is the pin number to use such as PINB.O
DOUT Data output or MOSI. Pin is the pin number to use such as PORTB.1
SS Slave Select. Pin is the pin number to use such as PORTB.2

Use NONE when you do not want the SS signal to be generated. See remarks

CLOCK Clock. Pin is the pin number to use such as PORTB.3

DATA ORDER Selects if MSB or LSB is transferred first.

MASTER Selects if the SPI is run in master or slave mode.

POLARITY Select HIGH to make the CLOCK line high while the SPI is idle. LOW will make
clock LOW while idle.

PHASE Refer to a data sheet to learn about the different settings in combination with
polarity.

CLOCKRATE The clock rate selects the division of the of the oscillator frequency that serves

as the SPI clock. So with 4 you will have a clockrate of 4.000000 /4 =1 MHz ,
when a 4 MHZ XTAL is used.

NOSS 1 or 0. Use 1 when you do not want the SS signal to be generated in master
mode.

INTERRUPT Specify ON or OFF. ON will enable the SPI interrupts to occur. While OFF
disables SPI interrupts. ENABLE SPI and DISABLE SPI will accomplish the
same.

The default setting for hardware SPI when set from the Compiler, Options, SPI menu is MSB first,
POLARITY = HIGH, MASTER = YES, PHASE = 0, CLOCKRATE = 4

When you use CONFIG SPI = HARD alone without the other parameters, the SPI will only be
enabled. It will work in slave mode then with CPOL =0 and CPH=0.

In hardware mode the SPIINIT statement will set the SPI pins to :
sbi DDRB,7 ; SCK output

cbi DDRB,6 ; MISO input
shi DDRB,5 ; MOSI output

In softmode the SPIINIT statement will set the SPI pins for example to :
sbi PORTB,5 ;set latch bit hi (inactive)SS

sbi DDRB,5 ;make it an output SS

cbi PORTB,4 ;set clk line lo

sbi DDRB,4 ;make it an output

cbi PORTB,6 ;set data-out lo MOSI

sbi DDRB,6 ;make it an output MOSI

cbi DDRB,7 ;MISO input

Ret

When you want to address multiple slaves with the software SPI you need multiple pins to
select/activate the slave chip. Specify NONE for SS in that case. This also means that before every
SPI command you need to set the logic level to 0 to address the chip and after the SPI command
you need to set it back to a logic high level.

The hadware SPI also has this option. The NOSS parameter with a value of 1, will not set the SS
line to logic 0 when the SPI operation begins. You need to set SS or any other pin of your choice to
a logic 0 yourself. After the SPI command(s) are used you need to set it back to a logic 1 to
deselect the slave chip.

All SPI routines are SPI-master routines. Example 2 below demonstrates how to create a soft SPI
slave. In the samples directory you will also find a SPI hardware master and SPI hardware slave
sample.

See also
SPIIN, SPIOUT, SPIINIT, SPL

Example

Config SPI = SOFT, DIN = PINB.O , DOUT = PORTB.1, SS = PORTB.2, CLOCK =
PORTB. 3

Dim var As Byte

SPIINIT "Init SPI state and pins.

SPIOUT var,1'send 1 byte

Example2

' SPI- SOFTSLAVE. BAS
' (c) 2004 MCS Electronics
sanple that shows how to inplement a SPI SLAVE with software

'Some atnel chips like the 2313 do not have a SPlI port.
'The BASCOM SPI routines are all nmster node routines
This exanple show how to create a dave using the 2313
| SP slave code

'we use the 2313
$regfile = "2313def. dat"

' XTAL used
$crystal = 4000000

"baud rate
$baud = 19200

"define the constants used by the Sl
Const _softslavespi_port = Portd '
Const _softslavespi_pin = Pind 'we
Const _softslavespi_ddr = Ddrd '

Const _softslavespi_clock = 5 'pD. 5

Const _softslavespi_mso =3 'pD. 3
Const _softslavespi_mosi = 4 'pd. 4
Const _softslavespi_ss = 2 ' pd.2 i

"while you may choose all pins you
"for the 2313 this is pin 2

"PD.3(7), MSO nust be output
' PD. 4(8), MOSI

"Pd.5(9) , Cock

"PD.2(6), SS /INTO

"define the spi slave lib
$lib "spislave.lbx"

"sepcify wich routine to use
$external _spisoftslave

'we use the intO interrupt to detec
O Int0 Isr_sspi Nosave

"we enable the intO interrupt
Enabl e I nt0

"we configure the INTO interrupt to
det ected

Config Int0 = Falling

"finally we enabled interrupts
Enabl e Interrupts

Pl sl ave

we used portD
use the PIND register for reading

data direction of port D

is used for the CLOCK

is MSO

is MOSI

s SS

nmust use the INTO pin for the SS

t that our slave is addressed

trigger when a falling edge is

Dim _ssspdr As Byte ' this is out SPI SLAVE SPDR register

Dim _ssspif As Bit ' SPI interrupt

revceive bit

Dim Bsend As Byte , | As Byte , B As Byte ' sone other denp variables

_ssspdr = 0 we send a 0 the first
Do

If _ssspif =1 Then
Print "received: " ;
Reset _ssspif
_ssspdr = _ssspdr + 1 ' we send thi
End If

Loop

_ssspdr

tinme the naster sends data

s the next tinme

CONFIG SERVOS

Action

Configures how much servo’s will be controlled.

Syntax

CONFIG SERVOS = X, Servol = Portb.0 , Servo2 = Portb.1 , Reload = rl

Remarks

Servo’s need a variable pulse in order to operate. The CONFIG SERVOS directive will se up a byte
array with the servo pulse width values and will initialize a ISR that uses TIMERO.

X The number of servo’s you want to control. Each used servo will use one byte of
SRAM.
PORT The port pin the servo is attached too.

RL The reload value for the ISR in uS.

When you use for example :

Config Servos = 2, Servol = Porth.0 , Servo2 = Portb.1, Reload = 10

The internal ISR will execute every 10 uS.

An arrays named SERVO() will be created and it can hold 2 bytes : servo(1) and servo(2).

By setting the value of the servo() array you control how long the positive pulse will last. After it has
reached this value it will be reset to 0.

The reload value should be set to 10. After 20 mS, a new pulse will be generated.
You can use other reload values but it will also mean that the repeat value will change.

The PORT pins specified must be set to work as an output pin by the user.
CONFIG PINB.O = OUTPUT
Will set a pin to output mode.

Resources used
TIMERO is used to create the ISR.

ASM

NONE

Example

' (c) 2001 MCS Electronics
' servo.bas denpnstrates the SERVO option

Servo's need a pulse in order to operate
‘'with the config statenment CONFIG SERVOS we can specify how many
we

servo's

‘"will use and which port pins are used
"A mexi num of 16 servos mght be used
'The SERVO statenents use one byte for
TI MERO

"This neans that you can not
'The reload value specifies the interval
Config Servos = 2 , Servol = Porth.0 ,
"we use 2 servos with 10 uS resolution

"we nust configure the port
Config Portb = CQutput

pins used t

"finally we nust
Enabl e Interrupts

turn on the global int

"the servo() array is created automatic.
"time the servo nust be on

Servo(1l) = 100 '1000 uS on
Servo(2) = 200 ' 2000 uS on
Dm | As Byte

Do

For I =0 To 100

Servo(1l) =1

Wai tms 1000

Next

For I =200 To O Step -1
Servo(1l) =1

Wai tms 1000

Next

Loop

End

use TIMERO anynore

an interrupt counter and the
of the tiner in uS
Servo2 = Porth.1 , Reload =
o act as output
errupt
You can used it to set the

10

CONFIG TCPIP

As a default you can assign a value of 5000.

Action
ConfigurestheTCP/IPW3100Achip.

Syntax

CONFIGTCPIP=int, MAC= mac , IP = ip, SUBMASK = mask, GATEWAY =
gateway, LOCALPORT = port, TX= tx, RX=rx , NOINIT=0]1

Remarks

TX A byte which specifies the transmit buffer size of the W3100A. The
W3100Ahas4sockets.

A value of 00 will assign 1024 bytes, a value of 01 will assign 2048
bytes. A value of 10 will assign 4096 bytes and a value of 11 will
assign8192bytes.

This is binary notation. And the Msbits specify the size of socket 3.
For example, you want to assign 2048 bytes to each socket for
transmission: TX=&B01010101

Since the transmission buffer size may be 8KB in total, you can split
them up in 4 parts of 2048 bytes : 01.

When you want to use 1 socket with 8KB size, you would use : TX =
&B11. You can use only 1 socket in that case : socket 0.

Int Theinterrupt to use such as INTOor INT1.
For theEasy TCP/IPPCB,uselINTO.

MAC The MAC address you want to assign to the W3100A.

The MAC addressis aunique number thatidentifies your chip. You
must use a different address for every W3100A chip in your
network.

Example:123.00.12.34.56.78

You need to specify 6 bytes that must be separated by dots. The
bytes must be specified in decimal notation.

IP The IP address you want to assign to the W3100A.

When you have aLAN, 192.168.0.10 can beused.192.168.0.xis
used for LAN’s since the address is not an assigned internet
address.

RX A byte which specifies the receive buffer size of the W3100A. The
W3100Ahas4sockets.

A value of 00 will assign 1024 bytes, avalue of 01 will assign 2048
bytes. A value of 10 will assign 4096 bytes and a value of 11 will
assign8192bytes.

This is binary notation. And the Msbits specify the size of socket 3.
For example, you want to assign 2048 bytes to each socket for
reception : RX=&B01010101

Since the receive buffer size may be 8KB in total, you can split
them up in 4 parts of 2048 bytes : 01.

When you want to use 1 socket with 8KB size, you would use : RX
= &B11. You can use only 1 socket in that case : socketO.
Consult the W3100A pdf for more info.

The IP address must be unique for every W3100A in your network.

Noinit Make this 1 when you want to configure the TCP, MAC, Subnetmask

and GateWay dymanic. Noinit will only make some important
settings and you need to use SETTCP in order to finish the setup.

SUBMASK The submask you want to assign to the W3100A.
Thesubmaskisinmostcases255.255.255.0

GATEWAY Thisis the gateway address of the W3100A.
The gateway address you can determine with the IPCONFIG

command at the command prompt :
C \>ipconfig

Windows2000IPConfiguration

Ethernetadapter Local AreaConnection 2:

Connection-specific DNS Suffix . :

IP Address.:192.168.0.3
Subnet Mask:255.255.255.0
Default Gateway:192.168.0.1
Use192.168.0.1linthiscase.

LOCALPORT Aword value thatis assigned tothe LOCAL_PORT internal variable.

SeealsoGetsocket.

The CONFIG TCPIP statement may be used only once.
Interrupts must be enabled before you use CONFIG TCPIP.
Configuring the W3100A will init the chip.

After the CONFIG TCPIP, youcanalready PING the chip!

See also
GETSOCKET, SOCKETCONNECT, SOCKETSTAT,

Example

Config Tcpip = Int0 , Mac = 00.00.12.34.56.78 , Ip = 192.168.0.8 , Submask = 255.255.255.0 ,
Gateway = 192.168.0.1 , Localport = 1000 , Tx = $55 , Rx = $55

‘Now use PING at the command line to send a ping:

PING 192.168.0.8

Or use the easytcp application to ping the chip.

CONFIGTIMERO

Action

Configure TIMERO.

Syntax

CONFIG TIMERO = COUNTER ,PRESCALE= 1|8|64|256|1024 ,
EDGE=RISING/FALLING , CLEAR TIMER = 1|0

CONFIG TIMERO = TIMER , PRESCALE=1|8|64|256|1024

Remarks
TIMERO is a 8 bit counter. See the hardware description of TIMERO.

When configured as a COUNTER:

EDGE | You can select whether the TIMER will count on the falling or rising edge.

When configured as a TIMER:

PRESCALE The TIMER is connected to the system clock in this case. You can select the
division of the system clock with this parameter.

Valid values are 1, 8, 64, 256 or 1024

When you use the CONFIG TIMERO statement, the mode is stored by the compiler and the TCCRO
register is set.

When you use the STOP TIMERO statement, the TIMER is stopped.

When you use the START TIMERO statement, the TIMER TCCRO register is loaded with the last
value that was configured with the CONFIG TIMERO statement.

So before using the START and STOP TIMERO statements, use the CONFIG statement first.

Example
' Tl MERO. BAS
' exanple that shows how to use TIMERO related statenents

"First you nust configure the tiner to operate as a counter or as a tiner
Lets configure it as a COUNTER now
You nust also specify if it will count on a rising or falling edge

Config Timer0O = Counter , Edge = Rising
"Config Timer0 = Counter , Edge = falling
"unremark the line aboven to use tinmerO to count on falling edge

"To get/set the value from the timer access the tiner/counter register
'"lets reset it to O
Tent0 =0

Do
Print TcntO

Loop Until Tcnt0 >= 10
"when 10 pulses are count the loop is exited

"or use the special variable TIMERO
Timer0 = 0

'"Now configire it as a TIMER

'"The TIMER can have the systentlock as an input
di vi ded

"by 8,64,256 or 1024

'The prescale paraneter excepts 1,8,64,256 or 1
Config TimerO = Tinmer , Prescale = 1

'"The TIMER is started now autonmaticly
"You can STOP the tinmer with the followi ng stat
Stop Tinmer0

"Now the timer is stopped
"To START it again in the last configured mde,
Start TinmerO

"Again you can access the value with the tcntO
Print TcntO

‘or

Print TinmerO

"when the timer overflows, a flag named TOVO in

"You can use this to execute an ISR

'"To reset the flag manual in non |SR node you nust

position
"in TIFR
Set Tifr.1

'The following code shows how to use the TIMERO
'The code is block remarked with '(en ")

(

"Configute the tiner to use the clock divided b
Config TinerO = Timer , Rescale = 1024

'Define the ISR handler
On OvfO TinD_isr

or the systentlock

024

enment

use

regi ster

register TIFR is set

in interrupt

y 1024

"you may also use TIMERO for OVFO, it is the sane

Enabl e Tiner0 enable the timer interrupt
Enable Interrupts 'allow interrupts to occur
Do

"your program goes here

Loop

"the following code is executed when the tiner
TinD_isr:

Print "*";

Ret urn

")

End

rolls over

wite a 1 to the bit

node

| CONFIGTIMER1

Action
Configure TIMERL1.

Syntax

CONFIG TIMER1 = COUNTER | TIMER | PWM ,

EDGE=RISING | FALLING , PRESCALE=1|8|64|256|1024,
NOISE CANCEL=0|1, CAPTURE EDGE =RISING | FALLING,
CLEAR TIMER = 10,

COMPARE A= CLEAR | SET | TOGGLE | DISCONNECT ,
COMPARE B= CLEAR | SET | TOGGLE | DISCONNECT ,

PWM =8|910,

COMPARE A PWM= CLEAR UP| CLEAR DOWN | DISCONNECT
COMPARE B PWM= CLEAR UP| CLEAR DOWN | DISCONNECT

Remarks

The TIMER1 is a 16 bit counter. See the hardware description of TIMER1.
It depends on the chip if COMPARE B is available or not.

The syntax shown above must be on one line. Not all the options need to be selected.

Here is the effect of the various options.

to the compare registers
Note that there are two compare registers A and B

PWM Can be 8, 9 or 10.

COMPARE A PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

EDGE You can select whether the TIMER will count on the falling or rising
edge. Only for COUNTER mode.

CAPTURE EDGE You can choose to capture the TIMER registers to the INPUT
CAPTURE registers

With the CAPTURE EDGE = FALLING/RISING, you can specify to
capture on the falling or rising edge of pin ICP

NOISE CANCELING To allow noise canceling you can provide a value of 1.

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.
Valid values are 1, 8, 64, 256 or 1024

The TIMER1 also has two compare registers A and B
When the timer value matches a compare register, an action can be performed

COMPARE A The action can be:

SET will set the OC1X pin

CLEAR will clear the OC1X pin

TOGGLE will toggle the OC1X pin

DISCONNECT will disconnect the TIMER from output pin OC1X

And the TIMER can be used in PWM mode
You have the choice between 8, 9 or 10 bit PWM mode

Also you can specify if the counter must count UP or down after a match

Using COMPARE A, COMPARE B, COMPARE A PWM or COMPARE B PWM will set the
corresponding pin for output. When this is not wanted you can use the alternative NO_OUTPUT
version that will not alter the output pin.

For example : COMPARE A NO_OUTPUT , COMPARE A PWM NO_OUTPUT

Example

' TIMERL. BAS for the 8515

Dm W As Word

"The TIMERL is a versatile 16 bit TIMER
"This exanple shows how to configure the TIMER

"First like TIMERO , it can be set to act as a TINER or COUNTER
'Lets configure it as a TIMER that neans that it wll count and that
"the input is provided by the internal clock.

"The internal clock can be divided by 1,8,64,256 or 1024

Config Timerl = Timer , Prescale = 1024

"You can read or wite to the timer with the COUNTERL or TIMERL variable
W= Timerl
Timerl = W

"To use it as a COUNTER, you can choose on which edge it is triggered
Config Timerl = Counter , Edge = Falling, , Prescale = 1024
"Config Tinerl = Counter , Edge = Rising

"Also you can toose to capture the TIMER registers to the |INPUT CAPTURE
registers

'"Wth the CAPTURE EDGE = , you can specify to capture on the falling or
rising edge of pin ICP

Config Timerl = Counter , Edge = Falling , Capture Edge = Falling , ,
Prescale = 1024

"Config Tinmerl = Counter , Edge = Falling , Capture Edge = Rising

"To allow noise canceling you can also provide
Config Timerl = Counter , Edge = Falling , Capture Edge = Falling , Noise
Cancel = 1, , Prescale = 1024

'to read the input capture register
W= Capturel

'to wite to the capture register
Capturel = W

'"The TIMER also has two conpare registers A and B

"When the timer value matches a conpare register, an action can be

per formed

Config Timerl = Counter , Edge = Falling , Conpare A= Set , Conpare B=
Toggle, , Prescale = 1

"SET , wll set the OCLX pin

"CLEAR, will clear the OC1X pin

"TOGGLE, will toggle the OCLX pin

' DI SCONNECT, will disconnect the TIMER from output pin OC1X

"To read wite the conpare registers, you can use the COWARELA and
COMPARELB vari abl es

Conparela = W

W= Conparela

"And the TIMER can be used in PWV node

"You have the choice between 8,9 or 10 bit PWM npde

"Also you can specify if the counter nust count UP or down after a natch
"to the conpare registers

"Note that there are two conpare registers A and B

Config Timerl = Pwm , Pwmm = 8 , Conpare A Pwm = Cear Up , Conpare B Pwm
= Clear Down

'to set the PWM registers, just assign a value to the conpare A and B
registers

Conparela = 100

Conparelb = 200

'O for better reading

Pwmla = 100
Pwmlb = 200
End

| CONFIGTIMER2

Action
Configure TIMER2.

Syntax for the 8535

CONFIG TIMER2 = TIMER | PWM , ASYNC=ON |OFF,
PRESCALE=1|8|32|64|128]|256|1024,

COMPARE= CLEAR | SET | TOGGLE | DISCONNECT ,

PWM = ON | OFF ,

COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT ,
CLEAR TIMER = 1|0

Syntax for the M103

CONFIG TIMER2 = COUNTER| TIMER | PWM ,

EDGE= FALLING |RISING,

PRESCALE=1|8]|64|256| 1024,

COMPARE= CLEAR | SET | TOGGLE | DISCONNECT ,

PWM = ON | OFF ,

COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT ,
CLEAR TIMER = 1|0

Remarks
The TIMER?2 is an 8 bit counter.
It depends on the chip if it can work as a counter or not.

The syntax shown above must be on one line. Not all the options need to be selected.

Here is the effect of the various options.

EDGE You can select whether the TIMER will count on the falling or rising
edge. Only for COUNTER mode.

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.

Valid values are 1, 8, 64, 256 or 1024

or

1,8,32,64, 256 or 1024 for the M103

The TIMER2 also has a compare registers
When the timer value matches a compare register, an action can be performed

COMPARE The action can be:

SET will set the OC2 pin

CLEAR will clear the OC2 pin

TOGGLE will toggle the OC2 pin

DISCONNECT will disconnect the TIMER from output pin OC2

And the TIMER can be used in 8 bit PWM mode
You can specify if the counter must count UP or down after a match
to the compare registers

CONFIG WAITSUART

COMPARE PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Example

Dim W As Byte

Config Tiner2 = Timer , ASYNC = 1 , Prescale = 128
On TIMER2 Myi sr

ENABLE | NTERRUPTS

ENABLE TI MER2

DO

L OOP

MY| SR:
'get here every second with a 32768 KHz xtal
RETURN

"You can read or wite to the tiner with the COUNTER2 or TIMER2 variable
W = Tiner2
Tinmer2 = W

Action

Compiler directive that specifies that software UART waits after sending the last byte.

Syntax

CONFIG WAITSUART =value

Remarks

value A numeric value in the range of 1-255.

A higher value means a longer delay in mS.

When the software UART routine are used in combination with serial LCD displays it can be
convenient to specify a delay so the display can process the data.

See also
OPEN

Example
See OPEN exanple for nore details.

CONFIG WATCHDOG

Action

Configures the watchdog timer.

CONFIG PORT

Syntax

CONFIG WATCHDOG = time

Remarks

Time The interval constant in mS the watchdog timer will count to before it will reset

your program.

Possible settings :
16, 32, 64,128, 256 , 512, 1024 and 2048.

Action

Sets the port or a port pin to the right data direction.

Syntax
CONFIG PORTx =state
CONFIG PINx.y =state

Remarks

When the WD is started, a reset will occur after the specified number of mS.

With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your programs
periodically with the RESET WATCHDOG statement.

See also
START WATCHDOG, STOP WATCHDOG , RESET WATCHDOG

Example

' (c) 1999 MCS Electronics

' WATCHD. BAS denpnstrates the watchdog tinmer
Config Watchdog = 2048 'reset after 2048 nfec
Start Watchdog 'start the watchdog tiner

Dm 1 As Word

For I =1 To 1000

Print | 'print value

' Reset Watchdog

"you will notice that the for next doesnt finish because of the reset

"when you unnark the RESET WATCHDOG statement it will finish because the

‘wd-timer is reset before it reaches 2048 nsec
Next
End

state A constant that can be INPUT or OUTPUT.

INPUT will set the data direction register to input for port X.

OUTPUT will set the data direction to output for port X.

You can also use a number for state. &B0001111, will set the upper nibble
to input and the lower nibble to output.

You can also set one port pin with the CONFIG PIN = state, statement.
Again, you can use INPUT, OUTPUT or a number. In this case the number
can be only zero or one.

state : Constant.

The best way to set the data direction for more than 1pin, is to use the CONFIG PORT, statement
and not multiple lines with CONFIG PIN statements.

Example

" (c) 1999-2000 MCS Electronics

file: PORT. BAS
denp: PortB and PortD

Dim A As Byte , Count As Byte

‘configure PORT D for input node
Config Portd = I|nput

'reading the PORT, wll read the latch, that is the value

'you have witten to the PORT.

"This is not the sane as reading the logical values on the pins!
"Wien you want to know the logical state of the attached hardware,
"you MJST use the PIN register.

A = Pind

'a port or SFR can be treated as a byte
A = A And Portd

Print A'print it

Bitwait Pind.7 , Reset 'wait until bit is |ow

"W will use port B for output
Config Portb = OQutput

"assign val ue

Portb = 10 'set port
Portb = Portb And 2
Set Portbh.0 'set bit

Incr Porth

"Now a light show on
Count =0

Do
I ncr Count
Porth =1

For A =1 To 8

B to 10

0 of port B to 1

the STK200

Rotate Porth , Left 'rotate bits left

Wait 1
Next

"the following 2 lines do the same as the previous |oop

"but there is no del
' Porth =1
' Rotate Portb , Lef

ay

t, 8

Loop Until Count = 10

Print "Ready"

CONFIG X10

Action

Configures the pins used for X10.

Syntax
CONFIG X10 = pinZC, TX = portpin

Remarks

PinzC The pin that is connected to the zero cross output of the TW-523.
This is a pin that will be used as INPUT.

Portpin The pin that is connected to the TX pin of the Tw523.
TX is used to send X10 data to the TW-523. This pin will be used in
output mode.

"Again, note that the AVR port

pins have a data direction

register

"when you want to use a pin as an input it nust be set low first

'you can do this by witing zeros to the DDRX:

The TW-523RJ-11 connector has the following pinout:

' DDRB =&B11110000

"this will set portbl.0,porth.1,portb.2 and porth.3 to

use as inputs.

'"So : when you want
DDRx!

" and read with PINx
and when you want
and wite the valu

End

to use a pin as an input

to use the pin as output,
e to PORTx

set it low first in the

wite a 1 first

Pin Description Connecttomicro

1 ZeroCross Input pin. Add 5.1K
pull up.

2 GND GND

3 RX Not used.

4 TX Output pin. Add 1K
pull up.

See also

X10DETECT, X10SEND

Example

' X10. BAS

' (c) 2002-2004 MCS Electronics

' This exarple needs a TW523 X10 interface

$crystal = 8000000
$baud = 19200

"define the house code
Const House = "M ' use code AP

Waitms 500 ' optional delay not really needed

"dim the wed variables

Dm X As Byte

‘configure the zero cross pin and TX pin
Config X10 = Pind.4 , Tx = Porth.0

' M-zero cross

' A-- transmission pin

'detect the TW 523
X = XlOdetect ()
Print X' 0 neans error, 1 neans 50 Hz, 2 neans 60 Hz

Do

Input "Send (1-32) ", X
enter a key code from %31
1-16 to address a unit
"17 all units off

'18 all lights on

19 ON

'20 OFF

‘21 DIM

'22 BRI GHT

'23 Al lights off

'24 extended code

'25 hail request

'26 hail acknow edge

'27 preset dim

'28 preset dim

'29 extended data anal og
'30 status on

'31 status off

'32 status request

X10send House , X ' send the code
Loop
End

CONST
Action
Declares a symbolic constant.
Syntax
CONST symbol = numconst
CONST symbol = stringconst
CONST symbol = expression
Remarks
Symbol The name of the symbol.
Numconst The numeric value to assign to the symbol.
Stringconst The string to assign to the symbol
Expression An expression that returns a value to assign the constant

Assigned constants consume no program memory because they only serve as a reference to the
compiler.

The compiler will replace all occurrences of the symbol with the assigned value.

See also
ALIAS

Difference with BASCOM-8051

In BASCOM-8051 only numeric constants can be used.

Example

"di mensi on some variabl es
DmZ As String * 10
Dim B As Byte

'assign sonme constants

'constants dont use program nmenory
Const S = "test"

Const A =5 'declare a as a constant
Const Bl = &B1001

'or use an expression to assign a constant
Const X = (b1 * 3) + 2

Const Ssingle = Sin(1)

COS

Action

Returns the cosine of a single

Syntax

var =COS(single)

Remarks

COSH

Var

A numeric variable that is assigned with cosine of variable single.

Action

Returns the cosine hyperbole of a single

Syntax

var =COSH (single)

Remarks

Single

The single variable to get the cosine of.

Var

A numeric variable that is assigned with cosine hyperbole of variable
single.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and

angles.

See Also

RAD2DEG, DEG2RAD , ATN , SIN

Example
Show sample

Single

The single variable to get the cosine hyperbole of.

All tig functions work with radians. Use deg2rad and rad2deg to convert between radians and

angles.

See Also

Example

Show sample

COUNTERO and COUNTER1

Action
Set or retrieve the internal 16 bit hardware register.

Syntax

COUNTERO = var
var = COUNTERO

TIMERO can also be used

COUNTER1 = var
var= COUNTER1

TIMER1 can also be used

CPEEK

Action

Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

CAPTURE1 =var
var = CAPTURE1

TIMERL1 capture register

COMPAREI1A =var
var= COMPARE1A

TIMER1 COMPARE A register

Remarks

Var Numeric variable that is assigned with the content of the program memory at
address

Address Numeric variable or constant with the address location

COMARE1B =var
var= COMPARE1B

TIMER1 COMPARE B register

PWM1A = var TIMER1 COMPAREA register. (Is used for PWM)
var= PWM1A

PWM1B =var TIMER1 COMPARE B register. (Is used for PWM)
var = PRM1B

Remarks

Var A byte, Integer/Word variable or constant that is assigned to the register or is read

from the register.

Because the above 16 bit register pairs must be accessed somewhat differently than you may
expect, they are implemented as variables.

The exception is TIMERO/COUNTERQO, this is a normal 8 bit register and is supplied for
compatibility with the syntax.

When the CPU reads the low byte of the register, the data of the low byte is sent to the CPU and
the data of the high byte is placed in a temp register. When the CPU reads the data in the high
byte, the CPU receives the data in the temp register.

When the CPU writes to the high byte of the register pair, the written data is placed in a temp
register. Next when the CPU writes the low byte, this byte of data is combined with the byte data in

the temp register and all 16 bits are written to the register pairs. So the MSB must be accessed first.

All of the above is handled automatically by BASCOM when accessing the above registers.
Note that the available registers may vary from chip to chip.
The BASCOM documentation used the 8515 to describe the different hardware registers.

There is no CPOKE statement because you can not write into program memory.
Cpeek(0) will return the first byte of the file. Cpeek(1) will return the second byte of the binary file.

See also

' (c) 19982000 MCS Electronics
' PEEK. BAS
denonstrates PEEk, POKE, CPEEK, |NP and OUT

Dm | As Integer , BlL As Byte

"dunp internal nenory

For I =0 To 31 'only 32 registers in AVR

Bl = Peek(i) 'get byte from internal nenory
Print Hex(b1) ; " %

"Poke I , 1 '"wite a value into nenory

Next

Print 'new |ine

"be careful when witing into internal nenory !!
‘now dunp a part ofthe code- menory(program
For I =0 To 255

Bl = Cpeek(i) 'get byte from internal nenory
Print Hex(b1l) ; " %

Next

‘note that you can not wite into codenenory!!

Qut &H8000 , 1 'wite 1 into XRAM at address 8000
Bl = INP(&H8000) 'return value from XRAM
Print Bl

End

| CPEEKH
Action

Returns a byte stored in upper page of code memory of M103.

End

Syntax
var = CPEEKH(address)

Remarks

Var Numeric variable that is assigned with the content of the program memory at
address

Address Numeric variable or constant with the address location

CpeekH(0) will return the first byte of the upper 64KB.

Since the M103 has 64K words of code space the LPM instruction can not access the 64 upper
Kbytes.

The CpeekH() function peeks in the upper 64 KB.
This function should be used with the M103 only.

See also

" (c) 19982000 MCS Electronics
' PEEK. BAS
' denpnstrates PEEk, POKE, CPEEK, |INP and OUT

Dm 1l As Integer , BL As Byte

"dunp internal nenory

For I =0 To 31 'only 32 registers in AVR

Bl = Peek(i) 'get byte from internal menory

Print Hex(b1) ; " %

"Poke I , 1 'wite a value into nenory

Next

Print 'new |ine

"be careful when witing into internal nenmory !!

‘now dunp a part ofthe code-menory(program
For 1 =0 To 255

Bl = Cpeek(i) 'get byte from internal nenory
Print Hex(b1) ; " %
Next

‘note that you can not wite into codenenory!!

Qut &H8000 , 1 'wite 1 into XRAM at address 8000
Bl = INP(&H8000) 'return value from XRAM
Print Bl

CRC8

Action

Returns the CRC8 value of a variable or array.

Syntax

Var =CRC8(source , L)

Remarks

Var The variable that is assigned with the CRC8 of variable source.
Source The source variable or first element of the array to get the CRC8 of.
L The number of bytes to check.

CRCS8 is used in communication protocols to check if there are no transmission errors.
The 1wire for example returns a crc byte as the last byte from it's ID.

The code below shows a VB function of crc8

Function Docrc8(s As String) As Byte
Dim j As Byte

Dim k As Byte

Dim crc8 As Byte

crc8 =0

Form =1 To Len(s)

x = Asc(Mid(s, m, 1))
Fork=0To 7

j =1 And (x Xor crc8)

crc8 = Fix(crc8 / 2) And &HFF
x = Fix(x / 2) And &HFF

If j<>0 Then

crc8 = crc8 Xor &H8C

End If

Next k

Next

Docrc8 = crc8

End Function

See also
CHECKSUM, CRC16

ASM

The following routine is called from mcs.lib : _CRC8

The routine must be called with Z pointing to the data and R24 must contain the number of bytes to
check.

On return, R16 contains the CRC8 value.

The used registers are : R16-R19, R25.

B X = Cre8(ar(1) , 7)

Ldi R24,$07 ; number of bytes

Ldi R30,$64 ; address of ar(1)

Ldi R31,$00 ; load constant in register
Rcall _Crc8 ; call routine

Ldi R26,$60 ; address of X

St X,R16 ; store crc8

Example

Dm Ar (8) As Byte , X As Byte
"init array

A(1) = &R

A (2) = &HiC

Ar(3) = &HB8

A(4) =1

A(5) =0

A(6) =0

A(7) =0

get crc8 of array. Scan 7 bytes
X = Crc8(ar (1) , 7)

A(l) = &H2
CRC16 Ar(2) = &HIC
i Ar(3) = &HB8
Action a(4) -1
Returns the CRC16 value of a variable or array. A(5) =0
A(6) =0
A(7) =0
Syntax n
Var =CRC16(source , L) ‘get crcl6é of array. Scan 7 bytes
X = Crcl6(ar(l) , 7)
Remarks
Var The variable that is assigned with the CRC16 of variable source. Should be a
word or integer variable.
Source The source variable or first element of the array to get the CRC16 value from.
L The number of bytes to check.

CRC16 is used in communication protocols to check if there are no transmission errors.
The lwire for example returns a crc byte as the last byte from it's ID.
Use CRCS8 for the 1wire routines.

There are a lot of different CRC16 routines. There is no real standard since the polynomial will vary
from manufacture to manufacture.

See also
CHECKSUM, CRC8

ASM
The following routine is called from mcs.lib : _CRC16

The routine must be called with X pointing to the data. The soft stack =Y must contain the number
of bytes to scan.

On return, R16 and R17 contain the CRC16 value.
The used registers are : R16-R19, R25.

H### X = Crel6(ar(l) , 7)

Ldi R24,$07 ; number of bytes

St -y, R24

Ldi R26,$64 ; address of ar(1)

Ldi R27,$00 ; load constant in register
Rcall _Crcl6 ; call routine

Ldi R26,$60 ; address of X

St X+,R16 ; store crcl6 LSB

St X, R17 ; store CRC16 MSB

Example
Dm Ar (8) As Byte , X As Word

"init array

Cl ose #1

CRYSTAL End
Action
Special byte variable that can be used with software UART routine to change the baudrate during
runtime.
Syntax

CRYSTAL = var (old option do not use !!)
___CRYSTAL1 = var
BAUD #1, 2400

Remarks

With the software UART you can generate good baud rates. But chips such as the ATtiny22 have
an internal 1 MHz clock. The clock frequency can change during runtime by influence of
temperature or voltage.

The crystal variable can be changed during runtime to change the baud rate.

The above has been changed in version 1.11

Now you still can change the baud rate with the crystal variable.

But you dont need to dimension it. And the name has been changed:

___ CRYSTALX where x is the channel number.

When you opened the channel with #1, the variable will be named ___ CRYSTAL1

But a better way is provided now to change the baud rate of the software uart at run time. You can
use the BAUD option now:

Baud #1 , 2400 'change baud rate to 2400 for channel 1

When you use the baud # option, you must specify the baud rate before you print or use input on
the channel. This will dimension the __ CRYSTALXx variable and load it with the right value.
When you don't use the BAUD # option the value will be loaded from code and it will not use 2
bytes of your SRAM.

The ___ CRYSTALX variable is hidden in the report file because it is a system variable. But you may
assign a value to it after BAUD #Xx, zzzz has dimensioned it.

The old CRYSTAL variable does not exist anymore.

Some values for 1 MHz internal clock :
66 for 2400 baud
31 for 4800 baud
14 for 9600 baud

See also
OPEN, CLOSE

Example

Dim B as byte

Open "comd. 1: 9600, 8, n, 1, i nverted" For Output As #1
Print #1 , B

Print #1 , "serial output”

baud #1, 4800 'use 4800 baud now

Print #1, "serial output”

___CRYSTAL1 = 255

CURSOR

Action
Set the ICD Cursor State.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.

See also
DISPLAY , LCD

Example

Dim a As Byte

a = 255

Led A

Cursor Of 'hide cursor
Wait 1 'wait 1 second
Cursor Blink '"blink cursor
End

DATA

Action

Specifies constant values to be read by subsequent READ statements.

Syntax
DATAVvar [, varn]
Remarks

Var | Numeric or string constant.

The DATA related statements use the internal registers pair R8 and R9 to store the data pointer.

To store a " sign on the data line, you can use :

DATA $34

The $-sign tells the compiler that the ASCII value will follow of the character.

You can also use this to store special characters that can't be written by the editor such as chr(7)

Another way to include special ASCII characters in your string constant is to use {XXX}. You need
to include exactly 3 digits representing the ASCII character. For example 65 is the ASCII number for
the character A.

DATA "TEST{065}"

Will be read as TESTA.

While :

DATA "TEST{65}" will be read as :

TEST{65}. This because only 2 digits were included instead of 3.

{xxx} works only for string constants. It will also work in a normal string assignment :
s = "{065}" . This will assign A to the string s.

Because the DATA statements allows you to generate an EEP file to store in EEPROM, the $DATA
and $EEPROM directives have been added. Read the description of these directives to learn more
about the DATA statement.

The DATA statements must not be accessed by the flow of your program because the DATA
statements are converted to the byte representation of the DATA.

When your program flow enters the DATA lines, unpredictable results will occur.

So as in QB, the DATA statement is best be placed at the end of your program or in a place that
program flow will no enter.

For example this is fine:

Print "Hello"
Goto jump
DATA "test"

Jump:
'‘because we jump over the data lines there is no problem.

The following example will case some problems:
Dim S As String * 10

Print "Hello" "Note that integer values (>255 or <0) nust end with the %sign
Restore Ibl "also note that the data type nust match the variable type that is
"used for the READ statenent

Read S
DATA "test" Dt a4:
Print S Dat a 123456789&

"Note that LONG values nust end with the &sign
"Also note that the dta type nust match the variable type that is used
‘for the READ statenent

When the END statement is used it must be placed BEFORE the DATA lines.

Difference with QB

Integer and Word constants must end with the % -sign.
Long constants must end with the &-sign.

Single constants must end with the !-sign.

See also

Example
' READDATA. BAS
' Copyright 1999-2000 MCS El ectronics

Dim A As Integer , Bl As Byte , Count As Byte
DmS As String * 15

DmL As Long

Restore Dtal 'point to stored data

For Count = 1 To 3 'for nunber of data itens
Read Bl : Print Count ; " "; Bl

Next

Restore Dta2 'point to stored data

For Count = 1 To 2 'for nunber of data itens
Read A : Print Count ; " "; A

Next

Restore Dt a3
Read S: Print S
Read S : Print S

Rest ore Dt a4
Read L : Print L '"long type

End

Dt al:

Data &B10 , &HFF , 10
Dt a2:

Data 1000% , -1%

Dt a3:
Data "Hello" , "World"

| DAYOFWEEK

Action
Returns the Day of the Week of a Date.

Syntax

Target = DayOfWeek()

Target = DayOfWeek(bDayMonthYear)
Target = DayOfWeek(strDate)
Target = DayOfWeek(wSysDay)
Target = DayOfWeek(ISysSec)

Remarks

Target AByte — variable, that is assigned with the day of the week

BDayMonthYear AByte — variable, which holds the Day -value followed by
Month(Byte) and Year (Byte)

StrDate A String, which holds a Date-String i n the format specified in the
CONFIGDATE statement

WSysDay A Word — variable, which holds the System Day (SysDay)

LSysSec AlLong — variable, which holds the System Second (SysSec)

The Function can be used with five different kind of Input:

1. 1. Without any parameter. The internal Date-valuesofSOFTCLOCK (_day,
_month, _year) are used.

2. 2. With a user defined date array. It must be arranged in same way (Day,
Month, Year) as the internal SOFTCLOCK date. The first Byte (Day) is the input
by this kind of usage. So the Day of the Week can be calculated of every date.

3. 3. With a Date-String. The date-string must be in the Format specified in the
Config Date Statement

4. 4. With a System Day — Number.
5. 5. With a System Second - Number

The Return-Value is in the range of O to 6, Monday starts with O.
The Function is valid in the 21th century (from 2000-01-01t02099-12-31).

See Also
Date and Time routines , CONFIG DATE , CONFIG CLOCK, SYSDAY, SYSSEC

Example

Enable Interrupts
Config Clock = Soft
Config Date = YMD , Separator = . " ANSI-Format

Dim bWeekDay as Byte

Dim strDate
Dim bDay as
Dim wSysDay

as String *
Byte , bMon
as Word

8

, strWeekDay as String * 10

th as Byte , bYear as Byte

Load RTC-Clock for example -

" is " ; bWeekday ; " =

im ISysSec as Long
* Example 1 with internal RTC-Clock
_Day =24 : _Month = 10 _Year = 2
testing
bWeekDay = DayOfWeek()
strWeekDay = Lookupstr(bWeekDay , WeekDays)
print "Weekday-Number of ™ ; Date$;
strWeekday

" Weekday-Number of 02.10.24 is 3 =

Thursday

- Example 2 with defined Clock - Bytes (Day / Month / Year)

bDay = 26

bMonth = 11

: bYear =

bWeekDay = DayOfWeek(bDay)
Lookupstr(bWeekDay , WeekDays)

striWeekDay =

print "Weekday-Number of Day="; bDay
", bWeekday ; " = " ; strWeekday
" Weekday-Number of Day=26 Month=11 Year=2 is 1 = Tuesday

bYear ; " is

Example 3 with System Day

wSysDay = 20

00 " that i

s 2005-06-23

bWeekDay = DayOfWeek(wSysDay)
bWeekDay , WeekDays)

strWeekDay =

Lookupstr(

print "Weekday-Number of System Day

' ; strWeekd

ay

" Weekday-Number of System Day 2000

ISysSec = 12
strWeekDay =

= " strW

3456789 " t
Lookupstr(

eekday

Ecample 4 with System Second

;" Month="; bMonth ; "

is 3 = Thursday

hat is 2005-06-23
bWeekDay = DayOfWeek(1SysSec)
bWeekDay , WeekDays)
prlnt "Weekday-Number of System Second ™ ; ISysSec ; is " ; bWeekday

* Weekday-Number of S/stem Second 123456789 is 5 = Saturday

Example 5 with Date-String

strDate = "02.11.26" " we have configured Date in ANSI
bWeekDay = DayOfWeek(strDate)

strWeekDay = Lookupstr(bWeekDay , WeekDays)

print "Weekday-Number of ™ ; strDate ; " is " ; bWeekday ;
strWeekday

* Weekday-Number of 02.11.26 is 1 = Tuesday

End

WeekDays:

Data "Monday"™

"Sunday"

"Tuesday"

"Wednesday",

“Thursday"™, "Friday",

Year="

wSysDay ; " is " ; bWeekday ; "

N

"Saturday",

DAYOFYEAR

Action
Returns the Day of the Year of a Date

Syntax

Target = DayOfYear()

Target = DayOfYear(bDayMonthYear)
Target = DayOfYear(strDate)
Target = DayOfYear(wSysDay)
Target = DayOfYear(ISysSec)

Remarks

Target A Integer, that is assigned with the Day of the Year

BDayMonthYear A Byte, which holds the Day-value followed by Month(Byte) and
Year (Byte)

StrDate A String, which holds a Date-String in the format specified in the
CONFIGDATE statement

WSysDay A Variable (Word) which holds a System Day (SysDay)

LsysSec A Variable (Long) which holds a System Second (SysSec)

The Function can be used with five different kind of Input:

1. Without any parameter. The internal Date-valuesof SOFTCLOCK (_day,_month,
_year) are used.

2. With a user defined date array. It must be arranged in same way (Day, Month,
Year) astheinternal SOFTCLOCK date. The first Byte (Day) is the input by this
kind of usage. So the Day of the Year can be calculated of every date.

3. With a Date- String. The date-string must be in the Format specified in the Config
Date Statement.

4. With a System Day Number (WORD)
5. With a System Second Number (LONG)

The Return-Value is in the Range of O to 364 (365 in a leap year). January the first
starts with 0.

The function is valid in the 21th century (from 2000-01-01t02099 -12- 31).

See also
Date and Time Routines , SysSec , SysDay

Example

Enable Interrupts
Config Clock = Soft
Config Date = YMD , Separator = . ° ANSI-Format

Dim strDate as String * 8

Dim bDay as Byte , bMonth as Byte , bYear as Byte
Dim wSysDay as Word

Dim ISysSec as Long

Dim wDayOfYear as Word

" Example 1 with internal RTC-Clock

_day = 20 : _Month = 11 : _Year = 2 " Load RTC-Clock for example -
testing

wDayOfYear = DayOfYear()

print "Day Of Year of " ; Date$; " is " ; wDayOfYear

" Day Of Year of 02.11.20 is 323

" Example 2 with defined Clock - Bytes (Day / Month / Year)

bDay = 24 : bMonth = 5 : bYear = 8

wDayOfYear = DayOfYear(bDay)

print "Day Of Year of Day="; bDay ; " Month="; bMonth ; " Year=" ; bYear
;" is " ; wDayOfYear

" [y Of Year of Day=24 Month=5 Year=8 is 144

Example 3 with Date - String
strDate = "04.10.29"
wDayOfYear = DayOfYear(strDate)
print "Day Of Year of " ; strDate ; " is " ; wDayOfYear
* Day Of Year of 04.10.29 is 302

Example 4 with System Day

wSysDay = 3000

wDayOfYear = DayOfYear(wSysDay)

print "Day Of Year of System Day " ; wSysDay ; " 1is " ; wDayOfYear

* Day Of Year of System Day 3000 is 78

Example 5 with System Second

ISysSec = 123456789

wDayOfYear = DayOfYear (ISysSec)

print "Day Of Year of System Second " ; ISysSec ; " is " ; wDayOfYear
" Day Of Year of System Second 123456789 is 332

DATE$

Action
Internal variable that holds the date.

Syntax
DATE$ = "mm/dd/yy"
var = DATE$

Remarks
The DATES variable is used in combination with the CONFIG CLOCK directive.

The CONFIG CLOCK statement will use the TIMERO or TIMER2 in async mode to create a 1
second interrupt. In this interrupt routine the _Sec, _Min and _Hour variables are updated. The
_dat, month and _year variables are also updated. The date format is in the same format as for
QB/VB.

When you assign DATES$ to a string variable these variables are assigned to the DATE$ variable.

When you assign the DATES$ variable with a constant or other variable, the _day, _month and _year
variables will be changed to the new date.

The only difference with QB/VB is that all data must be provided when assigning the date. This is
done for minimal code. You can change this behavior of course.

The async timer is only available in the M103, 90S8535, M163 and M32(3), Megal28, Mega8. For
other chips it will not work.

ASM

The following asm routines are called.
When assiging DATE$: _set_date (calls _str2byte)
When reading DATES$: _make_dt (calls _byte2str)

See also
TIME$, CONFIG CLOCK

Example

MECACLOCK. BAS

(c) 2000-2004 MCS H ectronics
"This exanple shows the new TIME$S and DATE$ reserved variables
"Wth the 8535 and timer2 or the MegalO3 and TIMERO you can
"easily inplement a clock by attaching a 32768 Hz xtal to the tiner
"And of course some BASCOM code

"This exanple is witten for the STK300 with MO3
Enable Interrupts

"[configure LCD|

$l cd = &HX00 'address for E and RS

$l cdrs = &B000 'address for only E

Config Lcd = 20 * 4 "nice display from bg mcro

Config Ledbus = 4 "we run it in bus node and | hooked up only db4-db7
Config Lcdnmode = Bus 'tell about the bus node

"[now init the clock]
Config Date = Mdy , Separator =/ ' ANSI-Format

Config Cock = Soft "this is how sinple it is

' The above staterment will bind in an ISR so you can not use the TIMER anynore!

"For the MLO3 in this case it nmeans that TIMERO can not be used by the user

‘assign the date to the reserved date$
"The format is MV DD YY
Dat e$ = "11/11/00"

‘assign the tine, format in hh:nmmss nilitary fornat(24 hours)

"You may not use 1:2:3 !! adding support for this would mean overhead
"But of course you can alter the library routines used

Ti me$ = "02: 20: 00"

‘clear the LCD display

C's

Do

Home ' cursor hone

Lcd Date$; " " ; Tinebs 'show the date and tine

Loop

'The clock routine does use the following internal variables:
‘_day , _nonth, _year , _sec, _hour, _mn

'These are all bytes. You can assign or use them directly
_day=1

‘For the _year variable only the year is stored, not the century
End

anynor e

DATE

Action

Returns a date-value (String or 3 Byte for Day, Month and Year) depending of the
Type of the Target

Syntax

bDayMonthYear= DatglSysSec)
bDayMonthYear= DatglSysDay)

bDayMonthYear= Datg(strDate)

strDate = DatgISysSec)
strDate = DatgISysDay)
strDate = Dateg(bDayMonthYear)

Remarks

StrDate ADate-String in the format specified in the CONFIGDATE
statement

LsysSec ALONG - variable which holds the System Second (SysSec =
TimeStamp)

LsysDay AWORD - variable, which holds then System Day (SysDay)

BDayMonthYear ABYTE - variable, which holds Days, followed by Month (Byte) and
Year (Byte)

Converting to String:

The target string must have a length of at least 8 Bytes, otherwise SRAM after the
target-string will be overwritten.

Converting to Softclock date format (3 Bytes for Day, Month and Year):

Three Bytes for Day, Month and Year must follow each other in SRAM. The variable-
name of the first Byte, that one for Day must be passed to the function.

See also
Date and Time Routines , DAYOFYEAR, SYSDAY

Example

Enable Interrupts

Config Clock = Soft

Config Date = YMD , Separator = . " ANSI-Format
Dim strDate as String * 8

Dim bDay as Byte , bMonth as Byte , bYear as Byte

Dim wSysDay as Word
Dim ISysSec as Long

* Example 1: Converting defined Clock - Bytes (Day / Month / Year) to
Date - String

bDay = 29 : bMonth = 4 : bYear = 12

strDate = Date(bDay)

print "Dat values: Day="; bDay ; " Month="; bMonth ; " Year=" ; bYear ; "
converted to string " ; strDate

" Dat values: Day=29 Month=4 Year=12 converted to string 12.04.29

Example 2: Converting from System Day to Date - String
wSysDay = 1234

strDate = Date(wSysDay)

Print "System Day " ; wSysDay ; " is " ; strDate

" System Day 1234 is 03.05.19

Example 3: Converting from System Second to Date String
ISysSec = 123456789
strDate = Date(lSysSec)
Print "System Second " ; ISysSec ; " is " ; strDate
" System Second 123456789 is 03.11.29

Example 4: Converting SystemDay to defined Clock - Bytes (Day / Month 7/
Year)

wSysbay = 2000

bDay = Date (wSysDay)

print "System Day " ; wSysDay ; ' converted to Day="; bDay ; " Month=";
bMonth ; " Year=" ; bYear

" System Day 2000 converted to Day=23 Month=6 Year=5

Example 5: Converting Date - String to defined Clock - Bytes (Day /
Month / Year)
strDate = "04.08.31"
bDay = Date (strDate)
print "Date " ; strDate ; " converted to Day="; bDay ; " Month="; bMonth
;" Year=" ; bYear
" Date 04.08.31 converted to Day=31 Month=8 Year=4

Example 6: Converting System Second to defined Clock - Bytes (Day /
Month / Year)

ISysSec = 123456789

bDay = Date (ISysSec)

print "System Second ISysSec ; " converted to Day="; bDay ;
Month="; bMonth ; ™ Year=" ; bYear

" System Second 123456789 converted to Day=29 Month=11 Year=3

DBG | DEBOUNCE

Action

ACtion Debounce a port pin connected to a switch.

Prints debug info to the hardware UART Syntax

Syntax DEBOUNCEPX.y , state, label [, SUB]

DBG
Remarks

Remarks Px.y A port pin like PINB.O , to examine.

See $DBG for more information
State 0 for jumping when PINX.y is low , 1 for jumping when PINX.y is high
Label The label to GOTO when the specified state is detected
SuUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is performed instead of a GOTO.
The DEBOUNCE statement tests the condition of the specified pin and it true there will be a delay
for 25 mS and the condition will be checked gagain.(eliminating bounce of a switch)

When the condition is still true and there was no branch before, it branches to the label.

When the condition is not true, or the logic level on the pin is not of the specified level, the code on
the next line will be executed.

When DEBOUNCE is executed again, the state of the switch must have gone back in the original
position before it can perform another branch. So if you are waiting for a pin to go low, and the pin
goes low, the pin must change to high, before a new low level will result in another branch.

Each DEBOUNCE statement, which uses a different port, uses 1 BIT of the internal memory to hold
its state.

DEBOUNCE will not wait for the input value to met the specified condition. You need to use
BITWAIT if you want to wait until a bit will have a certain value.

So DEBOUNCE will not halt your program while a BITWAIT can halt your program if the bit will
never have the specified value. You can combine BITWAIT and DEBOUNCE statements by
preceding a DEBOUNCE with a BITWAIT statement.

See also

CONFIG DEBOUNCE, BITWAIT

Example

' DEBOUN. BAS
Denonstrat es DEBOUNCE

Confi g Debounce = 30 "when the config statenent is not used a default of
25n5 will be used

' Debounce Pind.0 , 1 , Pr '"try this for branching when high(1)
Debounce Pind. 0O , 0, Pr , Sub
Debounce Pind. 0 , 0, Pr , Sub
' N---- |abel to branch to
B Branch when P1.0 goes |ow(0)
R L] Exanmine P1.0

‘"When Pind.0 goes low junmp to subroutine Pr
"Pind.0 nmust go high again before it junps again
"to the label Pr when Pind.0 is |ow

Debounce Pind.0 , 1, Pr '"no branch

Debounce Pind.0 , 1, Pr '"will result in a return wthout
End

Pr:

Print "PIND.O was/is |ow

Ret urn

gosub

| DECR

Action

Decrements a variable by one.

Syntax
DECR var

Remarks

Var | Variable to decrement.

var : Byte, Integer, Word, Long, Single.

There are often situations where you want a number tobe decreased by 1.
The Decr statement is provided for compatibility with BASCOM-8051.

See also
INCR

Example

file: DECR BAS
' Deno: DECR

Dm A As Byte , | As Integer

A =5 "assign value to a
Decr A 'decrease (by one)
Print A'print it

I = 1000
Decr |
Print |
End

| DECLARE FUNCTION

Action

Declares a user function.

Syntax
DECLARE FUNCTION TEST[([BYREF/BYVAL] var as type)] As type

Remarks

test Name of the function.

Var Name of the variable(s).

Type Type of the variable(s) and of the result. Byte,Word, Irteger, Long, Single or
String.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.
Use BYREF to pass a variable by reference with its address.

Use BYVAL to pass a copy of the variable.
See the CALL statement for more details.

You must declare each function before writing the function or calling the function.
Bits are global and can not be passed with functions or subs.

See also
CALL, SUB

Example

" (c) 1999-2000 MCS Electronics
' Denonstration of wuser function

"A user function nust be declare before it can be used.
"A function nust return a type

Decl are Function Myfunction(byval | As Integer , S As String) As Integer
'The byval paranter wll pass the paraneter by value so the original

val ue

"Wwill not be changed by the function

Dim K As | nteger
DmZ As String * 10
Dm T As Integer
"assign the val ues

K=15
Z = "123"
T = Wyfunction(k , 2)

Print T
End

Function Myfunction(byval | As Integer , S As String) As Integer
'you can use local variables in subs and functions

Local P As Integer

P=1

'because | is passed by value, altering will not change the original

"variable named k
I =10

P = Val (s) +1

"finally assign result

"Note that the sane data type nust be used !

'So when declared as an Integer function,
"assigned with an Integer in this case.
Myfunction = P

End Function

the result

can only be

| DECLARE SUB

Action

Declares a subroutine.

Syntax
DECLARE SUB TEST[([BYREF/BYVAL] var as type)]

DEFxxX

Action

Declares all variables that are not dimensioned of the DefXXX type.

Remarks

test Name of the procedure.

Var Name of the variable(s).

Type Type of the variable(s). Byte, Word, Integer, Long, Single or String.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.

Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.
See the CALL statement for more details.

You must declare each sub before writing or calling the sub procedure.
Bits are global and can not be passed to a sub or function.

See also
CALL, SUB

Example

Dim a As Byte, bl
Decl are Sub Test(a
a=1:bl =2 c

As Byte, ¢ As Byte
As Byte)
3

Print a; bl ; c

Call Test(bl)
Print a ;bl ; c
End

Sub Test(a as byte)
Print a; bl ; c
End Sub

Syntax

DEFBIT b Define BIT
DEFBYTE c Define BYTE
DEFINT | Define INTEGER
DEFWORD x Define WORD
DEFLNG | DefineLONG
DEFSNG s Define SINGLE

Difference with QB
QB allows you to specify a range like DEFINT A- D. BASCOM doesn't support this.

Example
Defbit b

Set bl 'set
c = 10 'let

‘default typ

to 1

e for bit

DEFLCDCHAR

Action

Define a custom LCD character.

Syntax
DEFLCDCHARchar,r1,r2,r3,r4,r5,r6,r7,r8

Remarks
char Constant representing the character (0-7).
r1-r8 The row values for the character.

DEG2RAD
Action
Converts an angle in to radians.
Syntax
var =DEG2RAD(single)
Remarks
Var A numeric variable that is assigned with the degrees of variable single.
Single The single variable to get the degrees of.

You can use the LCD designer to build the characters.
It is important that a CLS follows the DEFLCDCHAR statement(s).

Special characters can be printed withthe Chr() function.

See also
Tools LCD designer

Example

Deflcdchar 0, 1, 2, 3, 4, 5, 6, 7, 8 '"define special
Cs 'select LCD DATA RAM

Lcd Chr (0) 'show the character

End

character

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also

RAD2DEG

Example

Dm S As Single
S = 90

S = Deg2Rad(s)
Print S

DELAY

DIM

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.
The delay time is ca. 1000 microseconds.

See also
WAIT , WAITMS

Example
Porth =5
Del ay

Action

Dimension a variable.

Syntax

DIMvar AS KXRAM/SRAM/ERAM] type [AT location] [OVERLAY]

Remarks

Var Any valid variable name such as b1, i or longname. var can also be an
array : ar(10) for example.

Type Bit, Byte, Word, Integer, Long, Single or String

XRAM Specify XRAM to store variable into external memory

SRAM Specify SRAM to store variable into internal memory (default)

ERAM Specify ERAM to store the variable into EEPROM

OVERLAY Specify that the variable is overlaid in memory.

A string variable needs an additional length parameter:
Dim s As XRAM String * 10
In this case, the string can have a maximum length of 10 characters.

Note that BITS can only be stored in internal memory.

The optional AT parameter lets you specify where in memory the variable must be stored. When the
memory location already is occupied, the first free memory location will be used.

The OVERLAY option will not use any variable space. It will create a pointer:
Dim x as Long at $60 ‘long uses 60,61,62 and 63 hex of SRAM

Dim bl as Byte at $60 OVERLAY

Dim b2 as Byte at $61 OVERLAY

B1 and B2 are not real variables! They point to a place in memory. In this case to &H60 and &H61.
By assigning the pointer B1, you will write to memory location &H60 that is used by variable X.

You can also read the content of B1: Print B1
This will print the content of memory location &H60.
By using a pointer you can manipulate the individual bytes of real variables.

Another example

Dim L as Long at &H60

Dim W as Word at &H62 OVERLAY

W will now point to the upper two bytes of the long.

For XRAM variables, you need additional hardware : an external RAM chip.

For ERAM variables, it is important to understand that these are not normal variables. ERAM
variables serve as a way to simple read and write the EEPROM memory. You can use
READEEPROM and WRITEEEPROM for that purpose too.

ERAM variables only can be assigned to SRAM variables, and ERAM variables can be assigned to "Assign string

SRAM variables. You can not use an ERAM variable as you would use a normal variable. S = "Hello world"
Dim b as byte, bx as ERAM byte Print S
B=1 End

Bx=b ‘ write to EEPROM
B=bx ‘ read from EEPROM

Difference with QB

In QB you don't need to dimension each variable before you use it. In BASCOM you must
dimension each variable before you use it. This makes for safer code.

In addition, the XRAM/SRAM/ERAM options ae not available in QB.

See Also
CONST, LOCAL

Example

file: DI M BAS

denp: DIM

Dm BL As Bit 'bit can be 0 or 1

Dm A As Byte 'byte range from 0-255

Dm C As Integer '"integer range from -32767 - +32768
DmL As Long

Dm W As Word

DmS As String * 10 'length can be up to 10 characters

"new feature : you can specify the address of the variable
Dim K As |Integer At 120
"the next dinmensioned variable will be placed after variable s

Dim Kk As |nteger

"Assign bits
Bl = 1 'or
Set Bl 'use set

' Assign bytes

A= 12
A=A+1

" Assign integer
Cc=-12
C= C + 100
Print C

W= 50000
Print W

" Assign |ong
L = 12345678
Print L

DIR

Action
Returns the filename that matches the specified filemask.

Syntax

sFile =Dir(mask)

sFile = Dir()

Remarks

SFile A string variable that is assigned with the filename.

Mask A file mask with a valid DOS filemask like *. TXT
Use *.* to select all files.

The first function call needs a file mask. All other calls do not need the filemask. In fact when you
want to get the next filename from the directory, you must not provide a mask after the first call.
Dir() returns an empty string when there are no more file or when no file name is found that
matches the mask.

See also

,EILELEN , FILEDATE , EILETIME , EILEDATETIME

WRITE , INPUT

ASM

Calls _Dir ; with filemask _Dir0 ; without filemask

DISABLE
Action
Disable specified interrupt.
Syntax
DISABLE interrupt
Remarks
Interrupt Description
INTO External Interrupt O
INT1 External Interrupt 1
OVFO0,TIMERO, COUNTERO TIMERO overflow interrupt
OVF1,TIMER1, TIMERL1 overflow interrupt
COUNTERL1
CAPTUREL1, ICP1 INPUT CAPTURE TIMER1 interrupt
COMPARE1A,0C1A TIMER1 OUTPUT COMPARE A interrupt
COMPARE1B,0C1B TIMER1 OUTPUT COMPARE B interrupt
SPI SPI interrupt
URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt
ADC A/D converter interrupt

Input X : points to the string with the mask

Z : points to the target variable

Output

Example

'"Lets have a look at the file we created

Print "Dir function denmp"

S=Dr("*.*")

"The first call to the DIR() function nust contain a file mask
The * neans everything.

VWhile Len(s) > 0 ' if there was a file found
Print S; " ", Filedate() ; " "; Filetime() ; " "; Filelen()
' print file , the date the fine was created/changed , the tinme and the

size of the file
S=Dr() ' get next
Wend

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.
To enable the enabling and disabling of individual interrupts use ENABLE INTERRUPTS.

The interrupts that are available will depend on the used microprocessor.

See also
ENABLE

Example
' SERI NT. BAS
(c) 1999-2001 MCS El ectronics
' serial interrupt exanple for AVR

"$regfile = "8535def.dat"

Const Cmaxchar = 20 'nunber of characters

DmB As Bit 'a flag for signalling a received character
Dim Bc As Byte 'byte counter

Dim Buf As String * Cmaxchar 'serial buffer

Dm D As Byte

"Buf = Space(Cmaxchar)
‘unremark |ine above for the MD() function in the ISR
"we need to fill the buffer with spaces otherwise it wll contain garbage

Print "Start"

O Urxc Rec_isr 'define serial receive ISR
Enabl e Urxc 'enable receive isr

Enabl e Interrupts 'enable interrupts to occur

Do

If B =1 Then 'we received sonething
Di sabl e Seri al

Print Buf 'print buffer

Print Bc 'print character counter

‘now check for buffer full
If Bc = Cmaxchar Then "buffer full

Buf = "" 'clear
Bc = 0 'rest character counter
End If

Reset B 'reset receive flag
Enabl e Seri al

End If

Loop

Rec_isr:

Print "*"

If Bc < Cmaxchar Then 'does it fit into the buffer?
Incr Bc 'increase buffer counter

If Udr = 13 Then 'return?

Buf = Buf + Chr(0)

Bc = Cmaxchar

El se

Buf = Buf + Chr(udr) 'add to buffer
End If

' Md(buf , Bc , 1) = Udr

‘unremark line above and remark the line with Chr() to place
"the character into a certain position

'B = 1 'set flag

End If

B =1 "set flag

Return

DISKFREE
Action
Returns the free size of the Disk
Syntax
IFreeSize =DiskFree ()
Remarks
IFreeSize A Long Variable, which is assigned with the available Bytes on the
Disk in Bytes

This functions returns the free size of the disk in Bytes.

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
EILEDATE, FILETIME , FILEDATETIME , DIR, FILELEN

WRITE , INPUT

ASM

Calls _GetDiskFreeSize

Input none

Output rl6-r19: Long-Value of free Bytes

Example

Dim Gbtenpl As Byte ' scratch byte

Gbtenpl = Initfilesystem'1l) ' we nust init the filesystem once
If Gbtenmpl > 0 Then

Print #1 , "Error " ; Gbtenpl

El se

Print #1 , " OK"

Print "Disksize : " ; Disksize() ' show disk size in bytes
Print "Disk free: " ; Diskfree() ' show free space too
End If

DISKSIZE

Action

Returns the size of the Disk

Syntax
ISize =DiskSize ()

Remarks

ISize A Long Variable, which is assigned with the capacity of the disk in
Bytes

This functions returns the capacity of the disk.

Same Function in QB:

See also

FILEATTR , SEEK , BSAVE ,BLOAD , KILL , DISKFREE , GET, PUT

FILEDATE , FILETIME , FILEDATETIME , DIR, FILELEN
WRITE , INPUT

ASM

Calls _GetDiskSize

Input none

Output 16-r19: LongValue of capacity in Bytes

Example

Dim Gbtenpl As Byte ' scratch byte

Gbtenpl = Initfilesystem'l) ' we nust init the filesystem once
If Gbtenpl > 0 Then

Print #1 , "Error " ; Gbtenpl

El se

Print #1 , " K"

Print "Disksize Di sksi ze() show disk size in bytes
Print "Disk free: Di skfree() show free space too

End If

DISPLAY

Action
Turn LCD display on or off.

Syntax

DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
LCD
Example
Dm A As Byte
a = 255

Lcd A

Di splay O f
Wait 1

Di splay On
End

| DO-LOOP

DriveCheck

Action

Repeat ablock of statements until condition is true.

Syntax

DO

statements

LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.
The DO-LOOP is always performed at least once.

See also

Example

' denp: DO, LOOP

Dm a As Byte

A =1 "assign a var

Do 'begin a do..loop

Print A 'print var

Incr A 'increase by one

Loop Until A = 10 'do until a=10
End

"You can wite a never-ending loop with the follow ng code

Do
"Your code goes here
Loop

Action

Checks the Drive, if it is ready for use

Syntax
bErrorCode =DriveCheck()

Remarks

BerrorCode A Byte Variable, which is assigned with the return value of the function

This function checks the drive, if it is ready for use (for example, whether a compact flash card is
inserted). The functions returns 0 if the drive can be used, otherwise an errorcode is returned. For

Errorcode see section Errorcodes.

See also

DriveReset , Drivelnit , DriveGetldentity , DriveWriteSector, DriveReadSector

ASM

Calls _DriveCheck

Input none

Output r25: Errorcode C-Flag: Set on Error
Example

Dim bError as Byte
bError =DriveCheck()

- - 'Now read the parameter Information from CF-Card
DnveGetldent'ty bError =DriveGetldentity (WSRAMPointe)

Action

Gets the Parameter information from the Card/Drive

Syntax
bErrorCode =DriveGetldentity (wWSRAMPointer)

Remarks

BErrorCode A Byte Variable, which is assigned with the errorcode of the function

WSRAMPointer A Word Variable, which contains the SRAM address (pointer) , to
which the information of the Drive should be written

TheldentifyDrive Function gets the parameter information (512 Bytes) from the CompactFlash
Memory Card/Drive and writes it to SRAM starting at the address, to which the content of the
variable wSRAMPointer is pointing. This information are for examples number of sectors ofthe
card, serial number and so on. Refer to the Card/Drive manual for further information. The functions
returns 0 if no error occured. For Errorcode see section Errorcodes.

Note: For meaning of WSRAMPointer see Note in DriveReadSector

See also

ASM

Calls _DriveGetldentity

Input Z: SRAM-Addressofbuffer
Output r25: Errorcode C-Flag: Set on Error

*)Please note: This is not the address of wSRAMPointer, it is its content, which is the starting-
address of the buffer.

Example

Dim bError as Byte
Dim aBuffer(512) as Byte ' Hold Sector to and from CF-Card
Dim wSRAMPointerasWord ' Address-Pointer for write

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
WSRAMPointer= VarPtr(aBuffer(1))

Drivelnit

Action
Sets the AVR-Hardware (PORTSs, PINs) attached to the Drive and resets the Drive.

Syntax
bErrorCode =Drivelnit ()

Remarks

DriveReset

BErrorCode A Byte Variable, which is assigned with the errorcode of the function

Action
Resets the Drive.

Syntax
bErrorCode =DriveReset ()

Remarks

Set the Ports and Pins attaching the Drive for Input/Output and give initial values to the output-pins.
After that the Drive is reset. Which action is done in this function depends of the drive and its kind of
connection to the AVR. The functions returns 0 if no error occured. For Errorcode see section
Errorcodes.

See also

DriveCheck, DriveReset , DriveGetldentity , DriveWriteSector, DriveReadSector

BErrorCode A Byte Variable, which is assigned with the errorcode of the function

This function resets the drive and brings it to an initial state. The functions returns 0 if no error
occured. For Errorcode see section Errorcodes.

See also
DriveCheck, Drivelnit , DriveGetldentity , DriveWriteSector, DriveReadSector

ASM

Calls _Drivelnit

Input none

Output r25: Errorcode C-Flag: Set on Error
Example

Dim bError as Byte
bError =Drivelnit()

ASM

Calls _DriveReset

Input none

Output r25: Errorcode C-Flag: Set on Error
Example

Dim bError as Byte
bError =DriveReset()

DriveReadSector

Action
Read a Sector (512 Bytes) from the (Compact Flashcard-) Drive

Syntax
bErrorCode =DriveReadSector (WSRAMPointer, ISectorNumber)

Remarks

bErrorCode A Byte Variable, which is assigned with the errorcode of the function

WSRAMPointer A Word Variable, which contains the SRAM address (pointer) , to
which the Sector from the Drive should be written

ISectorNumber A Long Variable, which give the sectornumber on the drive be transfer.

Reads a Sector (512 Bytes) from the Drive and write it to SRAM starting at the address, to which
the content of the variable wSRAMPointer is pointing. The functions returns 0 if no error occured.
For Errorcode see section Errorcodes.

Note: wSRAMPointer is not the variable, to which the content of the desired drive-sector should be
written, it is the Word-Variabe/Value which contains the SRAM address of the range, to which 512
Bytes should be written from the Drive. This gives you the flexibility to read and write every SRAM-
Range to and from the drive, even it is not declared as variable. If you know the SRAM-Address
(from the compiler report) of a buffer you can pass this value directly, otherwise you can get the
adress with the BASCOM-function VARPTR (see example).

See also
DriveCheck, DriveRese , Drivelnit , DriveGetldentity , DriveWriteSector

ASM

Calls DriveReadSector

Input Z: SRAM-Addressofbuffer X: Address of Long-variable
with sectornumber

Output r25: Errorcode C-Flag: Set on Error

" please note: This is not the address of wSRAMPointer, it is its content, which is the starting-
address of the buffer.

Example

Dim bError as Byte
Dim aBuffe512) as Byte ' Hold Sector toand from CF-Card

Dim wSRAMPointerasWord ' Address-Pointer for write
Dim ISectorNumber as Long ' Sector Number

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
wWSRAMPointer= VarPtr(aBuffer(1))

' Set Sectornumber, sector 32 normally holds the Boot record sector of first partition
ISectorNumber = 32

' Now read in sector 32 from CF-Card
bError =DriveReadSector(wSRAMPointer, ISectorNumber)
' Now Sector number 32 is in ByteArray bBuffer

DriveWriteSector

Action
Write a Sector (512 Bytes) to the (Compact Flashcard-) Drive

Syntax
bErrorCode =DriveWriteSector (WSRAMPointer, ISectorNumber)

Remarks

bErrorCode A Byte Variable, which is assigned with the errorcode of the function

WSRAMPointer A Word Variable, which contains the SRAM address (pointer), from
which the Sector to the Drive should be written

ISectorNumber A Long Variable, which give the sectornumber on the drive to transfer.

Writes a Sector (512 Bytes) from SRAM starting at the address, to which the content of thevariable
WSRAMPointer is pointing to the Drive to sectornumber ISectornumber. The functions returns 0 if
no error occured. For Errorcode see section Errorcodes.

Note: For meaning of wSRAMPointer see Note in DriveReadSector

See also
DriveCheck, DriveReset , Drivelnit , DriveGetldentity , DriveReadSector

ASM

Calls _DriveWriteSector

Input Z: SRAM-Addressofbuffer X: Address of Long-variable
with sectornumber

Output r25: Errorcode C-Flag: Set on Error

) please note: This is not the address of WSRAMPointer, it is its content, which is the starting-
address of the buffer.

Example

Dim bError as Byte

Dim aBuffer512) as Byte ' Hold Sector to and from CFCard
Dim wSRAMPointer asWord ' Address-Pointer for read

Dim ISectorNumber as Long ' Sector Number

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
wWSRAMPointer = VarPtr(aBuffer(1))

' Set Sectornumber
ISectorNumber = 3

' Now Write in sector 3 from CF-Card
bError =DriveWriteSector(wSRAMPointer , ISectorNumber)

DTMFOUT
Action
Sends a DTMF tone to the comparel output pin of timer 1.
Syntax
DTMFOUT number, duration
DTMFOUT string , duration
Remarks
Number A variable or numeric constant that is equivalent with the number of your phone
keypad.
Duration Time in mS the tone will be generated.
string A string variable that holds the digits to be dialed.

The DTMFOUT statement is based on an Atmel application note (314).
It uses TIMER1 to generate the dual tones. As a consequence, timerl can not be used in interrupt
mode by your application. You may use it for other tasks.

Since the TIMER1 is used in interrupt mode you must enable global interrupts with the statement
ENABLE INTERRUPTS. The compiler could do this automatic but when you use other interrupts as
well it makes more sense that you enable them.

The working range is from 4 MHz to 10 MHz system clock(xtal).

The DTMF output is available on the TIMER1 OCAL1 pin. For a 2313 this is PORTB.3.

Take precautions when connecting the output to your telephone line.
Ring voltage can be dangerous!

System Resources used
TIMERL1 in interrupt mode

See also
NONE

ASM

The following routine is called from mcs.lib : _DTMFOUT

R16 holds the number of the tone to generate, R24-R25 hold the duration time in mS.
Uses R9,R10,R16-R23

The DTMF table is remarked in the source and shown for comgeteness, it is generated by the
compiler however with taking the used crystal in consideration.

Example

' DTMFOUT. BAS

' denonstrates DTMFOUT statenment based on AN 314 from Atnel
mn osc.freq is 4 Miz, max freq is 10 Miz

"since the DTMFOUT statenent uses the TIMERL interrupt you nust enable
"global interrupts

"This is not done by the conpiler in case you have nore |SRs

Enabl e Interrupts

"the first sanple does dtnfout in a |oop
Dim Btnmp As Byte

Do

' there are 16 dtnf tones

For Btnmp = 0 To 15

Dt nfout Btnp , 500 ' dtnf out on PORTB.3 for the 2313 for 500 nf
"output is on the OCLA output pin

Waitms 1000 ' wait 1 sec

Next

Loop

End

"the keypad of npbst phones looks like this
‘1 2 3 optional are A

'4 5 6 B

'7 89 C

'* 0 # D

the DTMFOUT translates a nunmeric value from 015 into
nuneric value phone key

‘00

11

2
'3

© O wN

-
w
gowm> # *

ECHO

Action

Turns the ECHO on or off while asking for serial INPUT.

Syntax
ECHO value

Remarks

ELSE

Value

| ON to enable ECHO and OFF to disable ECHO.

When you use INPUT to retrieve values for variables, all info you type can be echoed back. In this
case you will see each character you enter. When ECHO is OFF, you wil not see the characters

you enter.

In versions 1.11.6.2 and earlier the ECHO options were controlled by an additional paramter on the
INPUT statement line like : INPUT "Hello ", var NOECHO

This would suppress the ECHO of the typed data. The new syntax works by setting ECHO ON and
OFF. For backwards compatibility, using NOECHO on the INPUT statement line will also work. In
effect it will turn echo off and on automatic.

By default, ECHO is always ON.

See also
INPUT

ASM

The called routines from mcs.lib are _ECHO_ON and _ECHO_OFF

The following ASM is generated when you turn ECHO OFF.

Rcall Echo_Off

This will set bit 3 in R6 that holds the ECHO state.

When you turn the echo ON the following code will be generated

Rcall Echo_On

Example

Dim Var As Byte

"turn off echo
Echo O f
"when you enter
I nput Var

the info you will not see it

"turn it on again

Echo On
‘now you will
I nput Var

see what you enter !

Action
Executed if the IF-THEN expression is false.

Syntax
ELSE

Remarks

You don't have to use the ELSE statement in an IF THEN .. END IF structure.
You can use the ELSEIF statement to test for another condition.
IFa=1THEN

ELSEIF a = 2 THEN

ELSEIF bl > a THEN

ELSE

END IF

See also
IF,END IF ,SELECT

Example

Dm A As Byte

A=10 'let a = 10

If A > 10 Then 'nake a decision

Print " A >10" "this will not be printed

El se "alternative
Print " A not greater than 10" 'this will be printed
END IF

| ENABLE
Action

Enable specified interrupt.

Syntax

ENABLEinterrupt

Remarks

Interrupt Description

INTO External Interrupt 0
INT1 External Interrupt 1

OVFO,TIMERO, COUNTERO

TIMERO overflow interrupt

OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTUREL, ICP1

INPUT CAPTURE TIMERL1 interrupt

COMPARE1A,0OC1A or
COMPARE1, OC1

TIMER1 OUTPUT COMPARE A interrupt
In case of only one compare interrupt

COMPARE1B,0C1B

TIMER1 OUTPUT COMPARE B interrupt

SPI SPI interrupt

URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt

ADC A/D converter interrupt

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.
Other chips might have additional interrupt sources such as INT2, INT3 etc.

See also
DISABLE

Example

Enable Interrupts '"allow interrupts to be set

Enabl e Tinmer1l 'enables

the TIMERL interrupt

| END

Action

Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

When an END statement is encountered, all interrupts are disabled and a never-ending loop is
generated. When a STOP is encountered the interrupts will not be disabled. Only a never ending
loop will be created.

See also

STOP

Example

Print "Hello" "print this

End 'end program execution and disable all interrupts

EOF
Action
Returns the End of File Status.
Syntax
bFileEOFStatus =EOF (#bFileNumber)
Remarks
bFileEOFStatus (Byte) A Byte Variable, which issigned with the EOF Status
bFileNumber (Byte) Number of the opened file

This functions returns information about the End of File Status

Return value Status

0 NOT EOF

255 EOF

In case of error (invalid filenumber) 255 (EOF) is returned too.

See also

EILETIME , EILEDATETIME ,DIR , FILELENWRITE , INPUT

ASM

Calls _FileEOF

Input r24: Filenumber

Output r24: EOF Status r25: Errorcode
C-Flag: Set on Error

Example

Ff = Freefile() ' get file handle

Open "test.txt" For Input As #ff ' we can use a constant for the file too

Print Lof (#ff) ; " length of file"

Print Fileattr(#ff) ; " file node" ' should be 1 for input

Do

Line Input #ff , S' read a line

" line input is used to read a line of txt froma file

Print S' print on termnal enulator

Loop Until Eof (#ff) <> 0

'The EOF() function returns a non-zero nunber when the end of the file is
reached

'This way we know that
Cl ose #ff

there

is no nore data we can

read

EXIT

EXP

Action

Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND, SUB..END SUB or FUNCTION..END FUNCTION.

Syntax

EXIT FOR

EXIT DO

EXIT WHILE
EXIT SUB

EXIT FUNCTION

Remarks

With the EXIT statement you can exit a structure at any time.

Example

file: EX T.BAS
deno: EXIT

Dm BL As Byte , A As Byte

Bl = 50 'assign var

For A =1 To 100 'for next |oop

If A =Bl Then 'decision

Exit For 'exit |oop

End If

Next

Print "Exit the FOR .NEXT when A was "; A

A=1

Do

Incr A

If A =10 Then

Exit Do

End If

Loop

Print "Loop term nated"
End

Action

Returns e(the base of the natural logarithm) to the power of a single variable.

Syntax

Target =Exp(source)

Remarks

Target

The single that is assigned with the Exp() of single target.

Source

The source single to get the Exp of.

See also

LOG, LOG10

Example

Dim X As Single

X = Exp(1.1)

Print X

"prints 3.004166124

X=11
X = Exp(x)
Print X

"prints 3.004164931

FILEATTR

Action

Returns the file open mode.

FILEDATE

Action

Returns the date of a file

Syntax
sDate =FileDate ()
sDate =FileDate (file)

Remarks

Syntax

bFileAttribut =FileAttr (bFileNumber)

Remarks

bFileAttribut (Byte) File open mode, See table
bFileNumber (Byte) Number of the opened file

Sdate A string variable that is assigned with the date.

This functions returns information about the File open mode

Return value Open mode
1 INPUT
2 OUTPUT
8 APPEND
32 BINARY
See also

INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
SEEK , BSAVE ,BLOAD , KILL,, DISKFREE , DISKSIZE, GET,PUTFILEDATE , FILETIME ,
EILEDATETIME , DIR , EILELENWRITE , INPUT

File The name of the file to get the date of.

This function works on any file when you specify the filename. When you do not specify the
filename, it works on the current selected file of the DIR() function.

See also
INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,

FILEATTR , SEEK , BSAVE ,BLOAD , KILL , DISKFREE , DISKSIZE, , PUT
,EILELEN , FILETIME , FILEDATETIME , DIR
WRITE , INPUT

ASM

Calls _FileAttr

Input r24: Filenumber

Output 24: File open mode r25: Errorcode
C-Flag: Set on Error

Example

"open the file in BINARY node

Open "test.biN' For Binary As #2

Print Fileattr(#2) ; " file node" ' should be 32 for binary
Put #2 , Sn ' wite a single

Put #2 , Stxt ' wite a string

Cl ose #2

ASM

Calls _FileDateS ; with filename _FileDateSO0 ; for current file
from DIR()

Input X : points to the string with the mask Z : points to the target variable

Output

Example

Print "File denmp"

Print Filelen("josef.ing") ; " length" ' length of file

Print Filetime("josef.ing") ; " time" ' time file was changed

Print Filedate("josef.img") ; " date" ' file date

FILEDATETIME

Action

Returns the file date and time of a file

Syntax
Var =FileDateTime ()
Var =FileDateTime (file)

Remarks

Var A string variable or byte array that is assigned with the file datge and
time of the specified file

File The name of the file to get the date time of.

When the target variable is a string, it must be dimensioned with a length of at least 17 bytes.
When the target variable is a byte array, the array size must be at least 6 bytes.

When you use a numeric variable, the internal file date and time format will be used.

See also

INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
FILEATTR , SEEK , BSAVE , BLOAD , KILL, DISKFREE , GET, PUT

WRITE , INPUT

ASM

Calls _FileDateTimeS _FileDateTimeSO0

Input

Output

Calls _FileDateTimeB _FileDateTimeBO0

Input

Output

Example(partial)

Read and print Drectory and show Filenane, Date, Tine, Size
for all files matching pStrl and create/update younger than pDays
Sub Directorylist(pstrl As String , Byval Pdays As Wrd)
Local |FileNane as String * 12 ' hold file name for print
Local IwCounter as Word , |FileSizeSumas Long' for summary
Local IwNow as Word, |wbays as Word
Local |Sec as Byte , IMn as Byte , |Hour as byte , | Day as byte , | Month as byte, | Year
as byte
primy "Listing of all Files nmatching " ; pStrl; " and create/last update date within " ;
pdays ; " days"

| wWNow = SysDay()

IwCounter = 0 : |FileSizeSum= 0
| Fil eName = Dir(pStrl)

Wile |FileName < "

| sec = Fil eDat eTi me()

Iwbays = | wNow - SysDay (I Day) ' Days between Now and last File lpdate; uses |Day,

| Year

if Iwbays <= pDays then ' days snaller than desired wth parameter
print IFileNane ; FileDateg) ; " " ; FileTime() ; " " ; filelen()
incr IwCounter : |FileSizeSum= FileLen() + | FileSizeSum

end if

| FileNanme = Dir()

WEnd

prin IwCounter ; " File(s) found with " ; |FileSizeSum; " Byte(s)"
End Sub

| Mont h,

FILELEN

Action

Returns the size of a file

Syntax
ISize =FileLen ()
ISize =FileLen (file)

FILETIM

E

Action

Returns the time of a file

Syntax
sTime =FileTime ()

sTime =FileTime (file)

Remarks

Stime A string variable that is assigned with the file time.

Remarks
ISize A Long Variable, which is assigned with the filesize in bytes of the fle.
File A string or string constant to get the filelength of.

File The name of the file to get

the time of.

This function works on any file when you specify the filename. When you do not specify the
filename, it works on the current selected file of the DIR() function.

See also

FILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , GET, PUT

, EILEDATE , EILETIME , FILEDATETIME , DIR

WRITE , INPUT

ASM

This function works on any file when you specify the filename. When you do not specify the
filename, it works on the current selected file of the DIR() function.

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, L

,EILELEN , FILEDATE , FILEDATETIME , DIR
WRITE , INPUT

C, LOF , EOF ,EREEFILE ,

EILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , GET, PUT

Calls

_FileLen

Input

Output

Example

Print
Print
Print
Print

"File demp"
Filelen("josef.img") ; " length" ' length of file

Filetime("josef.img") ; time" ' time file vas changed
Filedate("josef.img") ; " date" ' file date

ASM

Calls _FileTimeS ; with file param _FileTimeSO0 ; current file
Input X : points to the string with the mask Z : points to the target variable
Output

Example

Print "File denp"

Print Filelen("josef.ing") ; " length" ' length of file

Print Filetime("josef.img") ; " tine" time file was changed

1y
Print Filedate("josef.ing") ; " date" '

file date

| FIX

Action

Returns for values greater then zero the next lower value, for values less then zero the next upper
value.

Syntax
var =FIX(x)

Remarks

Var A single variable that is assigned with the FIX of variable x.

X The single to get the FIX of.

See Also
INT , ROUND , SGN

Example

DmS As Single , Z As Single

For S =-10 To 10 Step 0.5

Print S; Spc(3) ; Round(s) ; Spc(3) ; Fix(s) ; Spc(3) ; Int(s)
Next

End

FLUSH

Action

Write current buffer of File to Card and updates Directory

Syntax

Flush #bFileNumber
Flush

Remarks

BFileNumber Filenumber, which identifies an opened file such as #1 or #ff

This function writes all information of an open file, which is not saved yet to the Disk. Normally the
Card is updated, if a file will be closed or changed to another sector.

When no filenumber is specified, all open files will be flushed.

See also

INITEILESYSTEM , OPEN , CLOSE, PRINT, LINE INPUT, LOC, LOF , EOF, EREEFILE ,
FILEATTR , SEEK , BSAVE ,BLOAD , KILL , DISKFREE , DISKSIZE , GET , PUTFILEDATE ,
EILETIME , EILEDATETIME ,DIR , FILELENWRITE , INPUT

ASM

Calls _FileFlush _FilesAllFlush
Input r24: filenumber

Output r25: Errorcode C-Flag: Set on Error
Example

$include "startup.inc”

‘open the file in BINARY node

Open "test.bi N' For Binary As #2

Put #2 , B' wite a byte

Put #2 , W' wite a word

Put #2 , L ' wite a long

Ltemp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Lof (#2) ; " length of file"
Print Fileattr(#2) ; " file node" ' should be 32 for binary

Put #2 , Sn ' wite a single
Put #2 , Stxt ' wite a string

Flush #2 ' flush to disk
Cl ose #2

FORMAT

Action

Formats a numeric string.

Syntax

target = Form

Remarks

at(source, "mask")

target

The string that is assigned with the formatted string.

source

The source string that holds the number.

mask

The mask for formatting the string.

When spaces are in the mask, leading spaces will be added when the length of the
mask is longer than the source string.

" " '8 spaces when source is "123" it will be " 123".

When a + is in the mask (after the spaces) a leading + will be assigned when the
number does not start with the - sign.

"+" with number "123" will be "+123".

When zero's are provided in the mask, the string will be filled with leading zero;s.
" +00000" with 123 will be " +00123"

An optional decimal point can be inserted too:

"000.00" will format the number 123 to "001.23"

Combinations can be made but the order must be : spaces, +, 0 an optional point
and zero's.

See also
FUSING

Example

" (c) 2000

Dm S As St
Di

"12345"
= For mat (
Print S

nn

S = "123"
S = Format (
Print S

S = "12345"
S = Format (
Print S

S = "12345"
S For mat (

MCS El ectronics

For mat . bas

ring * 10

I As Integer

s, "+

s, "00000")

s , "000.00")

s, " +000.00")

Print

End

S

FOR-NEXT

Action

Execute a block of statements a number of times.

Syntax

FOR var= start TO end [STEP value]

Note that in 1.11a downto was supported. This has been rewritten for better compatibility.

Remarks

var The variable counter to use

start The starting value of the variable var

end The ending value of the variable var

value The value var is increased/decreased with each time NEXT is encountered.

For incremental loops, you must use TO.

For decremental loops, you must use a negative step size.
You must end a FOR structure with the NEXT statement.
The use of STEP is optional. By default, a value of 1 is used.

See also
EXIT FOR

Example

file: FOR_NEXT. BAS
' denp: FOR, NEXT

DmA As Byte , BlL As Byte , C As Integer

For A =1 To 10 Step 2
Print "This is A "; A
Next A

Print "Now lets count down"
For C =10 To -5 Step -1
Print "This is C"; C
Next

Print "You can also nest FOR .NEXT statenents."”
For A =1 To 10

Print "This is A "; A

For Bl = 1 To 10

Print "This
Next ' note
Next A

End

is Bl

t hat

"5 Bl
you do not

have to specify the paraneter

FOURTHLINE

Action

Set LCD cursor to the start of the fourth line.

Syntax
FOURTHLINE

Remarks
Only valid for LCD displays with 4 lines.

See also

Example
Dim a as byte
a = 255

Lcd A
Fourthline
Led A
Upperline

End

FRAC
Action
Returns the fraction of a single.
Syntax
var =FRAC (single)
Remarks
var A numeric single variable that is assigned with the fraction of variable
single.
single The single variable to get the fraction of.

The fraction is the right side after the decimal point of a single.

See Also
INT

Example

Dm A As Single

A= 9.123

A = Frac(A)

Print A" prints 0.123

FREEFILE

Action

Returns a free Filenumber.

Syntax
bFileNumber =FreeFile()

Remarks

FUSING

bFileNumber (Byte) Free Filenumber, which can be used for opening next file

This function gives you a free filenumber, which can be used for file — opening statements. In
contrast to QB this file numbers start with 128 and goes up to 255. Use range 1 to 127 for user
definedfilenumbersto avoid filenumber conflicts with the systemnumbers from FreeFile()

This function is implemented for compatility with QB.

See also

INITEILESYSTEM , OPEN , CLOSE, ELUSH , PRINT, LINE INPUT, LOC, LOF , EOF , EILEATTR ,
SEEK , BSAVE ,BLOAD , KILL, DISKFREE , DISKSIZE , GET, PUTFILEDATE , FILETIME ,
FILEDATETIME , DIR , EILELENWRITE , INPUT

Action
FUSING returns a formatted string of a single value.

Syntax

target = Fusing(source, "mask")

Remarks

target The string that is assigned with the formatted string.

source The source variable of the type SINGLE that will be converted
mask The mask for formatting the string.

The mask is a string constant that always must start with #.

After the decimal point you can provide the numberof digits you want the string to
have:

#.### will give a result like 123.456. Rounding is used when you use the # sign. So
123.4567 will be converted into 123.457

When no rounding must be performed, you can use the & sign instead of the # sign.
But only after the DP.
#.&&& will result in 123.456 when the single has the value 123.4567

ASM

Calls _GetFreeFileNumber

Input none

Output r24: Filenumber r25: Errorcode
C-Flag: Set on Error

Example

Ff = Freefile() ' get file handle

Open "test.txt" For Input As #ff ' we can use a constant for the file too

Print Lof (#ff) ; " length of file"

Print Fileattr(#ff) ; " file node" ' should be 1 for input

Do

Line Input #ff , S' read a line

line input is used to read a line of text from a file

Print S*' print on terninal enmulator

Loop Until Eof (ff) <> 0

'The EOF() function returns a non-zero nunber when the end of the file is
reached

"This way we know that there is no nore data we can read

Cl ose #ff

When the single is zero, 0.0 will be returned, no matter how the mask is set up.

See also
FORMAT, STR

Example

' FUSI NG. BAS
' (c) 2001 MCS ELectronics

DmS As Single , Z A String * 10
‘now assign a value to the single

S = 123.45678

"when using str() you can convert a nuneric value into a string
Z = Str(s)

Print Z 'prints 123.456779477

Z = Fusing(s , "#. ##")

‘now use some formatting with 2 digits behind the decinal point with
roundi ng
Print Fusing(s , "#. ##") 'prints 123.46

now use sone formatting with 2 digits behind the decinal point wthout

roundi ng
Print Fusing(s , "#.&&") 'prints 123.45

'The nmask nust start with #.

"It nmust have at least one # or & after the point.
"You may not mx & and # after the point.

End

GET

Action
Reads a byte from the hardware or software UART.
Reads data from a file opened in BINARY mode.

Syntax
GET#channel,var
GET #channel, var, [pos] [, length]

Remarks

GET in combination with the software/hardware UART is provided for compatibility with BASCOM -
8051. It reads one byte

GET in combination with the AVR-DOS filesystem is very flexible and versatile. It works on files
opened in BINARY mode and you can reads all data types.

#channel A channel number, which identifies an opened file. This can be a hard coded constant
or a variable.

Var The variable or variable array that will be assigned with the data from the file

Pos This is an optional parameter that may be used to specify the postion where the

reading must start from. This must be a long variable.

Length This is an optional parameter that may be used to specify how many bytes must be
read from the file.

By default you only need to provide the variable name. When the variable is a byte, 1 byte wil be
read. When the variable is aword or integer, 2 bytes will be read. When the variable is a long or
single, 4 bytes will be read. When the variable is a string, the number of bytes that will be read is
equal to the dimensioned size of the string. DIM S as string * 10 , would read 10 by tes.

Note that when you specify the length for a string, the maximum length is 255. The maximum length
for a non-sstring array is 65535.

Example :

GET #1, var,,2 ‘read 2 bytes, start at current position

GET #1, var , PS * start at position stored in longPS

GET #1, var , PS, 2 ‘ start at position stored in long PS and read 2 bytes

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
FILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , DISKSIZE , PUT

EILEDATE , FILETIME , EILEDATETIME , DIR , FILELEN
WRITE , INPUT

ASM

currentposition

Byte:

_FileGetRange_1
Input:
r24: File number
X: Pointer to variable
TFlag cleared

Word/Integer:

_FileGetRange_2
Input:
r24: File number
X: Pointer to variable
TFlag cleared

Long/Single:

_FileGetRange_4
Input:
r24: File number
X: Pointer to variable
TFlag cleared

String (<= 255 Bytes) with fixed length

_FileGetRange_Bytes
Input:
r24: File number
r20: Countof Bytes
X: Pointer to variable
TFlag cleared

Array (> 255 Bytes) with fixed length

_FileGetRange

Input:

r24: File number
r20/21: Count of Bytes
X: Pointer to variable
TFlag cleared

Output from all kind of usage:

goto new position first

_FileGetRange_1
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FileGetRange_2
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FileGetRange_4
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FileGetRange_Bytes
Input:

r24: File number
r20: Count of bytes

X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FileGetRange

Input:

r24: File number

r20/21: Count of bytes

X: Pointer to variable

r16-19 (A): New position (1-based)
T-Flag Set

r25: Error Code
C-Flag on Error
X: requested info

Example

"for the binary file denp we need sone variables of different types
DmB As Byte , WAs Word , L As Long, Sn As Single , Ltenp As Long
Dim Stxt As String * 10

B=1 W = 50000 : L = 12345678 : Sn = 123.45 : Stxt = "test”

"open the file in BINARY node

Open "test.bi N' For Binary As #2

Put #2 , B' wite a byte

Put #2 , W' wite a word

Put #2 , L ' wite a long

Ltenmp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Seek(#2) ; " = LOC+1"

Print Lof (#2) ; " length of file"

Print Fileattr(#2) ; " file node" ' should be 32 for binary

Put #2 , Sn ' wite a single
Put #2 , Stxt ' wite a string

Flush #2 ' flush to disk
Cl ose #2

‘now open the file again and wite only the single
Open "test.bin" For Binary As #2

L =1 "specify the file position

B = Seek(#2 , L) ' reset is the same as using SEEK #2,L
Get #2 , B ' get the byte

Get #2 , W' get the word

Get #2 , L ' get the long

Get #2 , Sn ' get the single

Get #2 , Stxt ' get the string

Cl ose #2

GETADC

Action
Retrieves the analog value from channel 0-7.

Syntax

var = GETADC(channel)

Remarks

Var The variable that is assigned with the A/D value
Channel The channel to measure

The GETADC() function is only intended for the AVR90S8535 or other chips that have a built-in A/D
converter.

The pins of the A/D converter input can be used for digital I/O too.

But it is important that no 1/0 switching is done while using the A/D converter.

Make sure you turn on the AD converter with the START ADC statement or by setting the proper bit
in the ADC configuration register.

See also
CONFIG ADC

Example
' ADC. BAS
' denonstration of GETADC() function for 8535 mcro

$regfile = "ml63def. dat"

"configure single nbde and auto prescaler setting
'The single node nust be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,16,32,64 or 128
' Because the ADC needs a clock from 50 200 KHz

"The AUTO feature, wll select the highest clockrate possible
Config Adc = Single , Prescaler = Auto

"Now give power to the chip

Start Adc

"Wth STOP ADC, you can renpve the power from the chip
"Stop Adc

Dm W As Word , Channel As Byte

Channel = 0
"now read A/D value from channel 0
Do

W= Getadc(channel)

Print "Channel " ; Channel ; " value ";
I ncr Channel

If Channel > 7 Then Channel = 0

Loop

End

'The new ML63 has options for the reference voltage

For this chip you can use the additional
"Config Adc = Single , Prescaler = Auto,
'The reference param may be

param :

Reference = Internal

"OFF : AREF, internal reference turned off

"AVCC : AVCC, with external capacitor at
' | NTERNAL
AREF pin

"Using the additional param on chip that
reference will have no effect.

AREF pin

Internal 2.56 voltage reference wth external

do not have the

capaci tor

i nternal

ar

| GETATKBD

Action
Reads a key from a PC AT keyboard.

Syntax
var = GETATKBD()

Remarks

var The variable that is assigned with the key read from the
keyboard.

It may be a byte or a string variable.

When no key is pressed a 0 will be returned.

The GETAKBD() function needs 2 input pins and a translation table for the keys. You can read
more about this at the CONFIG KEYBOARD compilerdirective.

The Getatkbd function will wait for a pressed key. When you want to escape from the waiting loop

you can set the ERR bit from an interrupt routine for example.

Getatkbd is using 2 bits from register R6 : bit 4 and 5 are used to hold the shift and control key
status.

AT KEYBOARD SCANCODES

Table reprinted with permission of Adam Chapweske
http://panda.cs.ndsu.nodak.edu/~achapwes

M 3A FO, 3A L ALT 11 FO, 11 KP / EO, 4A | EO, FO, 4A
N 31 FO, 31 R SHFT | 59 FO, 59 KP * 7C FO, 7C
(@] 44 FO, 44 R CTRL EO, 14 EO, FO, 14 KP - 7B FO, 7B
P 4D FO, 4D R QU EO, 27 EO, FO, 27 KP + 79 FO, 79
Q 15 FO, 15 R ALT EO, 11 EO, FO, 11 KP EN EO, 5A | EO, FO, 5A
R 2D FO, 2D APPS EO, 2F EO, FO, 2F KP 71 FO, 71
S 1B FO, 1B ENTER 5A FO, 5A KP 0 70 FO, 70
T 2C FO, 2C ESC 76 FO, 76 KP 1 69 FO, 69
U 3C FO, 3C F1 05 FO, 05 KP 2 72 FO, 72
\ 2A FO, 2A F2 06 FO, 06 KP 3 7A FO, 7A
w 1D FO, 1D F3 04 FO, 04 KP 4 6B FO, 6B
X 22 FO, 22 F4 oc FO, 0C KP 5 73 FO, 73
Y 35 FO, 35 F5 03 FO, 03 KP 6 74 FO, 74
4 1A FO, 1A F6 0B FO, OB KP 7 6C FO, 6C
0 45 FO, 45 F7 83 FO, 83 KP 8 75 FO, 75
1 16 FO, 16 F8 0A FO, OA KP 9 7D FO, 7D
2 1E FO, 1E F9 01 FO, 01] 5B FO, 5B
3 26 FO, 26 F10 09 FO, 09 ; 4C FO, 4C
4 25 FO, 25 F11 78 FO, 78 ' 52 FO, 52
5 2E FO, 2E F12 07 FO, 07 , 41 FO, 41
6 36 FO, 36 PRNT EO, 12, EO, FO, 49 FO, 49
SCRN EO, 7C 7C, EO,
FO, 12
7 3D FO, 3D SCROLL | 7E FO, 7E / 4A FO, 4A
8 3E FO, 3E PAUSE El, 14,77, - NONE-
E1, FO, 14,
FO, 77

MAKE | BREAK KEY MAKE BREAK KEY MAKE | BREAK
KE
Y
A 1C Fo, 1C 9 46 FO, 46 [54 FO, 54
B 32 FO, 32) OE FO, OE I NSERT EO, 70 | EO, FO, 70
C 21 FO, 21 = 4E FO, 4E HOME EO, 6C | EO, FO, 6C
D 23 FO, 23 = 55 FO, 55 PG UP EO, 7D | EO, FO, 7D
E 24 FO, 24 \ 5D FO, 5D DELETE | EO, 71 | EO, FO, 71
F 2B FO, 2B BKSP 66 FO, 66 END EO, 69 | EO, FO, 69
G 34 FO, 34 SPACE 29 FO, 29 PG DN EO, 7A | EO, FO, 7A
H 33 FO, 33 TAB oD FO, 0D V] EO, 75 | EO, FO, 75
ARROW
43 FO, 43 CAPS 58 FO, 58 L EO, 6B | EO, FO, 6B
ARROW
J 3B FO, 3B L SHFT | 12 FO, 12 D EO, 72 | EO, FO, 72
ARROW
K 42 FO, 42 L CTRL 14 FO, 14 R EO, 74 | EO, FO, 74
ARROW
L 4B FO, 4B L au EO, 1F EO, FO, 1F NUM 7 Fo, 77

These are the usable scan codes from the keyboard. If you want to implement F1, you look at the
generated scan code : 05 hex. So in the table, at position 5+1=6, you write the value for F1.

In the sample program below, you can find the value 200. When you now press F1, the value form
the table will be used so 200 will be returned.

See also

CONFIG KEYBOARD

Example

' PC AT KEYBOARD Sanpl e

: (c)

2000 MCS El ectronics

"For this exanple :
'connect PC AT keyboard clock to PIND.2 on the 8535
'connect PC AT keyboard data to PIND.4 on the 8535

$regfile = "8535def.dat"

' The Cet ATKBD() function does not use an
"But it waits until a key was pressed!

interrupt.

"configure the pins to use for the clock and data

‘can be any pin that can serve as an input

'Keydata is the label of the key translation table

Confi g Keyboard = Pind.2 , Data = Pind. 4 , Keydata = Keydata
'"Dim sone used variables

DmS As String * 12

Dim B As Byte

"In this exanple we use SERIAL(COM |INPUT redirection
$serial i nput = Kbdi nput

" Show the program is running

Print "hello"

Do

"The following code is remarked but show how to use the Get ATKBID()
function

' B = Cetatkbd() 'get a byte and store it into byte variable
"When no real key is pressed the result is 0

"So test if the result was > 0

" If B > 0 Then

" Print B ; Chr(b)

" End If

The purpose of this sanple was how to use a PC AT keyboard

'The input that normally comes from the serial port is redirected to the
"external keyboard so you use it to type

I nput "Name " , S

"and show the result

Print S

Loop

End

"Since we do a redirection we call the routine from the redrection
routine

Kbdi nput:

'we cone here when input is required from the COM port

"So we pass the key into R24 with the GetATkbd function

' We need sone ASM code to save the registers used by the function
$asm
push
push
push
push

rlé ; save used register
r25
r26

r27

Kbdi nput 1:

rCall _getatkbd ; call the function
tst r24 ; check for zero

breq Kbdinputl ; yes so try again

pop r27 ; we got a valid key so restore registers

pop r26

pop r25

pop ri16

$end Asm

"just return

Ret urn

"The tricky part is that you MJUST include a normal call to the routine
'otherwi se you get an error

"This is no clean solution and will be changed

B = Getatkbd()

"This is the key translation table

Keydat a:

"normal keys |ower case

pata 0, 0, 0, 0, 0, 200, 0, 0,0,0,0,0, 0, 0, &5E, O
bpata 0, 0, 0, 0, O, 113, 49 , 0, O, O, 122 , 115 , 97 , 119 ,
, 0

Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , O 0o, 32 , 118 , 102 , 116
114 , 53 , 0

Data 0 , 110 , 98 104 , 103 , 121 , 54 , 7, 8 , 44 , 109 , 106 , 117
5, 56 , 0

Data O , 44 , 107 , 105 , 111 , 48 , 57 , O 0O, 46 , 45 , 108 , 48 ,
112 , 43 , 0

bata 0, 0, 0, 0, 0, 92, 0, 0, 0, 0 3,0, 0, 92, 0, O
Data 0, 60 , 0, 0, 0, 0, 8, 0, 0, 49, 0, 52,5 , 0, 0,0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0, O, O, 43, 51 , 45 , 42 , 57 ,
, 0

"shifted keys UPPER case

pata 0, 0, 0, 0,0,0,0,0,0,0,0, 0, 0,0, 0,0
pata 0, 0, 0, 0, 0O, 88, 33, 0,0, 0, 9, 8 , 65, 87 , 34,
Data 0, 67 , 88 , 68 , 69 , 0, 3 , 0, O 32 , 8 , 70 , 84 , 82 ,
, 0

Data O, 78 , 66 , 72 , 71, 8 , 38 , 0, 0, 76 , 77 , 74 , 8 , 47 ,
40 , O

Data 0, 59 , 75 , 73 , 79 , 61, 41 , 0, O, 58 , 95 , 76 , 48 , 80 ,
63 , 0

Data 0, 0, 0, 0, 0, 9%, 0, 0, 0, O 13 , 94 , 0, 42, 0, 0
Data 0, 62 , 0, 0, 0, 8, 0, 0, 49 , 0, 52,55 ,0, 0, 0,0
Data 48 , 44 50 , 53 , 54,5, 0, 0, 0, 43, 51 , 45 , 42 , 57 ,
, 0

50

37

GETDSTIP

Action

Returns the IP address of the peer.

Syntax
Result= GetDSTIP(socket)

GETDSTPORT

Action

Returns the port number of the peer.

Syntax
Result = GetDSTPort(socket)

Remarks

Result A LONG variable that will be assigned with the IP address of the
peerordestination IPaddress.

Socket The socketnumber (0-3)

When you are in server mode, it might be desirable to detect the IP address of the
connectingclient.

You can use this for logging, security, etc.
The IP number MSB, is stored in the LS byte of the variable.
See also

CONFIGTCPIP, GETSOCKET, SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPWRITESTR, CLOSESOCKET, SOCKETLISTEN, GETDSTPORT

Example

Dim L as Long
L = GetdstIP(i) ' store current |P nunber of socket i

Remarks

Result A WORD variable that is assigned with t he port number of the peer
or destination port number.

Socket The socket number.

When you are in server mode, it might be desirable to detect the port number of the
connectingclient.

You can use this for logging, security, etc.

See also
CONFIG TCPIP, GETSOCKET, SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPWRITESTR, CLOSESOCKET, SOCKETLISTEN, GETDSTIP

Example
Dim P as Word
P = GetdstPORT(i) ' store current port nunber of socket i

| GETKBD

Action
Scans a 4x4 matrix keymard and return the value of the key pressed.

Syntax

var = GETKBD()

Remarks

Var The numeric variable that is assigned with the value read from

the keyboard

The GETKBD() function can be attached to a port of the uP.
You can define the port with the CONFIG KBD statement.
A schematic for PORTB is shown below

470
———— PB0

———————PB2

¢l |c2|c3|cd —— —1 PB3
C— PB4

i E —— PB5

i & i — PB6

i i —— PB?

L

Note that the port pins can be used for other tasks as well. But you might need to set the port
direction of those pins after you have used getkbd(). For example the LCD pins are set to output at
the start of your program. A call to getkbd() would set the pins to input.

By setting DDR.x register you can set the pins to the proper state again.

As an alternative you can use CONFIG PIN or CONFIG PORT.

When no key is pressed 16 will be returned.
When using the 2 additional rows, 24 will be returned when no key is pressed.

On the STK200 this might not work since other hardware is connected too that interferes.

You can use the Lookup()function to convert the byte into another value. This because the
GetKBD() function does not return the same value as the key pressed. It will depend on which
keyboard you use.

Sometimes it can happen that it looks like a key is pressed while you do not press a key. This is
caused by the scanning of the pins which happens at a very high frequency.

It will depend on the used keyboard. You can add series resistors with a value of 4701K

The routine will wait for 100 mS by default after the code is retrieved. With CONFIG KBD you can
set this delay.

See also
CONFIG KBD

Example

' GETKBD. BAS

' (c) 2000 MCS Electronics
"specify which port nust be used
"all 8 pins of the port are used
Config Kbd = Porthb

‘dinmension a variable that receives the value of the pressed key
Dm B As Byte

"loop for ever

Do

B = Getkbd()

"look in the help file on how to connect the matrix keyboard
Print B

‘when no key is pressed 16 will be returned

'use the Lookup() function to translate the value to another one
this because the returned value does not match the nunber on the
keyboad

Loop

Lcd B

End

GETRC 'The other side of the resistor is connected to a capacitor of 100nF.
'The other side of the capacitor is connected to ground.

Action "This is different than BASCOM- 8051 GETRC! This because the architecture
is different.
Retrieves the value of a resistor or a capacitor.

"The result of getrc() is a word so DM one
Syntax Dm W As Word
var =GETRC(pin , number) Do

‘"the first paranmeter is the PIN register.

'the second paranmeter is the pin nunber the resistor/capacitor is
Remarks P p P
connected to
.) |
Var The word variable that is assigned with the value. V\Ilt: (Cagtmr 2(;'I ?13 ’be4)a variabl el
Pin The PIN name for the R/C is connection. Print W
Wait 1
Number The port pin for the R/C is connection. Loop

The name of the input port (PIND for example) must be passed even when all the other pins are
configured for output. The pin number must also be passed. This may be a constant or a variable.

A circuit is shown below:

2z 100nF

The capacitor is charged and the time it takes to discharge it is measured and stored in the
variable. So when you vary either the resistor or the capacitor, different values will be returned. This
function is intended to return a relative position of a resistor wiper, not to return the value of the
resistor. But with some calculations it can be retrieved.

See also
NONE

Example

' CGETRC. BAS

' denonstrates how to get the value of a resistor

' The library also shows how to pass a variable for use wth individual
port

' pins. This is only possible in the AVR architecture and not in the 8051

"The function works by charging a capacitor and uncharge it little by
little

"A word counter counts until the capacitor is uncharged.

"So the result is an indication of the position of a pot neter not the
actual

resistor value

'This exanple used the 8535 and a 10K ohm variable resistor connected to
PI ND. 4

GETRC5

Action

Retrieves the RC5 remote code from a IR transmitter.
Syntax

GETRC5(address, command)

Uses

TIMERO

Remarks

address The RC5 address

command The RC5 command.

This statement used the AVR 410 application note. Since a timer is needed for accurate delays and
background processing TIMERO is used by this statement.

Also the interrupt of TIMERO is used by this statement.
TIMERO can be used by your application since the values are preserved by the statement but a
delay can occur. The interrupt can not be reused.

GETRCS supports extended RC5 code form version 1.11.6.9 thanks to Gert Boer who implemented
the extended RC5 reception.
The SFH506-36 is used from Siemens. Other types can be used as well.

IR-Empfanger/Demodulator-Baustein SFH 506
IR-Receiver/Demodulator Device

4
£
163
159

= 123
& [

Surace not flat

5]x]

]

. e

= | THH

a[254]

04
1.7

= l; -

55

41

ar
e GENDGE

WIETEE T mim, wanh MGt angars angagenerDIMensons 10 T, UNess CINarnss specied.

For a good operation use the following values for the filter.

o
=]
L=
=

SFH 506/507

—s
]

t >0 kil
arpF = aptoral

45 f 3 il

"t oy RAcASSATY to SUPDIESS PoweT SUPplY Hstubances

Most audio and video systems are equipped with an infra-red remote control.

The RC5 code is a 14-bit word bi-phase coded signal.

The two first bits are start bits, always having the value 1.

The next bit is a control bit or toggle bit, which is inverted every time a button is pressed on the
remotecontrol transmitter.

Five system bits hold the system address so that only the right system responds to the code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on. The command
sequence is six bits long, allowing up to 64 different commands per address.

The bits are transmitted in bi-phase code (also known as Manchester code).

For extended RC5 code, the extended bit is bit 6 of the command.
The toggle bit is stored in bit 7 of the command.

See also
CONFIG RC5

Example

' RC5. BAS

" (c) 1999-2000 MCS Electronics

' based on Atnel AVR410 application note

use byte library for smaller code
$lib "nmcsbyte. | bx”

'This exanple shows how to decode RC5 renote control signals
'with a SFH506-35 IR receiver.

"Connect to input to PIND. 2 for this exanple

'The GETRC5 function uses TIMERO and the TIMERO interrupt.

'The TIMERO settings are restored however so only the interrupt can not
"be used anynore for other tasks

"tell the conpiler which pin we want to use for the receiver input

Config Re5 = Pind. 2

"the interrupt routine is inserted automatic but we need to nmke it occur
'so enable the interrupts

Enabl e Interrupts

‘reserve space for variables
Dim Address As Byte , Conmmand As Byte
Print "Waiting for RC5..."

Do

"now check if a key on the renote is pressed
‘"Note that at startup all pins are set for |NPUT
'so we dont set the direction here

"If the pins is used for other input just unremark the next

"Config Pind.2 = Input
Getrc5(address , Command)

"we check for the TV address and that is O

If Address = 0 Then

‘clear the toggle bit

"the toggle bit toggles on each new received conmand
Command = Command And &B01111111

Print Address ; " " ; Command

End If

Loop

End

GETSOCKET

Action

CreatesasocketforTCP/IPcommunication.

Syntax

Result= GetSocket (socket, mode, port, param)

Remarks

Result A byte that is assigned with the socket number you requested.
When the operation fails, it will return 255.

Mode The socketmode. Use sock_stream(1), sock_dgrm(2),
sock_ipl_raw(3), sock) or macl_raw(4). The modes are defined with
constants.

For TCP/IPcommunication you need to specify sock_streamor the
equivalentvaluel.

For UDP communication you need to specify sock_dgrm or the
equivalentvalue 2.

Port This is the local port that will be used for the communication. You
may specify any value you like but each socket must have it’s own
local port number.

When you use 0, the value of LOCAL_PORT will be used.
LOCAL_PORTisassignedwithCONFIGTCPIP.

After the assignment, LOCAL_PORT will be increased by 1. So the
simplest way is to setup a local port with CONFIG TCPIP, and then
use O for port.

Param Optional parameter. Use O for default.

128 :send/receivebroadcastmessagein UDP

64 : use register value with designated timeout value
32 : when not using no delayed ack

16: when not using silly window syndrome

ConsulttheW3100Ad ocumentation for more information.

After the socket has been initialized you can use SocketConnect to connect to a client,
or SocketListen to act as a server.

See also

CONFIGTCPIP, SOCKETCONNECT, SOCKETSTAT ,
TCPWRITE, TCPWRITESTR, TCPREAD, CLOSESOCKET , SOCKETLISTEN

Example

| = Getsocket (0 , Sock_stream , 5000 , 0) ' get a new socket

| GLCDCMD
Action
Sends a command byte to the SED graphical LCD display.
Syntax
GLCDCMD byte
Remarks
| byte | A variable or numeric constant to send to the display.

With GLCDCMD you can write command bytes to the display. This is convenient to control the
display when there is no specific statement available.

You need to include the glibSED library with :
$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD ,LCDAT, GLCDDATA

Example

GLCDDATA

Action
Sends a data byte to the SED graphical LCD display.
Syntax
GLCDDATAbyte
Remarks
| byte | A variable or numeric constant to send to the display.

With GLCDDATA you can write data bytes to the display. This is convenient to control the display

when there is no specific statement available.

You need to include the gliblSED library with :
$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD ,LCDAT, GLCDCMD

Example

GOSUB

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks

Label | The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues execution at that label.

When it encounters a RETURN statement, program execution will continue after the GOSUB
statement.

See also
GOTO, CALL, RETURN

Example

(c) 199 MCS El ectronics

file: GOSUB. BAS
deno: GOTO, GOSUB and RETURN

Got o Conti nue
Print "This code will not be executed"

Continue: '"end a label with a colon
Print "We will start execution here"
Gosub Routine

Print "Back from Routine"

End

Routine: 'start a subroutine
Print "This will be executed"
Return '"return from subroutine

GOTO

Action

Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOsuB

Example

Dm A As Byte

Start: 'a label nust end with a colon
A=A+ 1 "'"increment a

If A <10 Then '"is it less than 10?
Goto Start 'do it again

End If 'close IF

Print "Ready" 'that is it

GREY2BIN

Action

Returns the numeric value of a Grey code.

Syntax
varl = grey2bin (var2)

Remarks
varl Variable that will be assigned with the binary value of the Grey code.
var2 A variable in Grey format that will be converted.

Grey code is used for rotary encoders. Grey2bin() works for byte, integer, word and long variables.

See also
BIN2GREY

ASM

Depending on the data type of the target variable the following routine will be called from mcs.lbx:
_Bin2grey for bytes , _Bin2Grey2 for integer/word and _Bin2grey4 for longs.

Example

' (c) 2001- 2004 MCS Electronics

This sanple show the Bin2G ey and Grey2Bin functions
' Credits to Josef Franz Vogel for an inproved and word/|ong extended
version

'Bin2Gey() converts a byte,integer,word or long into grey code.
'Grey2Bin() converts a grey code into a binary value

Dm B As Byte ' could be word,integer or long too

Print "BIN" ; Spc(8) ; "GREY"
For B =0 To 15

Print B; Spc(10) ; Bin2grey(b)
Next

Print "GREY" ; Spc(8) ; "BIN
For B =0 To 15

Print B; Spc(10) ; Grey2bin(b)
Next

End

HEX

Action
Returns a string representation of a hexadecimal number.

Syntax

var = Hex(x)

Remarks

| HEXVAL

Action

Convert string representing a hexadecimal number into a numeric variable.

Syntax

var = HEXVAL(x)

Remarks

var A string variable.

Var The numeric variable that must be assigned.

X A numeric variable of data type Byte, Integer, Word, Long or
Single.

X The hexadecimal string that must be converted.

See also
HEXVAL, VAL, STR, BIN

Example

mA As Byte, S As String * 2, Sn As Single
= 123

= Hex(a)

Print s

Print Hex(a)

Sn = 1.2

Print Hex(sn)

End

n o g

Difference with QB

In QB you can use the VAL() function to convert hexadecimal strings.

But since that would require an extra test for the leading &H signs that are required in QB, a
separate function was designed.

See also
HEX, VAL, STR, BIN

Example

Dm A As Byte , S As String * 2, Sn As Single
S ="A"

A = Hexval (s)

Print A; Spc(10) ; Hex(a)

End

HIGH

Action

Retrieves the most significant byte of a variable.

Syntax

var = HIGH(s)

Remarks

Var The variable that is assigned with the MSB of var S.

S The source variable to get the MSB from.

See also
LOW , HIGHW

Example

Dm | As Integer , Z As Byte

I = &H1001

z High(i) ' is 10 hex or 16 dec
End

HIGHW
Action
Retrieves the most significant word of a long variable.
Syntax
var =HIGHW(s)
Remarks
Var The variable that is assigned with the MS word of var S.
S The source variable to get the MSB from.

There is no LowW() function. This because when you assign a Long to a word or integer, only the
lower part is assigned. For this reason you do not need a Loww() function.

See also
LOW , HIGH

Example

Dm X As Word , L As Long
L = &H12345678

X = Highw(l)

Print Hex(x)

HOME

I2CINIT

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER / LOWER /THIRD / FOURTH

Remarks

If only HOME is used than the cursor will be set to the upper line.

You can also specify the first letter of the line like: HOME U

See also
CLS , LOCATE

Example
ds

Lower |l i ne
Lcd "Hell o"
Home Upper
Lcd "Upper"
End

Action
Initializes the SCL and SDA pins.

Syntax
12CINIT

Remarks

By default the SCL and SDA pins are in the right state when you reset the chip. Both the PORT and
the DDR bits are set to 0 in that case.

When you need to change the DDR and/or PORT bits you can wse I2CINIT to bring the pins in the
proper state again.

ASM

The 12C routines are located in the i2c.lib/i2c.lbx files.

See also
I2CSEND , I2CSTART, 12CSTOP, I2CRBYTE , I2CWBYTE

Example

Config Sda = Portb.5
Config Scl = Portbh.7
12CINI'T

Dm X As Byte , Slave As Byte

X = 0 'reset variable

Sl ave = &H40 'slave address of a PCF 8574 |1/O IC
| 2creceive Slave , X 'get the value

Print X 'print it

I2CRECEIVE

Action

Receives data from an 12C serial device.

Syntax

I2CRECEIVE slave, var
I2CRECEIVE slave, var ,b2W, b2R

Remarks

Slave A byte, Word/Integer variable or constant with the slave address from the
I12C-device.

Var A byte or integer/word variable that will receive the information from the
I12C-device.

b2w The number of bytes to write.
Be cautious not to specify too many bytes!

b2R The number of bytes to receive.
Be cautious not to specify too many bytes!

You can specify the base address of the slave chip because the read/write bit is set/reset by the

software.

When an error occurs, the internal ERR variable will return 1. Otherwise it will be set to 0.

ASM

The 12C routines are located in the i2c.lib/i2c.lbx files.

See also

Example

Confi g Sda
Config Scl

= Porth.5
= Porth.7

Dm X As Byte , Slave As Byte

X =0 '"reset variable

Sl ave = &H40 'slave address of a PCF 8574 1/O IC
| 2creceive Slave , X 'get the value

Print X 'print it

Dim Buf (10) As Byte

Buf (1) = 1
| 2creceive Slave , Buf (1) , 2 , 1 'send two bytes and receive e bhyte

Buf (2) = 2

Print

End

Buf (1)

"print

t he

received byte

I2CSEND

Action

Send data to an 12C-device.

Syntax
I2CSEND slave, var
I12CSEND slave, var, bytes

I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Remarks

Slave The slave address off the 12C -device.

Var A byte, integer/word or numbers that holds the value, which will be, send to the
I12C-device.

Bytes The number of bytes to send.

When an error occurs, the internal ERR variable will return 1. Otherwise it will be set to 0.

ASM

The 12C routines are located in the i2c.lib/i2c.lbx files.

See also
I2CRECEIVE, I2CSTART, I12CSTOP, I12CRBYTE , I2CWBYTE

Example
Config Sda = Porth.5
Config Scl = Porth.7

Dm X As Byte , A As Byte , Bytes As Byte

x = 5 "assign variable to 5

Dim Ax(10) As Byte

Const Slave = &H40 'slave address of a PCF 8574 [/O1IC
| 2csend Slave , X 'send the value or

For a =1 to 10

ax(a) = a 'Fill dataspace
Next

Bytes = 10

| 2csend Slave , Ax (1) , Bytes
END

Action

I2CSTART generates an 12C start condition.
12CSTOP generates an 12C stop condition.
I12CRBYTE receives one byte from an I12C-device.
I12CWBYTE sends one byte to an 12C-device.

Syntax
I12CSTART
12CSTOP
I2CRBYTE var, ack/nack
12CWBYTEval
Remarks
Var A variable that receives the value from the 12C-device.
ack/nack Specify ACKif there are more bytes to read.
Specify NACK if it is the last byte to read.
Val A variable or constant to write to the 12C device.

These statements are provided as an addition to the I2CSEND and I2CRECEIVE functions.
When an error occurs, the internal ERR variable will return 1. Otherwise it will be set to 0.

ASM

The 12C routines are located in the i2c.lib/i2c.lbx files.

See also
12CSEND , I2CRECEIVE , I12CSTART, I2CSTOP , I2CRBYTE, I2CWBYTE

Example
Config Sda = Portbh.5
Config Scl = Portb.7

———————— Witing and reading a byte to an EEPROM 2404 -----------------

Dm A As Byte

Const Adresw = 174 '"wite of 2404

Const Adresr = 175 'read address of 2404

| 2cstart 'generate start

| 2cwbyt e Adresw 'send slave address

I2cwbyte 1 'send address of EEPROM

I 2cwbyte 3 'send a val ue

| 2cstop 'generate stop

Waitms 10 'wait 10 nS because that is the time that the chip needs to

wite the data

B now read the value back into the var a-----------------

| 2cstart 'generate start

| 2cwbyte Adresw 'wite slave address

| 2cwbyte 1 'wite address of EEPROM to read

| 2cstart 'generate repeated start

| 2cwbyte Adresr 'wite slave address of EEPROM

I 2crbyte A, Nack 'receive value into a. nack means last byte to receive
| 2cstop 'generate stop

Print A 'print received value

End

| IDLE

Action

Put the processor into the idle mode.

Syntax
IDLE

Remarks

In the idle mode, the system clock is removed from the CPU but not from the interrupt logic, the
serial port or the timers/counters.

The idle mode is terminated either when an interrupt is received(from the watchdog, timers, external
level triggered or ADC) or upon system reset through the RESET pin.

See also
POWERDOWN

Example
| DLE

IF-THEN-ELSE-END IF

Action

Allows conditional execution or branching, based on the evaluation of a Boolean expression.

Syntax
IF expression THEN

[ELSEIF expression THEN]
[ELSE]

ENDIF

Remarks

Expression | Any expression that evaluates to true or false. I

The one line version of IF can be used :
IF expression THEN statement [ELSE statement]
The use of [ELSE] is optional.

Tests like IF THEN can also be used with bits and bit indexes.
IF var.bit = 1 THEN
~--- bit is a variable or numeric constant in the range from 0-255

Dim Var As Byte , ldx As Byte
Var = 255

ldx =1

If Var .idx =1 Then

Print "Bit 1 is 1"

End If

See also
ELSE

Example

Dim A As | nteger

A = 10

If A =10 Then 'test expression

Print "This part is executed." 'this will be printed
El se

Print "This will never be executed." 'this not
End If

If A =10 Then Print "New in BASCOV'

If A =10 Then Goto Labell Else Print "A<>10"
Label 1:

Rem The follow ng exanple shows enhanced use of |F THEN
If A.15 = 1 Then "test for bit

Print "BIT 15 IS SET"

End If

Rem the follow ng exanple shows the 1

If A 15

= 0 Then Print "BIT 15 is cleared"

line use of

El se Print

"BIT 15

IF THEN [ELSE]

is set"

INCR

Action

Increments a variable by one.

Syntax
INCR var

Remarks

InitFileSystem

| Var

| Any numeric variable.

See also
DECR

Example

Dm A As Byte

Do 'start |oop

Incr A'increnent a by 1
Print A'print a

Loop Until A > 10 'repeat
Print A

unti |

a

is greater

than 10

Action

Initialize the file system

Syntax

bErrorCode =InitFileSystem (bPartitionNumber)

Remarks

bErrorCode (Byte) Error Result from Routine, Returns 0 if no Error

bPartitionNumber (Byte) Partitionnumber on the Flashcard Drive (normally 1)

Reads the Master boot record and the partition boot record (Sector) from the flashcard and
initializes the filesystem.

This function must be called before any other file-system function is used.
See also
OPEN, CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE , FILEATTR , SEEK ,

BSAVE , BLOAD , KILL , DISKFREE , DISKSIZE ,GET, PUT, FILEDATE , FILETIME ,
EILEDATETIME , DIR , EILELEN , WRITE , INPUT

ASM

Calls _GetFileSystem

Input r24: partitionnumber (1-based)

Output r25: Errorcode C-Flag: Set on Error
Example

Dim bErrorCode as Byte

bErrorCode = InitFileSystem (1)

If bErrorCode > 0 then

Print "Error: "; bErrorCode

Else

Print "Filesystem successfully initialized"
End If

INITLCD

Action
Initializes the LCD display.

Syntax
INITLCD

Remarks

The LCD display is initialized automatic at start up when LCD statements are used by your code.
If fore some reason you would like to initialize it again you can use the INITLCD statement.

ASM

The generated ASM code :

Rcall _Init_LCD

See also
LCcD

Example

INKEY

Action
Returns the ASCII value of the first character in the serial i

Syntax
var = INKEY()
var = INKEY (#channel)

nput buffer.

Remarks

Var Byte, Integer, Word, Long or String variable.

Channel A constant number that identifies the opened channel if
software UART mode

If there is no character waiting, a zero will be returned.
Use the IsCharWaiting() function to check if there is a byte

waiting.

The INKEY routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a comport of your computer.

See also
WAITKEY , ISCHARWAITING

Example

Dm A As Byte

Do 'start |oop

A = Inkey() 'look for character

If A >0 Then 'is variable > 0?

Print A'yes , so print it

End If

Loop 'l oop forever

' The exanple above is for the HARDWARE UART

' The OPEN BAS sanple contains a sanple for

use with the

sof tware UART.

INP

INPUTBIN

Action

Returns a byte read from a hardware port or any internal or external memory location.

Syntax
var = INP(address)

Remarks
var Numeric variable that receives the value.
address The address where to read the value from. (0- &HFFFF)

The PEEK() function will read only the lowest 32 memory locations (registers).
The INP() function can read from any memory location since the AVR has a linear memory model.

When you want to read from XRAM memory you must enable external memory access in the
Compiler Chip Options.

See also
QUTPEEK

Example

Dim A As Byte

A = Inp(&H8000) 'read value that is placed on databus(d0-d7) at hex
address 8000

Print A

End

Action

Read binary data from the serial port.
Syntax

INPUTBIN varl [,var2]

INPUTBIN #channel , varl[,var2]

Remarks

varl The variable that is assigned with the characters from the serial port.

var2 An optional second (or more) variable that is assigned with the data from the
serial input stream.

The channel is for use with the software UART routine and must be used with OPEN and CLOSE.

The number of bytes to read depends on the variable you use.
When you use a byte variable, 1 character is read from the serial port.
An integer will wait for 2 characters and an array will wait until the whole array is filled.

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for the number of bytes.

You may also specify an additional numeric parameter that specifies how many bytes will be read.
This is convenient when you are filling an array.

Inputbin ar(1) , 4 * will fill 4 bytes starting at index 1.

See also
PRINTBIN

Example

Dm A As Byte , C As Integer
Inputbin A, C '"wait for 3 characters
End

| INPUTHEX

Action

Allows hexadecimal input from the keyboard during program execution.

Syntax

INPUTHEX [" prompt"], var [, varn]

Remarks

prompt An optional string constant printed before the prompt character.
Var,varn A numeric variable to accept the input value.

The INPUTHEX routine can be used when you have a RS 232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator and the keyboard as input device.

You can also use the build in terminal emulator.

The input entered may be in lower or upper case (09 and AF)

If var is a byte then the input can be maximum 2 characters long.

If varis an integer/word then the input can be maximum 4 characters long.
If var is a long then the input can be maximum 8 characters long.

Difference with QB

In QB you can specify &H with INPUT so QB will recognize that a hexadecimal string is being used.

BASCOM implements a new statement: INPUTHEX.

See also
INPUT , ECHO

Example

Dim X As Byte

Echo On

I nputhex "Enter a number ", X "ask for input I|ike AF
Echo Of

I nputhex "Enter a number ", X "ask for input Iike ab
Echo On

End

INPUT

Action

Allows input from the keyboard during program execution.
Reads data from a file

Syntax
INPUT[" prompt"], var[, varn]
INPUT #ch, var[, varn]

Remarks

Prompt An optional string constant printed before the prompt character.

Var,varn A variable to accept the input valueor a string.

Ch A channel number, which identifies an opened file. This can be a hard
coded constant or a variable.

The INPUT routine can be used when you have an RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your computer.

This way you can use a terminal emulator and the keyboard as an input device.
You can also use the builtin terminal emulator.

For usage with AVR-DOS file system, you can read variables from an opened file. Since these
variables are stored in ASCII format, the data is converted to the proper format automaticly.

When you use INPUT with a file, the prompt is not supported.

Difference with QB

In QB you can specify &H with INPUT so QB will recognize that a hexadecimal string is being used.
BASCOM implements a new statement : INPUTHEX.

See also
INPUTHEX, PRINT, ECHO, WRITE

Example

" (c) 1999-2000 MCS Electronics
file: |NPUT. BAS
dermo: | NPUT, | NPUTHEX
'To use another baudrate and crystal frequency use the
'netastatenents $BAUD = and $CRYSTAL =
$baud = 9600 'try 1200 baud for exanple
$crystal = 4000000 '4 Mz

DmV As Byte , BL As Byte
Dm C As Integer , D As Byte
DmS As String * 15

Input "Use this to ask a question ", V
Input Bl 'leave out for no question

I nput "Enter integer " , C

Print C

I nput hex "Enter hex nunber (4 bytes) ", C
Print C

I nput hex "Enter hex byte (2 bytes) ", D
Print D

I nput "More variables ", C, D
Print C; " "; D

I nput C Noecho 'supress echo

Input "Enter your nane " , S
Print "Hello " ; S

I nput S Noecho 'wi thout echo
Print S
End

Dm X As Byte

Echo On

I nputhex "Enter a nunmber ", X "ask for input
Echo Of

I nputhex "Enter a number ", X "ask for input
Echo On

End

INSTR

Action

Returns the position of a sub string in a string.

Syntax
var =INSTR(start , string , substr)
var =INSTR(string , substr)

Remarks

Var Numeric variable that will be assigned with the position of the sub string
in the string. Returns 0 when the sub string is not found.

Start An optional numeric parameter that can be assigned with the first
position where must be searched in the string. By default (when not
used) the whole string is searched starting from position 1.

String The string to search.

Substr The search string.

No constant can be used for string it must be a string.

Only substr can be either a string or a constant.

See also
NONE

Example

imS As String * 20 , Z As String * 5

m Bp As Byte

= "This is a test"

= "jis"

Instr(s , Z) : Print Bp 'should print 3

= lInstr(4, S, Z) : Print Bp 'should print 6

o]

ggN0g

m
>3
o

INT

IP2STR

Action

Returns the integer part of a single.

Syntax

var =INT(single)

Remarks

Var A numeric variable that is assigned with the integer of variable single.
Single The single variable to get the integer of.

The fraction is the right side after the decimal point of a single.
The integer is the left side before the decimal point.
1234.567 1234 is the integer part, .567 is the fraction

See Also
FRAC , FIX, ROUND

Example

DmS As Single , Z As Single

For S

Print
Next
End

-10 To 10 Step 0.5

S; Spc(3) ; Round(s) ; Spc(3) ; Fix(s) ; Spc(3) ; Int(s)

Action

Convert an IP number into it's string representation.

Syntax
Var = IP2ST

R(num)

Remarks
An IP number is represented with dots like 192.168.0.1.

The IP2STR

function converts an IP number into a string.

This function is intended to be used in combination with the TCP/IP routines.

Var The string variable that is assigned with the IP number
Num A variable that contains the ip number is numeric format.
See also

CONFIGTCPIP

ISCHARWAITING

Action
Returns 1 when a character is waiting in the hardware UART buffer.

Syntax
var = ISCHARWAITING()
var = ISCHARWAITING(#channel)

Remarks
Var Byte, Integer, Word or Long variable.
Channel A constant number that identifies the opened channel.

If there is no character waiting, a zero will be returned.
If there is a character waiting, a one (1) will be returned.
The character is not retrieved or altered by the function.

While the Inkey() will get the character from the HW UART when there is a character in the buffer, it
will return a zero when the character is zero. This makes it unusable to work with binary data that
might contain the value 0.

With IsCharWaiting() you can first check for the presence of a character and when the function
returns 1, you can retrieve the character with Inkey or Waitkey.

See also
WAITKEY , INKEY.

Example

" (c) 1997-2004 MCS Electronics
" file: | NKEY.BAS
' denp: |INKEY , WAl TKEY

DmA As Byte , S As String * 2

Do

A = Inkey() 'get ascii value from serial port
's = Inkey()

If A >0 Then 'we got sonething

Print "ASCIl code " ; A ; " from serial"

End If

Loop Until A = 27 'until ESC is pressed

A = Waitkey() 'wait for a key
's = waitkey()
Print Chr(a)

"wait until ESC is pressed

Do

Loop Until Inkey() = 27

"Wien you need to receive binary data and the bibary value 0 ,

'you can use

the 1Scharwaiting() function.

"This will return 1 when there is a char waiting and 0 if there

char waiting.
'You can get
End

the char with inkey or waitkey then.

is no

KILL

Action

Delete a file from the Disk

Syntax

Kill sFileName

Remarks

LCASE

Action
Converts a string in to all lower case characters.

Syntax

Target =Lcase(source)

Remarks

sFileName A String variable or string expression, which denotes the file to delete

Target The string that is assigned with the lower case string of string target.

Source The source string.

This function deletes a file from the disk. A file in use can't be deleted. WildCards in Filename are
not supported. Check the DOS-Error in variable gDOSError.

See also
INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , EREEFILE ,

FILEATTR , SEEK , BSAVE ,BLOAD , DISKFREE , DISKSIZE, GET, PUTFILEDATE , EILETIME
,EILEDATETIME , DIR , EILELENWRITE , INPUT

ASM

Calls _DeleteFile

Input X: Pointer to string with filename

Output r25: Errorcode C-Flag: Set on Error
Example

'"We can use the KILL statement to delete a file.
"A file mask is not supported

Print "Kill (delete) file denmp"

Kill "test.txt"

See also
UCASE

ASM

The following ASM routines are called from MCS.LIB : _LCASE

The generated ASM code : (can be different depending on the micro used)
##t#H## Z = Lcase(s)

Ldi R30, $60

Ldi R31,$00 ; load constant in register

Ldi R26, $6D

Rcall _Lcase

Example

DmS As String * 12 , Z As String * 12
S = "Hello Wrld"

Z = Lcase(s)

Print Z

Z = Ucase(s)

Print Z

End

LCD

Action
Send constant or variable to LCD display.

Syntax
LCD x

Remarks

X | Variable or constant to display.

More variables can be displayed separated by the ; -sign
LCD a; bl ; "constant”
The LCD statement behaves just like the PRINT statement. So SPC() can be used too.

See also
$LCD, $LCDRS, CONFIGICD

Example

" (c) 1999-2000 MCS Electronics

file: LCD.BAS
' denp: LCD, CLS, LOWERLINE, SHI FTLCD, SHI FTCURSOR, HOVE
' CURSOR, DI SPLAY

$sim
' REMOVE the above command for the real program !!
"$sim is used fr faster sinulation

'note : tested in PIN node with 4-bit

"Config Ledpin = Pin , Db4 = Porth.1 , Db5 = Porth.2 , Db6 = Porth.3 |,
Db7 = Portb.4 , E = Porth.5 , Rs = Porth.6

Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 , Db7
= Porta.7 , E= Portc.7 , RS = Portc.6

'These settings are for the STK200 in PIN node

"Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4- D7
' Connect the Eline of the LCD to Al5 (PORTC.7) and NOT to the E line of
the LCD connector

'Connect the RS, VO, GND and =5V of the LCD to the STK LCD mnnector

Rem with the config lcdpin statement you can override the conpiler
settings

Dm A As Byte

Config Led = 16 * 2 'configure |lcd screen

"other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1la
"When you dont include this option 16 * 2 is assunmed

'16 * la is intended for 16 character displays with split addresses over
2 lines

'"$LCD = address will turn LCD into 8bit databus node
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Ods 'clear the LCD display

Lcd "Hello world." 'display this at the top line
Wait 1

Lowerline 'select the lower line

Wait 1

Led "sShift this." '"display this at the lower line
Wait 1

For A =1 To 10

Shiftlcd Right '"shift the text to the right
Wait 1 'wait a nonent

Next

For A =1 To 10

Shiftlcd Left "shift the text to the left
Wait 1 'wait a nonent

Next

Locate 2 , 1 'set cursor position
Led "*" "display this
Wait 1 '"wait a noment

Shiftcursor Right 'shift the cursor
Lcd "@ ‘'display this
Wait 1 'wait a nonent

Home Upper 'select line 1 and return hone
Lcd "Replaced." 'replace the text
Wait 1 '"wait a noment

Cursor O f Noblink 'hide cursor
Wait 1 'wait a nonent

Cursor On Blink '"show cursor

Wait 1 'wait a nonent

Di splay Of 'turn display off

Wait 1 'wait a nonent

Di splay On 'turn display on

B NEW support for 4line LCD------
Thirdline

Lcd "Line 3"

Fourthline

Lcd "Line 4"

Home Third 'goto hone on line three
Home Fourth

Home F 'first letteer also works
Locate 4 , 1 : Lcd "Line 4"

Wait 1

"Now lets build a special character

"the first nunmber is the characternunber (0-7)
'The other nunbers are the rowal ues

"Use the LCD tool to insert this line

Defl cdchar 1, 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 ' replace ?
with nunber (0-7)

Def | cdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 ' replace
wi th nunber (0-7)

Ods 'select data RAM

Rem it is inportant that a CLS is following the deflcdchar statenents
because it will set the controller back in datanode

Lcd Chr(0) ; Chr (1) "print the special character

————————————————— Now use an internal routine ------------
_templ = 1 'value into ACC

IrCall _write_lcd "put it on LCD

End

| LCDCONTRAST
Action

Set the contrast of a TEXT LCD.

Syntax

LCDCONTRASTx

Remarks

X | A variable or constant in the range from 0-3.

Some displays swpport changing the contrast. Noritake displays have this option for example.

See also
NONE

Example
NONE

| LCDAT

Action
Send constant or variable to a SED graphical display.

Syntax
LCDAT x,y,var[,inv]

Remarks

X X location. In the range from 0-63. The SED displays columns
are 1 pixel width.

Y Y location.

Var The constant or variable to display

inv Optional number. Value 0 will show the data normal. Any other
value will invert the data.

You need to include the glibSED library with :
$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD , SETFONT, GLCDCMD, GLCDDATA

Example

| LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax

var = Left(varl , n)

Remarks

Var The string that is assigned.

Varl The source string.

n The number of characters to get from the source string.
See also

RIGHT , MID

Example

DmS As XramString * 15 , Z As String * 15

S = " ABCDEFG'
Z = Left(s , 5)
Print Z ' ABCDE
End

| LEN

Action

Returns the length of a string.

Syntax

var =LEN (string)

Remarks

var A numeric variable that is assigned with the length of string.
string The string to calculate the length of.

Strings can be maximum 254 bytes long.

Example

DmS As String * 12
Dim A As Byte

S = "test"

A = Len(s)

Print A' prints 4
Print Len(s)

LINE
Action
Draws a line on a graphic display.
Syntax
LINE(x0,y0) — (x1,y1), color
Remarks
X0 Starting horizontal location of the line.
YO Starting vertical location of the line.
X1 Horizontal end location of the line
Y1 Vertical end location of the line.
See Also

LINE, CONFIG GRAPHLCD

Example

' (c) 2001- 2004 MCS Electronics
' T6963C graphic display support denp 240 * 28

The connections of the LCD used in this denp
LCD pin connected to
' 1 G\D G\D

'2 G\ND G\D

3 +5V +5V

4 -9V -9V potneter
'5 /VWR PORTC. 0

6 /RD PORTC. 1

7 | CE PORTC. 2

8 C/ D PORTC. 3

"9 NC not conneted
'10 RESET PORTC. 4
'11-18 DO- D7 PA

'19 FS PORTC. 5

'20 NC not connected

$crystal = 8000000

"First we define that we use a graphic LCD

' Only 240*64 supported yet

Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc , Ce
=2, =3, W =0, Rd=1, Reset =4, Fs =5, Mde = 8

'The dataport is the portname that is connected to the data lines of the
LCD

'The controlport is the portnane which pins are used to control the |cd

"CE, CD etc. are the pin nunber of the CONTROLPCRT.

' For exanple CE =2 because it is connected to PORTC. 2

‘"mode 8 gives 240 / 8 = 30 colums , node=6 gives 240 / 6 = 40 colums

Showpic O , 64 , Plaatje show 2 since we have a big display

"Dim variables (y not used) Wait 2
Dm X As Byte , Y As Byte Os Text ' clear the text
End
"Clear the screen will both clear text and graph display
Cs
"Other options are : "This |abel holds the nmge data
' CLS TEXT to clear only the text display Pl aatj e:
' CLS GRAPH to clear only the graphical part "$BGF will put the bitmap into the program at this |ocation
$bgf "ncs. bgf"
Cursor Of
"You could insert other picture data here
Wait 1
"locate works like the normal LCD |ocate statenent

' LOCATE LINE, COLUW LINE can be 1-8 and colum 030

Locate 1 , 1

' Show sone text

Lcd "MCS El ectronics”

"And sone othe text on line 2

Locate 2 , 1 : Lcd "T6963c support”

Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "wite this to the lower |ine"

Wait 2

ds Text

'use the new LINE statenment to create a box

" LI NE(X0, YO) - (X1,Y1), on/off

Line(0 , 0) -(239 , 127) , 255 ' diagonal line

Line(O0 , 127) -(239 , 0) , 255 ' diagonal line

Line(0O , 0) -(240 , 0) , 255 ' horizontal wupper line
Line(0 , 127) -(239 , 127) , 255 'horizontal lower I|ine
Line(0 , 0) -(0 , 127) , 255 ' wvertical left line
Line(239 , 0) -(239 , 127) , 255 ' wvertical right line

Wait 2

' draw a line using PSET X Y, ON OFF

' PSET on.off paramis 0 to clear a pixel and any other value to turn it
on

For X = 0 To 140

Pset X, 20 , 255 ' set the pixel

Next

For X = 0 To 140
Pset X, 127 , 255 ' set the pixel
Next

Wait 2

"Now it is tinme to show a picture

" SHOWPI C X, Y, | abel

'The label points to a label that holds the inage data
Showpic O , O, Plaatje

LINE INPUT

Action

Read a Line from an opened File.

Syntax

Linelnput #bFileNumber, sLineText

Remarks
BfileNumber (Byte) Filenumber, which identifies an opened file
SlineText (String) A string, which is assigned with the next line from the file.

Only valid for files opened in mode INPUT. Line INPUT works only with strings. It is great for
working on text files.

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LOC, LOF , EOF, FREEFILE , FILEATTR ,
SEEK , BSAVE , BLOAD , KILL, DISKFREE , DISKSIZE, GET ,PUT

LTRIM

Action
Returns a copy of a string with leading blanks removed

Syntax

var =LTRIM(org)

Remarks

Var String that receives the result.

Org The string to remove the leading spaces from

ASM
Calls _FileLinelnput
Input r24:filenumber X: Pointer to String to be written
fromfile
r25: Stringlength
Output r25: Errorcode C-Flag: Set on Error
Example

"k we want to check if the file contains the witten lines
Ff = Freefile() ' get file handle

Open "test.txt" For Input As #ff ' we can use a constant for the file too
Print Lof (#ff) ; " length of file"

Print Fileattr(#ff) ; " file node" ' should be 1 for input

Do

Line Input #ff , S' read a line

" line input is used to read a line of text from a file

Print S' print on termnal enulator

Loop Until Eof (ff) <> 0

'The EOF() function returns a non-zero number when the end of the file is
reached

"This way we know that there is no nore data we can read

Cl ose #ff

See also
RTRIM, TRIM

ASM

NONE

Example

DmS As String * 6
S=" AB "

Print Ltrims)
Print Rtrims)
Print Trin(s)

End

LOAD

LOADADR

Action

Load specified TIMER with a reload value.

Syntax
LOAD TIMER , value

Remarks
TIMER TIMERO , TIMER1 or TIMER2
Value The variable or value to load.

The TIMERO does not have a reload mode. But when you want the timer to generate an interrupt
after 10 ticks for example, you can use the RELOAD statement.

It will do the calculation. (256-value)

So LOAD TIMERO, 10 will load the TIMERO with a value of 246 so that it will overflow after 10 ticks.

TIMERL1 is a 16 bit counter so it will be loaded with the value of 65536 value.

Action

Loads the address of a variable into a register pair.

Syntax

LOADADR var , reg

Remarks

var A variable which address must be loaded into the register pair X, Y or Z.
reg The register X, Y or Z.

The LOADADR statement serves as an assembly helper routine.

Example

Dm S As String * 12

Dim A As Byte

$ASM

loadadr S , X 'load address into R26 and R27

Id _tenpl, X 'load value of location R26/R27 into R24(_tenpl)
$END ASM

LOADLABEL

Action

Assigns a word variable with the address of a label.

Syntax
Var = LOADLABEL(label)

Remarks
var The variable that is assigned with the address of the label.
Ibl The name of the label

In some cases you mght need to know the address of a point in your program. To perform a
Cpeek() for example.

You can place a label at that point and use LoadLabel to assign the address of the label to a
variable.

LOC

Action

Returns the position of last read or written Byte of the file

Syntax

ILastReadWritten =Loc (#bFileNumber)

Remarks

bFileNumber (Byte) Filenumber, which identifies an opened file

ILastReadWritten (Long) Variable, whichsigned with the Position of last read or written
Byte (1-based)

This function returns the position of the last read or written Byte. If an error occurs, 0 is returned.
Check DOS-Error in variable gbDOSError. If the file position pointer is changed with the command
SEEK, this function can not be used till the next read/write operation.

Difference with QB

This function differs from QB. In QB the byte position is divided by 128.

See also

INITEILESYSTEM , OPEN , CLOSE, FLUSH, PRINT, LINE INPUT, LOF , EOF , EREEFILE ,
FILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , DISKSIZE , GET ,PUT

FILEDATE , FILETIME , FILEDATETIME , DIR , FILELENWRITE , INPUT

ASM

Calls _FileLoc

Input r24: filenumber X: Pointer to Long-variable,
which gets th result

Output r25: Errorcode C-Flag: Set on Error

Example

‘open the file in BINARY node

Open "test.bi N' For Binary As #2

Put #2 , B' wite a byte

Put #2 , W' wite a word

Put #2 , L ' wite a long

Ltemp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Lof (#2) ; " length of file"
Print Fileattr(#2) ; " file node" ' should be 32 for binary

Put #2 , Sn ' wite a single
Put #2 , Stxt ' wite a string

Flush #2 ' flush to disk

Cl ose #2 | LOF

Action
Returns the length of the File in Bytes

Syntax

IFileLength =LOF (#bFileNumber)

Remarks

bFileNumber (Byte) Filenumber, which identifies an opened file

LFileLength (Long) Variable, which issigned with the Length of the file (1-based)

This function returns the length of an opened file. If an error occures, 0 is returned. Check DOS-
Error in variable gbhDOSError.

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, EOF , FREEFILE ,
FILEATTR , SEEK , BSAVE , BLOAD , KILL, DISKFREE , DISKSIZE , GET , PUTFILEDATE ,

ASM

Calls _FileLOF

Input r24: filenumber X: Pointer to Long-variable,
which gets th result

Output r25: Errorcode C-Flag: Set on Error

Example

‘open the file in BINARY node

Open "test.bi N' For Binary As #2

Put #2 , B ' wite a byte

Put #2 , W' wite a word

Put #2 , L' wite a long

Ltemp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Lof (#2) ; " length of file"
Print Fileattr(#2) ; " file node" ' should be 32 for binary

Put #2 , Sn ' wite a single
Put #2 , Stxt ' wite a string

Flush #2 ' flush to disk
Cl ose #2

LOCAL

Action
Dimensions a variable LOCAL to the function or sub program.

Syntax
LOCAL var As Type

Remarks
Var The name of the variable
Type The data type of the variable.

There can be only LOCAL variables of the type BYTE, INTEGER, WORD, LONG, SINGLE or
STRING.

A LOCAL variable is a temporary variable that is stored on the frame.
When the SUB or FUNCTION is terminated, the memory will be released back to the frame.
BIT variables are not possible because they are GLOBAL to the system.

The AT , ERAM, SRAM, XRAM directives can not be used with a local DIM statement. Aso local
arrays are not possible.

See also
DIM

ASM

NONE

Example

' (c) 2000 MCS Electronics

' DECLARE. BAS

' Note that the usage of SUBS works different in BASCOM8051

' First the SUB prograns mnust be declared

"Try a SUB without paraneters
Decl are Sub Test2

'"SUB with variable that can not be changed(A) and

"a variable that can be changed(Bl), by the sub program

"When BYVAL is specified, the value is passed to the subprogram

'"When BYREF is specified or nothing is specified, the address is passed
to

'the subprogram

Decl are Sub Test(byval A As Byte , Bl As Byte)

Decl are Sub Testarray(byval A As Byte , Bl As Byte)
"All variable types that can be passed

"Notice that BIT variables can not be passed.

"BIT variables are GLOBAL to the application

Decl are Sub Testvar(b As Byte , | As Integer , WAs Wrd , L

As String)

'passing string arrays needs a different syntax because the

strings nust be passed by the conpiler

‘"the enpty () indicated that an array wll be passed

Decl are Sub Teststr(b As Byte , D () As String)

DmBb As Byte , | As Integer , WAs Word , L As
"dim used variabl es

Dim Ar (10) As Byte

Dim Sar (10) As String * 8 'strng array

For Bb = 1 To 10

Sar (bb) = Str(bb) "fill the array

Next

Bob = 1

‘now call the sub and notice that we always nust
with index 1

Call Teststr(bb , Sar(1))

Call Test2 'call sub
Test2 'or use without CALL

Long , S As

As Long , S

length of the

String * 10

pass the first address

"Note that when calling a sub wthout the statement CALL, the enclosing

parent heses nust be left out

Bob = 1

Call Test(1 , Bb) 'call sub with paranmeters
Print Bb 'print value that is changed

'"now test all the variable types
Call Testvar(bb , I , W, L, S)
Print Bbo ; I ; W; L ; S

'now pass an array
‘note that it nust be passed by reference
Testarray 2 , A (1)

Print "ar(1) = "; A (1)
Print "ar(3) = "; A (3)
End

"End your code with the subprograns

‘"Note that the sanme variables and nanes nust be used as the declared ones

Sub Test(byval A As Byte , BL As Byte) 'start sub

Print A; " ", Bl 'print passed variables
Bl = 3 'change value

"You can change A, but since a copy is passed to the SUB,
"the change will not reflect to the a@lling variable

End Sub

Sub Test2 'sub wi thout paranmeters
Print "No paraneters”
End Sub

Sub Testvar(b As Byte , | As Integer , WAs Wrd
String)
Local X As Byte

, L As Long

X = 5 "assign |ocal
B =X

I =-1

W= 40000

L = 20000

S = "test"

End Sub

Sub Testarray(byval A As Byte , Bl As Byte) 'start sub

Print A; " ", Bl 'print passed variables
Bl = 3 'change value of elenent with index 1
Bl(1) = 3 'specify the index which does the sane as the |ine above

B1(3) = 3 '"nodify other elenent of array

"You can change A but since a copy is passed to the SUB,
‘the change will not reflect to the calling variable

End Sub

‘notice the enpty() to indicate that a string array is passed
Sub Teststr(b As Byte , D () As String)

D(b) =0 (b) + "add"

End Sub

LOCATE

Action

Moves the LCD cursor to the specified position.

Syntax

LOCATEY , x

Remarks

X Constant or variable with the position. (1-64*)
Y Constant or variable with the line (1 - 4%)

* Depending on the used display

See also
CONFIGLCD,LCD, HOME , CLS

Example
LCD "Hello"

Locate 1,10
LCD "*"

LOG | LOGI0

Action Action
Returns the natural logarithm of a single variable. Returns the base 10 logarithm of a single variable.
Syntax Syntax

Target =Log(source) Target =Logl0(source)

Remarks Remarks

Target The single that is assigned with the LOG() of single target. Target The single that is assigned with the base 10 logarithm of single target.
Source The source single to get the LOG of. Source The source single to get the base 10 LOG of.

See also See also

EXP,LOG10 EXP, LOG

Example Example

Show sample

Show sample

LOOKDOWN

Action
Returns the index of a series of data.

Syntax

var =LOOKDOWN(value, label, entries)

Remarks

Var The returned index value

Value The value to search for

Label The label where the data starts

entries The number of entries that must be searched

When you want to look in BYTE series the VALUE variable must be dimensioned as a BYTE. When
you want to look in INTEGER or WORD series the VALUE variable must be dimensioned as an
INTEGER.

The LookDown function is the counterpart of the LookUp function.

Lookdown will search the data for a value and will return the index when the value is found. It will
return—1 when the data is not found.

See also
LOOKUPSTR ,LOOKUP

Example

' LOOKDOWN. BAS
' (c) 2001 MCS Electronics

Dim Idx as integer, search as byte entries as byte

'we want to search for the value 3
Search = 3
"there are 5 entries
Entries = 5

in the table

"l ookup and return the index

ldx = Lookdown(search , Label , Entries)
Print Idx

Search = 1

ldx = Lookdown(search , Label , Entries)
Print [Idx

Search = 100

ldx = Lookdown(search , Label , Entries)

Print Idx ' return -1 if not found
"looking for integer or word data
"of the type integer !

Dim I search As | nteger

| search = 400

ldx = Lookdown(isearch , Label2 ,

Print Idx ' return 3

End

Label :

Datal, 2, 3, 4, 5

Label 2:

Data 1000% , 200% , 400% , 300 %

requires

Entries)

t hat

the search variable

is

LOOKUPSTR

Action

Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label)

LOOKUP
Action
Returns a value from a table.
Syntax
var =LOOKUP(value, label)
Remarks
Var The returned value
Value A value with the index of the table
Label The label where the data starts

The value can be up to 65535. 0 will return the first entry.

See also
LOOKUPSTR.

Example

Dm BlL As Byte , | As Integer

Bl = Lookup(2 , Dta)

Print BL ' Prints 3 (zero based)

I = Lookup(0 , Dta2) ' print 1000
Print |
End

Dta:

Data 1, 2, 3, 4, 5
Dt a2:

Data 1000% , 2000%

Remarks

Var The string returned

Value A value with the index of the table. The index is zero-based. That is, 0 will
return the first element of the table.

Label The label where the data starts

The index value can have a maximum value of 255.

See also
LOOKUP

Example

DmS As String * 4, ldx As Byte
ldx = 0 : S = Lookupstr (idx , Sdata)
Print S'wll print "This'

End

Sdat a:
Data "This" , "is" ,"a test"

LOW

Action

Retrieves the least significant byte of a variable.

Syntax
var =LOW('s)

Remarks

Var The variable that is assigned with the LSB of var S.

S The source variable to get the LSB from.

See also
HIGH , HIGHW

Example

Dm Il As Integer , Z As Byte
I = &H1001

Z = Low(l) ' is 1

End

LOWERLINE

Action

Reset the LCD cursor to the lower line.
Syntax

LOWERLINE

Remarks
NONE

See also
UPPERLINE, THIRDLINE , FOURTHLINE , HOME

Example
LCD "Test"
LOVERLI NE
LCD "Hello"
End

MAKEINT

Action

Compact two bytes into a word or integer.

Syntax
varn = MAKEINT(LSB , MSB)

| MAKEBCD
Action
Convert a variable into its BCD value.
Syntax
varl = MAKEBCD (var2)
Remarks
varl Variable that will be assigned with the converted value.
Var2 Variable that holds the decimal value.

When you want to use an 12C clock device, which stores its values as BCD values you can use this
function to convert variables from decimal to BCD.

For printing the bcd value of a variable, you can use the BCD() function which converts a BCD
number into a BCD string.

See also
MAKEDEC , BCD

Example

Dm A As Byte
A = 65

Lcd A

Lower i ne

Lcd Bcd(a)

A = Makebcd(a)
LCOD " " ; a
End

Remarks

Varn Variable that will be assigned with the converted value.
LSB Variable or constant with the LS Byte.

MSB Variable or constant with the MS Byte.

The equivalent code is:
varn = (256 * MSB) + LSB

See also

LOW, HIGH

Example

Dm a As Integer, | As Integer

A= 2

I = Makeint(a, 1) 'l = (1 * 256) + 2 = 258
End

| MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax

varl = MAKEDEC(var2)

Remarks
varl Variable that will be assigned with the converted value.
var2 Variable that holds the BCD value.

When you want to use an 12C clock device, which stores its values as BCD values you can use this
function to canvert variables from BCD to decimal.

See also
MAKEBCD

Example

Dm A As Byte

a = 65

Print A

Print Bcd(a)

A = Makedec(a)
Print Spc(3) ; A
End

MAX
Action
Returns the maximum value of a word array.
Syntax
varl = MAX (var2)
MAX (ar(1), m ,idx)
Remarks
varl Variable that will be assigned with the maximum value.
var2 The first address of the array.
The MAX statement can return the index too
Ar(1) Starting element to get the maximum value and index of.
M Returns the maximum value of the array.
ldx Return the index of the array that contains the maximum value. Returns 0 if there
is no maximum value.
See also
MIN
Example

' (c) 2001- 2004 MCS

m nmax. bas

This exanple show the MN and MAX functions

These functions only work on WORD arrays at the nonment !111!

'"Dim sone variabl es
DmW As Word , B As Byte
Dim W 10) As Word

"fill the word array with values from 1 to 10
For B =1 To 10

Wb) =B

Next

Print "Max nunmber " ; Max(w(1))

Print "Mn nunmber " ; Mn(w(1))

End

MIN

Action

Returns the minimum value of a word array.

Syntax
varl = MIN(var2)
MIN(ar(1), m, idx)

| MID

Action
The MID function returns part of a string (a sub string).
The MID statement replaces part of a string variable with another string.

Syntax
var=MID(varl ,st[, 1])
MID(var ,st [, 1]) = varl

Remarks
varl Variable that will be assigned with the minimum value.
var2 The first address of the array.
The MIN statement can return the index too
Ar(1) Starting element to get the minimum value and index of
M Returns the minimum value of the array
ldx Return the index of the array that contains the minimum value. Returns 0 if there
is no minimum value.
See also
MAX
Example

' (c) 2001-2004 MCS

' m nmex. bas

This exanple show the MN and MAX functions
These functions only work on WORD arrays at

'"Dim sone variabl es
DmW As Word , B As Byte
Dim W 10) As Word

"fill the word array with values from 1 to 10
For B =1 To 10

Wb) =B

Next

Print "Max nunmber " ; Max(w(1))

Print "Mn nunmber " ; Mn(w(1))

End

the nonment 11111

Remarks

var The string that is assigned.

Varl The source string.

st The starting position.

| The number of characters to get/set.
See also

LEFT, RIGHT

Example

DmS As String * 15 , Z As String * 15

S = " ABCDEFG'

Z = Md(s , 2, 3)
Print Z 'BCD

Z = "12345"

Md(s , 2, 2 =2
Print S 'A12DEFG
End

ON INTERRUPT

Action

Execute subroutine when the specified interrupt occurs.

Syntax
ON interrupt label [NOSAVE]

Remarks

Interrupt INTO, INT1, INT2, INT3, INT4,INT5, TIMERO ,TIMER1, TIMER2, ADC ,
EEPROM , CAPTURE1, COMPARE1A, COMPARE1B,COMPAREL1. Or
you can use the AVR name convention :
OC2, OVF2, ICP1, OC1A, OC1B, OVF1, OVFO, SPI, URXC,
UDRE, UTXC, ADCC, ERDY and ACI.

Label The label to jump to if the interrupt occurs.

NOSAVE When you specify NOSAVE, no registers are saved and restored in the

interrupt routine. So when you use this option make sure to save and
restore all used registers.

When you omit NOSAVE all used registers will be saved. These are SREG
, R31 to R16 and R11 to RO.

R12 — R15 are not saved. When you use floating point math in the ISR(not
recommended) you must save and restore R12R15 yourself in the ISR.
My_Isr:

Push R12 ‘ save registers
Push R13

Push R14

Push R15

Single = single + 1 * we use FP
Pop R15 ‘ restore registers
Pop R14

Pop R13

Pop R12

RETURN

You must return from the interrupt routine with the RETURN statement.

The first RETURN statement that is encountered that is outside a condition will generate a RETI
instruction. You may have only one such RETURN statement in your interrupt routine because the
compiler restores the registers and generates a RETI instruction when it encounters a RETURN
statement in the ISR. All other RETURN statements are converted to a RET instruction.

The possible interrupt names can be looked up in the selected microprocessor register file.
2313def.dat for example shows that for the compare interrupt the name is COMPAREL. (look at the
bottom of the file)

What are interrupts good for?

An interrupt will halt your program and will jump to a specific part of your program. You can m&e a
DO .. LOOP and poll the status of a pin for example to execute some code when the input on a pin
changes.

But with an interrupt you can perform other tasks and when then pin input changes a special part of
your program will be executed. When you use INPUT "Name ", v for example to get a user name
via the RS-232 interface it will wait until a RETURN is received. When you have an interrupt routine
and the int occurs it will branch to the interrupt code and will execute the interrupt code. When it is
finished it will return to the Input statement, waiting until a RETURN is entered.

Maybe a better example is writing a clock program. You could update a variable in your program
that updates a second counter. But a better way is to use a TIMER interrupt and update a seconds
variable in the TIMER interrupt handler.

There are multiple interrupt sources and it depends on the used chip which are available.

To allow the use of interrupts you must set the global interrupt switch with a ENABLE
INTERRUPTS statement. This only allows that interrupts can be used. You must also set the
individual interrupt switches on!

ENABLE TIMERO for example allows the TIMERO interrupt to occur.

With the DISABLE statement you turn off the switches.

When the processor must handle an interupt it will branch to an address at the start of flash
memory. These addresses can be found in the DAT files.

The compiler normally generates a RETI instruction on these addresses so that in the event that an
interrupt occurs, it will return immediately.

When you use the ON ... LABEL statement, the compiler will generate code that jumps to the
specified label. The SREG and other registers are saved at the LABEL location and when the
RETURN is found the compiler restores the registers and generates the RETI so that the program
will continue where it was at the time the interrupt occurred.

When an interrupt is services no other interrupts can occur because the processor(not the compiler)
will disable all interrupts by clearing the master interrupt enable bit When the interrupt is services
the interrupt is also cleared so that it can occur again when the conditions are met that sets the
interrupt.

It is not possible to give interrupts a priority. The interrupt with the lowest address has the highest
interrupt!

Finally some tips :

* when you use a timer interrupt that occurs each 10 uS for example, be sure that the interrupt code
can execute in 10 uS. Otherwise you would loose time.

* it is best to set just a simple flag in the interrupt routine and to determine it's status in the main
program. This allows you to use the NOSAVE option that saves stack space and program space.
You only have to Save and Restore R24 and SREG in that case.

* Since you can not PUSH a hardware register, you need to load it first:

PUSH R24 ; since we are going to use R24 we better save it

IN r24, SREG ; get content of SREG into R24

PUSH R24 ; we can save a register

;here goes your asm code

POP R24 ;get content of SREG

OUT SREG, R24 ; save into SREG
POP R24 ; get r24 back

Example

Enabl e Interrupts

Enable I nt0 'enable the interrupt

On I nt0 Label 2 Nosave 'junp to label2 on [|NTO
Do 'endl ess | oop

nop

Loop
End

Label 2:

Dm A As Byte

If A >1 Then

Return 'generates a RET because
End If

Return 'generates a RETI because
Return 'generates a RET because

it

it

it

is inside a condition

is the first RETURN
is the second RETURN

ON VALUE

Action

Branch to one of several specified labels, depending on the value of a variable.

Syntax
ON var[GOTO] [GOSUB] labell [, label2] [,CHECK]

Remarks
Var The numeric variable to test.
This can also be a SFR such as PORTB.
labell, label2 The labels to jump to depending on the value of var.
CHECK An optional check for the number of provided labels.

Note that the value is zero based. So when var is 0, the first specified label is jumped/branched.
It is important that each possible value has an associated label.

When there are not enough labels, the stack will get corrupted. For example :

On value labell, label2

And value = 2, there is no associated label.

You can use the optional CHECK so the compiler will check the value against the number of
provided labels. When there are not enough labels for the value, there will be no GOTO or GOSUB
and the next line will be executed.

ASM

The following code will be generated for a non-MEGA micro with ON value GOTO.
Ldi R26, $60 ; load address of variable

Ldi R27,$00 ; load constant in register

Ld R24, X

Cr R25

Ldi R30, Low(ON_1_ * 1) ; load Z with address of the |abel
Ldi R31, High(ON1_ * 1)

Add zl,r24 ; add value to Z

Adc zh,r25

1jnmp ; junmp to address stored in Z

ON_1_:

Rinmp Ibll i junp table

Rimp Ibl2

Rinp Ibl3

The following code will be generated for a non-MEGA micro with ON value GOSUB.
CH#H##E On X Gosub L1 , L2

Ldi R30,Low(ON_1 EXIT * 1)
Ldi R81, Hi gh(ON_1_EXIT * 1)

Push R30 ;push return address

Push R31

Ldi R30,Low(ON_1_ * 1) ;load table address
Ldi R31, High(ON_1_ * 1)

Ldi R26, $60

Ld R24, X

Cr R25

Add zl,r24 ; add to address of junp table
Adc zh,r25

I'jmp ; junp 111

ON_1_:

Rnp L1

Rnmp L2

ON_1_EXIT:

As you can see a jump is used to call the routine. Therefore the return address is first saved on the
stack.

Example

Dim X As Byte

X = 2 "assign a variable interrupt

On X Gosub Lbl1 , Lbl2, Lbl3 "junp to label 1bl3
X=0

On X Goto Lbll, Lbl2, LblI3

END

I bl 3:
Print "Ibl 3"
Ret urn

Lbl 1:
Print "Ibl1"

Lbl 2:
Print "Ibl2"

OPEN

Action

Opens a device.

Syntax

OPEN tevice" for MODE As #channel
OPEN file FOR MODE as #channel

Remarks

Device The default device is COM1 andyou don't need to open a channel to use
INPUT/OUTPUT on this device.

With the implementation of the software UART, the compiler must know to which
pin/device you will send/receive the data.

So that is why the OPEN statement must be used. It tells the compiler about the pin
you use for the serial input or output and the baud rate you want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stopbits.

The format for COM1 and COM2 is : COM1: or COM2:

There is no speed/baud rate parameter since the default baud rate will be used that is
specified with $BAUD or $BAUD1

The format for the software UART is: COMpin:speed,8,N,stopbits[,INVERTED]
Where pin is the name of the PORT-pin.

Speed must be specified and stop bits can be 1 or 2.

7 bit data or 8 bit data may be used.

For parity N, O or E can be used.

An optional parameter ,INVERTED can be specified to use inverted RS 232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin PORTD.1 for
output with 9600 baud, 1 stop bit and with inverted RS-232.

For the AVR -DOS filesystem, Device can also be a string or filename constant like
"readme.txt" or sFileName

MODE You can use BINARY or RANDOM for COM1 and COM2, but for the software UART
pins, you must specify INPUT or OUTPUT.

For the AVR -DOS filesystem, MODE may be INPUT, OUTPUT, APPEND or BINARY.

Channel The number of the channel to open. Must be a positive constant >0.

For the AVR -DOS filesystem, the channel may be a positive constant or a numeric
variable. Note that the AVD-DOS filesystem uses real filehandles. The software
UART does not use real file handles.

UART
The statements that support the device are PRINT, INPUT , INPUTHEX, INKEY and WAITKEY

Every opened device must be closed using the CLOSE #channel statement. Of course, you must
use the same channel number.

In DOS the #number is a DOS file number that is passed to low level routines. In BASCOM the
channel number is only used to identify the channel but there are no file handles. So opening a

channel, will not use a channel. And closing the channel is only needed to make the syntax
compatible with QB.

What is the difference?

In QB/VB yau can close the channel in a subroutine like this:
OPEN "com1:" for binary as #1

Call test

Close #1

End

Sub test

Print #1, "test"

End Sub

This will work since the filenumber is a real variable in the OS.
In BASCOM it will not work : the CLOSE must come after the last I/0 statement:

OPEN "com1:" for binary as #1
Call test

End

Sub test

Print #1, "test"

End Sub

Close #1

The INPUT statement in combination with the software UART, will not echo characters back
because there is no default associated pin for this.

AVR-DOS

The AVR-DOS file system uses real file handles. This means that the CLOSE statement can be
used at any place in your program just as with QB/VB.

See also
CLOSE ,CRYSTAL

PRINT, LINE INPUT , LOC , LOF , EOF

Example 1

' (c) 2000 MCS Electronics
' OPEN. BAS
' denpnstrates software UART

$crystal = 10000000 'change to the value o the XTAL you have installed

Dm B As Byte

"Optional you can fine tune the calculated bit delay

"Why would you want to do that?

' Because chips that have an internal oscillator may not

‘run at the speed specified. This depends on the voltage, tenp etc.

You can either change $CRYSTAL or you can use
' BAUD #1, 9610

"In this exanple file we use the DT006 from ww.simstick.com

This allows easy testing with the existing serial port

'"The MAX232 is fitted for this exanple.

'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related
statements

"W will use the software UART.

Wai t ms 100

'open channel for output
Open "cond. 1: 19200, 8, n, 1" For Output As #1
Print #1 , "serial output”

"Now open a pin for input

Open "cond. 0: 19200, 8, n, 1" For Input As #2

‘since there is no relation between the input and output pin
"there is NO ECHO while keys are typed

Print #1 , "Number”
'get a nunber
Input # , B

"print the nunber
Print #1 , B

‘now loop until ESC is pressed

"Wth INKEY() we can check if there is data available
"To use it with the software UART you nust provide the channel
Do

"store in byte

B = I nkey(#2)

"when the value > 0 we got sonething

If B >0 Then

Print #1 , Chr(b) 'print the character

End If

Loop Until B = 27

Cl ose #2
Cl ose #1

" OPTI ONAL you mmy use the HARDWARE UART

'The software UART will not work on the hardware UART pins
'so you nust choose other pins

"use normal hardware UART for printing

"Print B

When you dont want to use a level inverter such as the MAX 232

"You can specify ,|NVERTED :

' Open "cond.0:300,8,n,1,inverted" For Input As #2

"Now the logic is inverted and there is no need for a level converter
"But the distance of the wires nust be shorter with this

End

ouT

Action

Sends a byte to a hardware port or internal or external memory address.

Syntax

OUTaddress, value

Remarks

Address The address where to send the byte to in the range
of0 -FFFF hex.

Value The variable or value to send.

The OUT statement can write a value to any AVR memory location.

It is advised to use Words for the address. An integer might have a negative value and will write of
course to a word address. So it will be 32767 higher as supposed. This because an integer has it's
most significant bit set when it is negative.

To write to XRAM locations you must enable the External RAM access in the Compiler Chip
Options.

You do not need to use OUT when setting a port variable. Port variables and otherregisters of the
micro can be set like this : PORTB = value , where PORTB is the name of the register.

See also
INP

Example
Qut &H8000 , 1 'send 1 to the databus(dO0-d7) at hex address 8000
End

PEEK

Action

Returns the conte

Syntax

var = PEEK(addr

nt of a register.

ess)

Remarks

Var Numeric variable that is assigned with the content of the memory location
address

Address Numeric variable or constant with the address location.(0-31)

Peek() will read the content of a register.

Inp() can read any memory location

See also
POKE , CPEEK,

Example
Dm A As Byte

A = Peek(0) '
End

INP , OUT

return the first byte of the internal nmemory (rO0)

POKE

POPALL

Action

Write a byte to an internal register.

Syntax

POKEaddress, value

Remarks

Address Numeric variable with the address of the memory location to set.
(0-31)

Value Value to assign. (0-255)

See also

PEEK , CPEEK,INP , OUT

Example

Poke 1, 1

End

'wite 1 to R1

Action
Restores all registers that might be used by BASCOM.

Syntax
POPALL
Remarks

When you are writing your own ASM routines and mix them with BASIC you are unable to tell which
registers are used by BASCOM because it depends on the used statements and interrupt routines
that can run on the background.

That is why Pushall saves all registers and POPALL restores all registers.

See also
PUSHALL

POWER

Action

Returns the power of a single variable and its argument

Syntax

var =POWER (single, raise)

Remarks

Var A numeric variable that is assigned with the power of variable single *
raise.

Single The single variable to get the power of.

The POWER function works for positive singles only.
When you use a * b, the sign will be preserved.
While Excel does not allow raising a negative single, QB does allow it.

The Power functions uses less code compared with the code that is generated when you use * for
floating pointvalues.

It is important that you use single variables for both single and raise. Constants are not accepted.

See Also
EXP,LOG, LOG10

Example
Show sample

POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

Remarks

In the power down mode, the external oscillator is stopped. The user can usethe WATCHDOG to
power up the processor when the watchdog timeout expires. Other possibilities to wake up the
processor is to give an external reset or to generate an external level triggered interrupt.

See also

IDLE , POWERSAVE

Example

Power down

POWERSAVE

Action

Put processor into power save mode.

Syntax
POWERSAVE

Remarks
The POWERSAVE mode is only available in the 8535, Mega8, Megal63.
See also

IDLE, POWERDOWN

Example

Power save

PRINT
Action
Send output to the RS-232 port.
Writes a string to a file.
Syntax
PRINT [#channel ,] var ; " constant"”
Remarks
Var | The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed and carriage return will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

The AVR-DOS filesystem also supports PRINT. But in that case, only strings can be written to disk.

When you need to print to the second hardware UART, or to a software UART, you need to specify
a channel : PRINT #1, "test"

The channel must be openeded first before you can print to it. Look at OPEN and CLOSE for more
details about the optional channel. For the first hardware UART, there is no need to use channels.

PRINT " test" will always use the first hardware UART.

See also
INPUT .OPEN , CLOSE, SPC

Example

file: PRINT.BAS

denp: PRI NT, HEX

Dm A As Byte , BL As Byte, C As Integer , S As String * 4
A=1

Print "print variable a " ; A

Print 'new Iine

Print "Text to print." 'constant to print
Bl = 10

Print Hex(bl) 'print in hexa notation
C = &HA000 'assign value to c%

Print Hex(c) 'print in hex notation
Print C'print in decinmal notation

C = -32000

Print C

Print Hex(c)

Rem Note That Integers Range From -32767 To 32768
End

PRINTBIN

Action

Print binary content of a variable to the serial port.
Syntax

PRINTBIN var [; varn]

PRINTBIN #channel, var [; varn]

Remarks

Var The variable which value is send to the serial port.

varn Optional variables to send.

The channel is optional and for use withQPEN and CLOSE statements.

PRINTBIN is equivalent to PRINT CHR(var);
When you use a Long for example, 4 bytes are printed.
Multiple variables may be sent. They must be separated by the ; sign.

The number of bytes to send can be specified by an additional numeric parameter. This is
convenient when sending the content of an array.

Printbin ar(1) ; 3 * will send 3 bytes from array ar().

Printbin ar(1) ; 2 ; ar(2) ; 4 * will send 2 bytes from array ar() starting at index 1, then 4 bytes from
array ar() starting at index 4.

See also
INPUTBIN

Example
Dim A(10) As Byte , C As Byte
For C =1 To 10

Alc) =c '"fill array
Next
Printbin A(1) 'print content of a(l). Not the whole array wll be sent!

End

| PSET

Action

Sets or resets a single pixel.

Syntax

PSET X, Y, value

Remarks

X The X location of the pixel. In range from 0-239.

Y The Y location of the pixel. In range from 0-63.

value The value for the pixel. 0 will clear the pixel. 1 Will set the pixel.

The PSET is handy to create a simple data logger or oscilloscope.

See also
SHOWPIC , CONFIG GRAPHI.CD , LINE

Example

' (c) 2001 MCS Electronics
' T6963C graphic display support deno

The connections of the LCD used in this denp
LCD pin connected to
' 1 G\D G\D

'2 G\ND G\D

'3 +5V +5V

-9V -9V potneter
/WR PORTC. 0

/RD PORTC. 1

/ CE PORTC. 2

C/ D PORTC. 3

"9 NC not conneted
'10 RESET PORTC. 4
'11-18 DO- D7 PA

'19 FS PORTC. 5

'20 NC not connected

o~ o oh

"First we define that we use a graphic LCD

' Only 240*64 supported yet

Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce
=2, =383, W =0, RO=1, Reset =4, Fs =5

'The dataport is the portname that is connected to the data lines of the

LCD

'The controlport is the portname which pins are used to control the Icd

'"CE, CD etc. are the pin nunber of the ONTROLPORT.
' For exanple CE =2 because it is connected to PORTC. 2

"Dim variables (y not used)
Dm X As Byte , Y As Byte

"Clear the screen will both clear text and graph display
Cs

'Other options are :

' CLS TEXT to clear only the text display

' CLS ®APH to clear only the graphical part

‘locate works like the normal LCD |ocate statenent
' LOCATE LINE, COLUW LINE can be 1-8 and colum G030
Locate 1 , 1

' Show sone text

Lcd "MCS El ectronics”

"And sone othe text on line 2
Locate 2 , 1 : Lcd "T6963c support”

"wait 1 sec
Wait 1

' draw a line using PSET X Y, OV OFF

' PSET on.off paramis 0 to clear a pixel and any other value to turn
on

For X = 0 To 140

Pset X, 20 , 255 ' set the pixel

Next

Wait 1

"Now it is time to show a picture

' SHOWPI C X, Y, | abel

"The |abel points to a label that holds the image data
Showpic 0, 0, Plaatje

Wait 1
Os Text ' clear the text
End

"This label holds the nage data

Pl aatj e:

"$BGF will put the bitmap into the program at this |ocation
$bgf "ncs. bgf"

"You could insert other picture data here

it

PS2MOUSEXY

PULSEIN

Action

Sends mouse movement and button information to the PC.

Syntax
PS2MOUSEXY X , Y, button

Action

Returns the number of units between two occurrences of an edge of a pulse.

Syntax
PULSEIN var , PINX , PIN , STATE
Remarks
var A word variable that is assigned with the result.
PINX A PIN register like PIND
PIN The pin number(0-7) to get the pulse time of.
STATE May be 0 or 1.
0 means sample 0 to 1 transition.
1 means sample 1 to 0 transition.

Remarks

X The X-movement relative to the current position.
Therangeis —255t0255.

Y The Y -movementrelativet o the current position.
Therangeis —255t0255.

Button A variable or constant that represents the button state.

0 — nobuttons pressed
1. 1- left button pressed
2. 2- right button pressed
4- middlebuttonpressed

You can combine these values by adding them. F orexample, 6
would emulate that the right and middle buttons are pressed.

To send a mouse click, you need to send two ps2mouseXY

statements. The first must indicate that the button is pressed, and
the second must release the button.

Ps2mouseXY0,0,1‘leftmousepressed
PsmouseXY 0,0,0‘left mouse released

The SENDSCAN statementcould also be used.

See also
SENDSCAN, CONFIG PS2EMU

ERR variable will be set to 1 in case of a time out. A time out will occur after 65535 unit counts.
With 10 uS units this will be after 655.35 mS.

You can add a bitwait statement to be sure that the PULSEIN statement will wait for the start
condition. But when using the BITWAIT statement and the start condition will never occur, your
program will stay in a loop.

The PULSIN statement will wait for the specified edge.

When state 0 is used, the routine will wait until the level on the specified input pin is 0. Then a
counter is started and stopped until the input level gets 1.

No hardware timer is used. A 16 bit counter is used. It will increase in 10 uS units. But this depends
on the XTAL. You can change the library routine to adjust the units.

See also

PULSEOUT

ASM

The following ASM routine is called from mcs.lib

_pulse_in (calls _adjust_pin)

On entry ZL points to the PINXx register , R16 holds the state, R24 holds the pin number to sample.
On return XL + XH hold the 16 bit value.

Example

Dim w As Byte

pulsein w, PIND, 1 , O 'detect time fromO to 1
print w

end

PULSEOUT

PUSHALL

Action

Generates a pulse on a pin of a PORT of specified period in 1uS units for 4 MHz.

Syntax

PULSEOUT PORT , PIN , PERIOD

Remarks

PORT Name of the PORT. PORTB for example

PIN Variable or constant with the pin number (0-7).

PERIOD Number of periods the pulse will last. The periods are in uS
when an XTAL of 4 MHz is used.

The pulse is generated by toggling the pin twice, thus the initial state of the pin determines the
polarity.
The PIN must be configured as an output pin before this statement can be used.

See also
PULSEIN

Example

Dm A As Byte

Config Portb = Qut put 'PORTB all output pins
Portb = 0 "all pins O

Do

For A =0 To 7

Pul seout Portb , A, 60000 'generate pulse
Waitms 250 'wait a bit

Next

Loop 'loop for ever

Action
Saves all registers that might be used by BASCOM.

Syntax
PUSHALL
Remarks

When you are writing your own ASM routines and mix them with BASIC you are unable to tell which
registers are used by BASCOM because it depends on the used statements and interrupt routines
that can run on the background.

That is why Pushall saves all registers. Use POPALL to restore the registers.

See also
POPALL

| PUT

Action
Writes a byte to the hardware or software UART.
Writes data to a file opened in BINARY mode.

Syntax

PUT#channel,var
PUT #channel, var ,[pos] [,length]

Remarks

PUT in combination with the software/hardware UART is provided for compatibility with BASCOM-
8051. It writes one byte

PUT in combination with the AVR-DOS filesystem is very flexible and versatile. It works on files
opened in BINARY mode and you can write all data types.

#channel A channel number, which identifies an opened file. This can be a hard coded constant
or a variable.

Var The variable or variable array that will be written to the file

Pos This is an optional parameter that may be used to specify the postion where the data

must be written. This must be a long variable.

Length This is an optional parameter that may be used to specify how many bytes must be
written to the file.

By default you only need to provide the variable name. When the variable is a byte, 1 byte wil be
written. When the variable is a word or integer, 2 bytes will be written. When the variable is a long

or single, 4 bytes will be written. When the variable is a string, the number of bytes that will be
written is equal to the dimensioned size of the string. DIM S as string * 10 , would write 10 bytes.

Note that when you specify the length for a string, the maximum length is 255. The maximum length
for a nonstring array is 65535.

Example:

PUT #1, var

PUT #1, var , , 2* write 2 bytes at default position

PUT #1, var ,PS, 2 * write 2 bytes at location storied in variable PS

See also

INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
FILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , DISKSIZE , GET, FILEDATE,

ASM

currentposition Goto new position first

Byte:

_FilePutRange_1
Input:
r24: File number
X: Pointer to variable
T+lag cleared

Word/Integer:

_FilePutRange_2
Input:
r24: File number
X: Pointer to variable
T+lag cleared

Long/Single:

_FilePutRange_4
Input:
r24: File number
X: Pointer to variable
T+lag cleared

String (<= 255 Bytes) with fixed length

_FilePutRange_Bytes
Input:
r24: File number

r20: Count of Bytes
X: Pointer to variable

T+lag cleared

Array (> 255 Bytes) with fixed length

_FilePutRange

Input:

r24: File number
r20/21: Count of Bytes

X: Pointer to variable
T+lag cleared

Output from all kind of usage:
r25: Error Code
C-Flag on Error

_FilePutRange_1
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FilePutRange_2
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FilePutRange_4
Input:
r24: File number
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FilePutRange_Bytes
Input:

r24: File number
r20: Count of bytes

X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

_FilePutRange
Input:
r24: File number
r20/21: Count of bytes
X: Pointer to variable
r16-19 (A): New position (1-based)
T-Flag Set

Example

"for the binary file demo we need sone variables of different types
DmB As Byte , WAs Word, L As Long, Sn As Single , Ltenp As Long
Dim Stxt As String * 10

B=1: W= 50000 : L = 12345678 : Sn = 123.45 : Stxt = "test"

"open the file in BINARY node

Open "test.bi N' For Binary As #2

Put #2 , B' wite a byte

Put #2 , W' wite a word

Put #2 , L ' wite a long

Ltenmp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Seek(#2) ; " = LOC+1"

Print Lof (#2) ; " length of file"

Print Fileattr(#2) ; " file node" ' should be 32 for binary

Put #2 , Sn ' wite a single
Put #2 , Stxt ' wite a string

Flush #2 ' flush to disk
Cl ose #2

"now open the file again and wite only the single
Open "test.bin" For Binary As #2

L =1 'specify the file position

B = Seek(#2 , L) ' reset is the same as using SEEK #2,L
Get #2 , B ' get the byte

Get #2 , W' get the word

Get #2 , L ' get the long

Get #2 , Sn ' get the single

Get #2 , Stxt ' get the string

Cl ose #2

RAD2DEG

Action

Converts a value in radians to degrees.

Syntax

var =RAD2DEG(single)

Remarks

Var A numeric variable that is assigned with the angle of variable single.
Single The single variable to get the angle of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and

angles.

See Also
DEG2RAD

Example

Dm S As Single
S = 9

S = Deg2Rad(s)
Print S

| RCESEND

Action

Sends RC5 remote code.

Syntax

RC5SEND togglebit, address, command
Uses

TIMER1

Remarks

Togglebit Make the toggle bit 0 or 32 to set the toggle bit

Address The RC5 address

Command The RC5 command.

The resistor must be connected to the OC1A pin. In the example a 2313 micro was used. This
micro has pin portB.3 connected to OC1A.

Look in a datasheet for the proper pin when used with a different chip.

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.

The next bit is a control bit or toggle bit, which is inverted every time a button is pressed on the
remote control transmitter.

Fivesystem bits hold the system address so that only the right system responds to the code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on. The command
sequence is six bits long, allowing up to 64 different commands per address.
The bits are transmitted in bi-phase code (also known as Manchester code).

An IR booster circuit is shown below:

.
10K 100uF 18V
— T
[=1s] i
= 10nF — [l I
“ S
SFH45S
See also

CONFIG RC5, GETRC5

Example

' RC5SEND. BAS
' (c) 2004 MCS Electronics
code based on application note from Ger Langezaal
' +5V <--[A Led K]---[220 Chni---> Pb.3
RC5SEND is using TIMERL, no interrupts are used

"2313def . dat"
4000000

$regfile
$crystal

Dim Toghit As Byte , Command As Byte , Address As Byte

Command = 12 ' power on off
Togbhit = 0 ' nmaeke it O or 32 to set the toggle bit
Address = 0

Do

Wai t ms 500

Rc5send Togbit , Address , Command
Loop

End

This is not a complete list.

RC6SEND
Action Command Value Command Value
Sends RC6 remote code. -
Key 0 0 Balance right 26
Syntax
RC6SEND togglebit, address, command Key 1 1 Balance left 27
Key 29 29 Channel search+ 30
Uses Previousprogram 10 Channel search - 31
TIMER1 Standby 12 Next 32
Mute/demute 13 Previous 33
Remarks Personal preference 14 External 1 56
Togglebit Make the toggle bit 0 or 1 to set the toggle bit Display 15 External 2 57
Address The RC6 address Volume up 16 TXT submode 60
Command The RC6 command. Volume down 17 Standby 61
Brightness up 18 Menu on 84
The resistor must be connected to the OC1A pin. In the example a 2313 micro was used. This
micro has pin portB.3 connected to OC1A. Brightness down 19 Menu off 85
Look in a datasheet for the proper pin when used with a different chip. Saturation up 20 Help 129
Most audio and video systems are equipped with an infrared remote control. Saturation down 2L Zoom - 246
The RC6 code is a 16-bit word bi-phase coded signal. Bass up 22 Zoom + 247
The header is 20 bits long including the toggle bits. Bass down 23
Eight system bits hold the system address so that only the right system responds to the code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on. The command Treble up 24
sequence is eight bits long, allowing up to 256 different commands per address. Treble down 25

The bits are transmitted in bi-phase code (also known as Manchester code).
This list is by far not complete.

) ST . el
An IR booster circuit is shown below: Since there is little info about RC6 on the net available, use code at your own risk!

+5

. See also
10K

T T TR0uFILEY CONFIG RC5, GETRC5 , RC5SEND

GND
Example

= 10nF I e
10 SFH4E5 ' RCBSEND. BAS

' (c) 2004 MCS Electronics
' code based on application note from Ger Langezaal
" +5V <---[A Led K]---[220 Ohnj---> Ph.3

Device Address ' RC5SEND is using TIMERL, no interrupts are used

v 0 $regfile = "2313def. dat"

VCR 5 $crystal = 4000000

SAT 8 Dim Togbit As Byte , Command As Byte , Address As Byte

DVD 4 Command = 12 ' power on off

Togbit = 0 ' nmeke it O or 1 to set the toggle bit

Address = 0

D | READ
Wai t ms 500 :
Rc6send Togbit , Address , Conmmand Action
Loop Reads those values and assigns them to variables.
End

Syntax

READ var

Remarks

| Var | Variable that is assigned data value.

It is best to place the DATA lines at the end of your program.

Difference with QB

It is important that the variable is of the same type as the stored data.
See also
DATA, RESTORE

Example
READDATA. BAS
' Copyright 1999-2000 MCS El ectronics

Dim A As Integer , Bl As Byte , Count As Byte
DmS As String * 15

Dm L As Long

Restore Dtal 'point to stored data

For Count = 1 To 3 'for nunber of data itens
Read Bl : Print Count ; " "; Bl
Next

Restore Dta2 'point to stored data

For Count = 1 To 2 'for nunber of data itens
Read A: Print Count ; " " ; A
Next

Restore Dt a3
Read S : Print S
Read S: Print S

Restore Dt a4
Read L : Print L "long type

End

Dt al:

Data &B10 , &HFF , 10
Dt a2:

Data 1000% , -1%

Dt a3:

Data "Hello" , "World"

"Note that integer values (>255 or <0) nust end with the %sign
"also note that the data type nust natch the variable type that
"used for the READ statenent

Dt a4:

Dat a 123456789&

"Note that LONG values nust end with the &sign

"Also note that the data type nust match the variable type that
"for the READ statenent

i's

is used

READEEPROM

Action
Reads the content from the DATA EEPROM and stores it into a variable.

Syntax
READEEPROM var, address

Remarks
Var The name of the variable that must be stored
Address The address in the EEPROM where the data must be read from.

This statement is provided for compatibility with BASCOM-8051.

You can also use :

Dim V as Eram Byte 'store in EEPROM

Dim B As Byte 'normal variable

B =10

V = B 'store variable in EEPROM

B =V 'read from EEPROM

When you use the assignment version, the datatypes must be equal!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0, can be
overwritten during a reset so don't use it.

You may also use ERAM variables as indexes. Like :
Dim ar(10) as Eram Byte

When you omit the address label in consecutive reads, you must use a new READEEPROM
statement. It will not work in a loop:

Readeeprom B, Labell

Print B

Do

Readeeprom B

Print B Loop

UntilB =5

This will not work since there is no pointer maintained. The way it will work :
ReadEEprom B, Labell ‘ specify label

ReadEEPROM B ‘ read next address in EEPROM

ReadEEPROM B ‘ read next address in EEPROM

See also
WRITEEEPROM, $EEPROM

ASM

NONE
‘read it back
Readeeprom B , Label 1

Example Print B 'prints 1
Dm B As Byte 'Succesive reads will read the next value
Witeeeprom B, 0 'store at first position "But the first time the label nust be specified so the start is known
Readeeprom B, 0 'read byte back Re_adeeprom B
Print B 'prints 2
Example 2
' EEPROWR. BAS End

' This exanple shows how to use |abels wth READEEPROM
"first dinension a variable

Dim B As Byte

Dm Yes As String * 1

"Usage for readeeprom and writeeprom :
'readeeprom var, address

"A new option is to use a label for the address of the data

"Since this data is in an external file and not in the code the eeprom
dat a

"should be specified first. This in contrast with the normal DATA lines
whi ch nust

"be placed at the end of your program!

"first tell the conpiler that we are using EEPROM to d$ore the DATA

$eeprom

"specify a |abel

| abel 1:

Data 1, 2, 3, 4, 5
Label 2:

Data 10 , 20 , 30 , 40 , 50

"Switch back to nornmal data lines in case they are used
$dat a

"All the code above does not generate real object code
"It only creates a file with the EEP extension

"Use the new |abel option

Readeeprom B , Label 1l

Print B 'prints 1

'Succesive reads will read the next value

"But the first time the label nust be specified so the start is known
Readeeprom B

Print B 'prints 2

Readeeprom B , Label 2
Print B '"prints 10
Readeeprom B

Print B 'prints 20

"And it works for witing too
"but since the programming can interfere we add a stop here

I nput "Ready?" , Yes

B = 100

Witeeeprom B, Labell
B = 101

Witeeeprom B

| READMAGCARD
Action

Read data from a magnetic card.

Syntax

Readmagcard var , count , 5|7

Remarks

Var A byte array the receives the data.
Count A byte variable that returns the number of bytes read.
5|7 A numeric constant that specifies if 5 or 7 bit coding is used.

There can be 3 tracks on a magnetic card.

Track 1 strores the data in 7 bit including the parity bit. This is handy to store alpha numeric data.

On track 2 and 3 the data is tored with 5 bit coding.
The ReadMagCard routine works with 1SO7811-2 5 and 7 bit decoding.
The returned numbers for 5 bit coding are:

Returned number ISO characterT
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 hardware control
11 start byte

12 hardware control
13 separator

14 hardware control
15 stop byte

Example

' (c) 2000 MCS Electronics

' MAGCARD. BAS

' This exanple show you how to read data from a nagnetic card
"It was tested on the DT006 SimmBtick.

"[reserve sone space]
Dm Ar (100) As Byte , B As Byte , A As Byte

"the magnetic card reader has 5 wres
‘red - connect to +5V

"black - connect to GN\D

"yellow - Card inserted signal CS
‘green - clock

blue - data

"You can find out for your reader which wires you have to use by
connecting +5V

"And noving the card through the reader. CS gets low, the clock gives a
clock pulse of equal pulses

"and the data varies

"I have little know edge about these cards and please dont contact nme
about magnectic readers

"It is inportant however that you pull the card from the right direction
as | was doing it wong for

"sone tine :-)

'"On the DT006 renove all the junpers that are connected to the LEDs

"[We use ALIAS to specify the pins and PIN register]
_nmport Alias Pinb "all pins are connected to PINB
_nmdata Alias 0 'data line (blue) PORTB.O

_nmcs Alias 1 'CS line (yellow) PORTB.1

_nmclock Alias 2 'clock line (green) PORTB.2

Config Portb = Input "we only need bit 0,1 and 2 for input
Portb = 255 'make them high

Do

Print "Insert nmgnetic card" 'print a nessage
Readmagcard Ar(1) , B, 5 'read the data
Print B; " bytes received"

For A =1 To B

Print Ar(a); 'print the bytes
Next

Print

Loop

"By specifying 7 instead of 5 you can read 7 bit data

REM

Action
Instruct the compiler that comment will follow.

Syntax

REMor*

Remarks

You can and should comment your program for clarity and your later sanity.

You can use REM or ' followed by your comment.
All statements after REM or ' are treated as comments so you cannot
use statements on the same line after a REM statement.

Block comments can be used too:
'(start block comment

print "This will not be compiled

") end block comment

Example
REM TEST. BAS version 1.00
PRINT a' " this is coment : PRINT " hello"

N--- this will not be executed!

RESET

Action

Reset a bit to zero.

Syntax

RESET bit

RESET var.x

Remarks

bit Can be a SFR such as PORTB.x, or any bit variable where x=0-7.

var Can be a byte, integer word or long variable.

X Constant of variable to reset.(0-7) for bytes and (0-15) for Integer/Word. For
longs(0-31)

See also

SET

Example

Dim bl as bit, b2 as byte, | as Integer

Reset Porth.3 'reset hit 3 of port B
Reset Bl 'bitvariable

Reset B2.0 'reset bit O of bytevariable b2
Reset 1.15 'reset MS bit from |

End

RESTORE

Action

Allows READ to reread values in specified DATA statements by setting data pointer to beginning of
data statement.

Syntax
RESTORE label

Remarks

label | The label of a DATA statement.

See also
DATA, READ , LOOKUP

Example
' READDATA. BAS
' Copyright 1999-2000 MCS El ectronics

Dm A As Integer , BL As Byte , Count As Byte
DmS As String * 15

DmL As Long

Restore Dtal 'point to stored data

For Count = 1 To 3 'for nunber of data itens
Read Bl : Print Count ; " " ; Bl
Next

Restore Dta2 'point to stored data

For Count = 1 To 2 'for nunber of data itens
Read A: Print Count ; " " ; A

Next

Restore Dt a3
Read S: Print S
Read S : Print S

Restore Dt a4
Read L : Print L "long type

End

Dt al:

Data &B10 , &HFF , 10
Dt a2:

Data 1000% , -1%

Dt a3:

Data "Hello" , "World"

"Note that integer values (>255 or <0) nust end with the %sign
"also note that the data type nust match the variable type that is
"used for the READ statenent

Dt a4:
Data 123456789&

"Note that LONG values nust end with the &sign

"Also note that the data type nust
"for the READ statenent

match the variale type that

is used

| RETURN

RIGHT

Action

Return from a subroutine.

Syntax
RETURN

Remarks
Subroutines must be ended with a related RETURN statement.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB

Example

Dim Result As Byte , Y As Byte
Gosub Pr 'junp to subroutine
Print Result 'print result

End ' program ends

Pr: 'start subroutine with |abel

Result = 5 * Y 'do sonething stupid

Result = Result + 100 'add sonething to it
Return 'return

Action
Return a specified number of rightmost characters in a string.

Syntax

var = RIGHT(varl ,n)

Remarks

var The string that is assigned.

Varl The source string.

st The number of bytes to copy from the right of the string.
See also

LEFT, MID

Example

DmS As String * 156 , Z As String * 15

S = " ABCDEFG'

Z = Right(s , 2)
Print Z 'FG

End

RND

Action
Returns a random number.

Syntax

var =RND(limit)

Remarks

Limit Word that limits the returned random number.

Var The variable that is assigned with the random number.

The RND() function returns an Integer/Word and needs an internal storage of 2 bytes.
(___RSEED). Each new call to Rnd() will give a new positive random number.

Notice that it is a software based generated number. And each time you will restart your program
the same sequence will be created.

You can use a different SEED value by dimensioning and assigning ___RSEED yourself:
Dim ___rseed as word : ___rseed = 10234
Dim | as word : | = rnd(10)

When your application uses a timer you can assign ___ RSEED with the timer value. This will give a
better random number.

See also
NONE

Example

Dm | As |nteger

Do

I = Rnd(100) 'get random number from 099
Print |

Wai t ms 100

Loop

End

| ROTATE
Action

Rotate all bits one place to the left or right.

Syntax

ROTATEvar, LEFT/RIGHT [, shifts]

Remarks

Var Byte, Integer/Word or Long variable.
Shifts The number of shifts to perform.

The ROTATE statement rotates all the bits in the variable to the left or right. All bits are preserved
so no bits will be shifted out of the variable.

This means that after rotating a byte variable with a value of 1, eight times the variable will be
unchanged.

When you want to shift out the MS bit or LS bit, use the SHIFT statement.

See also
SHIET, SHIETIN , SHIFTOUT

Example

Dim a as Byte

a = 128

Rotate A, Left , 2
Print a'2

End

ROUND

Action

Returns a values rounded to the nearest value.

Syntax
var =ROUND(x)

Remarks

Var A single variable that is assigned with the ROUND of variable x.

RTRIM

Action

Returns a copy of a string with trailing blanks removed

Syntax

var =RTRIM(org)

Remarks

X The single to get the ROUND of.

var

String that is assigned with the result.

Round(2.3) =2, Round(2.8) = 3
Round(-2.3) =-2 , Round(-2.8) =-3

See Also
INT , EIX, SGN

Example

DmS As Single , Z As Single

For S =-10 To 10 Step 0.5

Print S; Spc(3) ; Round(s) ; Spc(3) ; Fix(s)
Next

End

Spc(3)

Int (s)

org

The string to remove the trailing spaces from

See also

TRIM, LTRIM

ASM

NONE

Example

DmS As String * 6

S=" AB "

Print Ltrims)
Print Rtrims)

Print Trinm(s)

End

SECELAPSED

Action

Returns the elapsed Seconds to a former assigned time-stamp.

Syntax
Target = SecElapsed (TimeStamp)

Remarks

Target A variable (LONG), thatis assigned with the elapsed Seconds

TimeStamp | A variable (LONG), which holds a timestamp like the output of an earlier
called SecOfDay()

The Function works with the SOFTCLOCK variables _sec, _min and _hour and

considers a jump over midnight and gives a correct result within 24 hour between two
events.

The Return-Value is in the range of O to 86399.

See also
Date and Time Routines , SecOfDay , SysSecElapsed

Example

Enable Interrupts
Config Clock = Soft

Dim ITimeStamp as Long
Dim ISecondsElapsed as Long

ITimeStamp = SecOfDay ()
Print "Now it"s " ; ITimeStamp ; ™ seconds past midnight™”

* do other stuff
" some time later

ISecondsElapsed = SecElapsed(ITimeStamp)

Print "Now it"s " ; ISecondsElapsed ; " seconds later”

SECOFDAY
Action
Returns the Seconds of a Day.
Syntax
Target = SecOfDay()
Target = SecOfDay(bSecMinHour)
Target = SecOfDay(strTime)
Target = SecOfDay(ISysSec)
Remarks
Target A variable (LONG), that is assigned with the Seconds of the Day
bSecMinHour | A Byte, which holds the Second-value followed by Minute(Byte) and
Hour(Byte)
strTime A String, which holds the time in the format ,hh:mm:ss"
LSysSec A Variable (Long) which holds the System Second

The Function can be used with 4 different kind of inputs:

1. Without any parameter. The internal Time of SOFTCLOCK (_sec, _min, _hour) is
used.

2. With a user defined time array. It must be arranged in same way (Second,
Minute, Hour) as the internal SOFTCLOCK time. The first Byte (Second) is the
input by this kind of usage. So the Second of Day can be calculated of every
time.

3. With a time-String. The time-string must be in the Format ,hh:mm:ss".
4, With a System Second Number (LONG)

The Return-Value is in the range of 0 to 86399 from 00:00:00t023:59:59.
Novalidity-check of input is made.

See also
Date and Time Routines , SysSec

Example

Enable Interrupts

Config Clock = Soft

Dim strtime as String * 8

Dim bSec as Byte, bMin as Byte, bHour as Byte
Dim 1SecOfDay as Long

Dim 1SysSec as Long

* Example 1 with internal RTC-Clock

_Sec = 12: _Min = 30: _Hour = 18 " Load RTC-Clock for example - testing
I1SecOfDay = SecOfDay()

print "Second of Day of " ; time$; " is " ; 1SecOfDay

* Second of Day of 18:30:12 is 66612

" Example 2 with defined Clock - Bytes (Second / Minute / Hour)
bSec = 20: bMin = 1: bHour =

I1SecOfDay = SecOfDay(bSec)

print "Second of Day of Sec="; bsec ;
" is " ; ISecOfDay

" Second of Day of Sec=20 Min=1 Hour=7 is 25280

Min="; bmin ; Hour=" ; bHour ;

" Example 3 with Time - String

strTime = "04:58:37"

I1SecOfDay = SecOfDay(strTime)

print "Second of Day of " ; strTime ; " is " ; ISecOfDay
" Second of Day of 04:58:37 is 17917

Example 4 with System Second
ISysSec = 1234456789
I1SecOfDay = SecOfDay(l1SysSec)
print "Second of Day of System Second ™ ; ISysSec ; " 1is " ; ISecOfDay
* Second of Day of System Second 1234456789 is 59989

SEEK

Action

Function: Returns the position of the next Byte to be read or written
Statement: Sets the position of the next Byte to be read or written

Syntax
Function: NextReadWrite =Seek (#bFileNumber)
Statement: Seek #bFileNumber, NewPos

Remarks

bFileNumber (Byte) Filenumber, which identifies an opened file

NextReadWrite A Long Variable, which is assigned with the Position of the next Byte to
be read or written (1-based)

NewPos A Long variable that holds the new position the filepointer must be set
too.

This function returns the position of the next Byte to be read or written. If anerror occures, 0 is
returned. Check DOS-Error in variable gbDOSError.

The statetement also returns an error in the gbDOSerror variable in the event that an error occurs.
You can for example not set the fileposition behinds the filesize.

In QB/VB the fileis filled with 0 bytes when you set the filepointer behind the size of the file. For
embedded systems this does not seem a good idea.

Seek and Loc seems to do the same function, but take care : the seek function will return the
position of the next read/write, while the Loc function returns the position of the last read/write. You
may say that Seek = Loc+1.

Difference with QB

In QB/VB you can use seek to make the file bigger. When a file is 100 bytes long, setting the
filepointer to 200 will increasethe file with 0 bytes. By design this is not the case in AVR -DOS.

See also

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,

EILEATTR , BSAVE , BLOAD , KILL , DISKFREE , DISKSIZE ,GET, PUTFILEDATE , EILETIME ,

ASM

Function _FileSeek

Calls

Input r24: filenumber X: Pointer to Long-variable,
which gets the result

Output r25: Errorcode C-Flag: Set on Error

Statement _FileSeekSet

Calls

Input r24: filenumber X: Pointer to Long-variable with
the position

Output r25: Errorcode C-Flag: Set on Error

Example

Open "test.bi N' For Binary As #2

Put #2 , B' wite a byte

Put #2 , W' wite a word

Put #2 , L ' wite a long

Ltenp = Loc(#2) + 1 ' get the position of the next byte

Print Ltenp ; " LOC' ' store the location of the file pointer
Print Seek(#2) ; " = LOC+1"
Cl ose #2

‘"now open the file again and wite only the single

Open "test.bin" For Binary As #2

Seek #2 , Ltenp ' set the filepointer

Sn = 1.23 ' change the single value so we can check it better
Put #2 , Sn =1 'specify the file position

d ose #2

SELECT-CASE-END SELECT

Action
Executes one of several statement blocks depending on the value of an expression.

Syntax
SELECT CASE var

CASEtestl : statements
[CASE test2 : statements]
CASE ELSE : statements
END SELECT

Remarks

Var Variable. to test

Testl Value to test for.

Test2 Value to test for.

You can test for conditions to like:
CASE IS >2:

Another option is to test for a range :
CASE2TO5:

See also
IF THEN

Example
Dim X As Byte

Do

Input "X 2 ", X

Sel ect Case X

Case 1 To 3 : Print "1 , 2 or 3 wll be ok"
Case 4 : Print "4"

Case Is > 10 : Print ">10"

Case Else : Print "no"

End Sel ect

Loop

End

| SET

Action

Set a bit to the value one.

Syntax
SET bit
SET var.x

Remarks

SETFONT

Action

Sets the font used for LCDAT on SED based Graphical LCD displays.
Syntax

SETFONT font

Remarks

Bit Bitvariable.

font The name of the font that need to be used with LCDAT
statements.

Var A byte, integer, word or long variable.

X Bit of variable (0-7) to set. (0-15 for Integer/Word) and (0-31) for
Long

See also
RESET

Example

DmBlL As Bit , B2 As Byte , C As Word , L As Long
Set Portb.1 'set bit 1 of port B

Set Bl 'bit variable

Set B2.1 'set bit 1 of var b2

Set C. 15 'set highest bit of Word

Set L.31 'set MS bit of LONG

End

Since SED- based displays do not have their own font generator, you need to define your own
fonts. You can create and modify your own fonts with the FontEditor Plugin.

SETFONT will set an internal used data pointer to the location in memory where you font is stored.
The name you specify is the same name you use to define the font.

You need to include the used fonts with the $include directive:
$INCLUDE "font8x8.font"
The orer is not important.

You need to include the glibSED library with :

$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD ,LCDAT, GLCDCMD, GLCDDATA

Example

SETTCP

Action

(Re) Configures the TCP/IP W3100A chip.

Syntax
SETTCPMAC , IP ,

Remarks

SUBMASK , GATEWAY

MAC

The MAC address you want to assign to the W3100A.

The MAC address is a unique number that identifies your chip. You must use
a different address for every W3100A chip in your network.

Example : 123.00.12.34.56.78

You need to specify 6 bytes that must be separated by dots. The bytes must
be specified in decimal notation.

The IP address you want to assign to the W3100A.

The IP address must be unique for every W3100A in your network. When you
have a LAN, 192.168.0.10 can be used. 192.168.0.x is used for LAN’s since
the address is not an assigned internet address.

SUBMASK

The submask you want to assign to the W3100A.
The submask is in most cases 255.255.255.0

GATEWAY

This is the gateway address of the W3100A.
The gateway address you can determine with the IPCONFIG command at the
command prompt :

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . :

IP Address.:192.168.0.3
Subnet Mask:255.255.255.0
Default Gateway:192.168.0.1

Use 192.168.0.1 in this case.

The CONFIG TCPIP statement may be used only once.

When you want to set the TCP/IP settings dynamicly for instance when the settings are stored in
EEPROM, you can not use constants. For this purpose, SETTCP must be used

SETTCP can take a variable or a constant for each parameter.

When you set the TCP/IP settings dynamicly, you do not need to set them with CONFIG TCPIP. In
the CONFIG TCPIP you can use the NOINIT parameter so that the MAC and IP are not initialized

whth saves code.

See also

Example
See the DHCP2.BAS example from the Sample dir.

SENDSCAN

Action

Sendsscan codes to the PC.

Syntax
SENDSCAN label

Remarks

Label | The name of the label that contains the scan codes.

The SENDSCAN statement can send multiple scan codes to the PC.

The label is used to specify the start of the scan codes. The first byte specifies the
number of bytes that follow.

The following table lists all mouse scan codes.

Emulated Action Data sent to
host

Move up one 08,00,01
Move down one 28,00,FF
Move right one 08,01,00
Move left one 18,FF,00
Press left button 09,00,00
Release left button 08,00,00
Press middle button 0C,00,00
Release middle button 08,00,00
Press right button 0A,00,00
Release right button 08,00,00

To emulate a left mouse click, the data line would look like this:
DATA 6, &H09, &H00, &H0O0, &H08 , &H0O, &HOO

~ send 6 bytes

~ left click

Nrelease

See also
PS2MOUSEXY. , CONFIG PS2EMU.

SENDSCANKBD

Action

Sends keyboard scan codes to the PC.

Syntax
SENDSCANKBD label

Remarks

Label I The name of the label that contains the scan codes.

The SENDSCANKBD statement can send multiple scan codes tothe PC.

The label is used to specify the start of the scan codes. The first byte specifies the
number of bytes that follow.

The following tables listsall scan codes.

AT KEYBOARD SCANCODES

Table reprinted with permission of Adam Chapweske

http://panda.cs.ndsu.nodak.edu/~achapwes
MAKE | BREAK KEY MAKE BREAK KEY MAKE | BREAK
KE
Y
A 1c FO, 1C 9 46 FO, 46 [54 FO, 54
B 32 FO, 32) OE FO, OE | NSERT EO, 70 EO, FO, 70
C 21 FO, 21 > 4E FO, 4E HOVE EO, 6C | EO, FO, 6C
D 23 FO, 23 = 55 FO, 55 PG UP EO, 7D | EO, FO, 7D
E 24 FO, 24 \ 5D FO, 5D DELETE | EO, 71 | EO, FO, 71
F 2B FO, 2B BKSP 66 FO, 66 END EO, 69 | EO, FO, 69
G 34 FO, 34 SPACE 29 FO, 29 PG DN EO, 7A EO, FO, 7A
H 33 FO, 33 TAB 0D FO, 0D U EO, 75 | EO, FO, 75
ARROW
43 FO, 43 CAPS 58 FO, 58 L EO, 6B | EO, FO, 6B
ARROW
J 3B FO, 3B L SHFT | 12 FO, 12 D EO, 72 | EO, FO, 72
ARROW
K 42 FO, 42 L CTRL 14 FO, 14 R EO, 74 EO, FO, 74
ARROW
4B FO, 4B L au EO, 1F EO, FO, 1F NUM 77 Fo, 77
3A FO, 3A L ALT 11 FO, 11 KP / EO, 4A | EO, FO, 4A
31 FO, 31 R SHFT 59 FO, 59 KP * 7C FO, 7C

(¢] 44 FO, 44 R CTRL EO, 14 EO, FO, 14 KP - 7B FO, 7B
P 4D FO, 4D R GuU EO, 27 EO, FO, 27 KP + 79 FO, 79
Q 15 FO, 15 R ALT EO, 11 EO, FO, 11 KP EN EO, 5A | EO, FO, 5A
R 2D FO, 2D APPS EO, 2F EO, FO, 2F KP 71 FO, 71
S 1B FO, 1B ENTER 5A FO, 5A KP 0 70 FO, 70
T 2C FO, 2C ESC 76 FO, 76 KP 1 69 FO, 69
U 3C FO, 3C F1 05 FO, 05 KP 2 72 FO, 72
\Y 2A FO, 2A F2 06 FO, 06 KP 3 A FO, 7A
W 1D FO, 1D F3 04 FO, 04 KP 4 6B FO, 6B
X 22 FO, 22 F4 oc FO, 0C KP 5 73 FO, 73
Y 35 FO, 35 F5 03 FO, 03 KP 6 74 FO, 74
z 1A FO, 1A F6 0B FO, 0B KP 7 6C FO, 6C
0 45 FO, 45 F7 83 FO, 83 KP 8 75 FO, 75
1 16 FO, 16 F8 0A FO, OA KP 9 7D FO, 7D
2 1E FO, 1E F9 01 FO, 01] 5B FO, 5B
3 26 FO, 26 F10 09 FO, 09 ; 4C FO, 4C
4 25 FO, 25 F11 78 FO, 78 ! 52 FO, 52
5 2E FO, 2E F12 07 FO, 07 s 41 FO, 41
6 36 FO, 36 PRNT EO, 12, EO, FO, 49 FO, 49
SCRN EO, 7C 7C, EO,
FO, 12
7 3D FO, 3D SCROLL 7E FO, 7E / 4A FO, 4A
8 3E FO, 3E PAUSE El, 14,77, - NONE-
El, FO, 14,
FO, 77
ACPI Scan Codes
Key Make Break
Code Code
Power EO, 37 EO, FO, 37
Sleep EO, 3F EO, FO, 3F
Wake EO, 5E EO, FO, 5E
Windows Multimedia Scan Codes
Key Make Break
Code Code
Next Track EO, 4D EO, FO, 4D
Previous Track EO, 15 EO, FO, 15

Stop EO, 3B EO, FO, 3B
Play/Pause EO, 34 EO, FO, 34
Mute EO, 23 EO, FO, 23
Volume Up EO, 32 EO, FO, 32
Volume Down EO, 21 EO, FO, 21
Media Select EO, 50 EO, FO, 50
E-Mail EO, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer EO, 40 EO, FO, 40
WWW Search EO, 10 EO, FO, 10
WWW Home EO, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward EO, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh EO, 20 EO, FO, 20
WWW Favorites EO, 18 EO, FO, 18

To emulate volume up, the data line would look like this:
DATAS5, &HEO, &H32, & HEO, &HFO , &H32
~ send 5 bytes

~ volume up

See also
CONFIG ATEMU

SERIN

Action

Reads serial data from a dynamic software UART.

Syntax
SERIN var , bts, port, pin, baud , parity , dbits , sbits

Remarks

While the OPEN and CLOSE statements can be used for software UARTS, they do not permit to
use the same pin for input and output. The settings used when opened the communication channel
can also not be changed at run time.

The SERIN and SEROUT statements are dynamic software UART routines to perform input and
output. You can use them on the same pin for example send some data with SEROUT and get
back an answer using SERIN.

Since the SERIN and SEROUT routines can use any pin and can use different parameter values,
the code size of these routines is larger.

Parameter Description
Var A variable that will be assigned with the received data.
Bts The number of bytes to receive. String variables will wait for a return (ASCII 13). There

is no check if the variable you assign is big enough to hold the result.

Port The name of the port to use. This must be a letter like A for portA.

Pin The pin number you want to useof the port. This must be in the range from 0-7.
Baud The baud rate you want to use. For example 19200.

Parity A number that codes the parity. 0= NONE, 1 = EVEN, 2 = ODD

Dbits The number of data bits. Use 7 or 8.

Shits The number of stop bits. 1 to 2.

The use of SERIN will create an internal variable named ___SER_BAUD. This is a LONG variable.
It is important that you specify the correct crystal value with $CRYSTAL so the correct calculation
can be made for the specified baud rate.

Note that ___SER_BAUD will not hold the passed baud rate but will hold the bit delay used internal.

Since the SW UART is dynamic you can change all the params at run time. For example you can
store the baud rate in a variable and pass this variable to the SERIN routine.

Your code could change the baud rate under user control this way.

It is important to realize that software timing is used for the bit timing. Any interrupt that occurs
during SERIN or SEROUT will delay the transmission. Disable interrupts while you use SERIN or
SEROUT.

ASM

The routine called is named _serin and is stored in mcs.lib
For the baud ate calculation, _calc_baud is called.

See also
SEROUT

Example

serin_out. bas
' (c) 2004 MCS Electronics
denonstration of DYNAM C software UART

tip : Also look at OPEN and CLOSE

"tell the conpiler which XTAL was used
$crystal = 4000000

"tell the conpiler which chip we use
$regfile = "2313def. dat"

"sone variables we will wuse

Dm S As String * 10

Dim Mybaud As Long

‘"when you pass the baud rate with a variable, make sure you dinesion it
as a LONG

Mybaud = 19200

Do

"first get sone data

Serins, 0, D, 0, Mbaud, 0, 8, 1

"now send it

Serout S, 0, D, 1, Mbaud , 0, 8, 1

' N1 stop bit

' M--- 8 data bits

oA even parity (0=N, 1 = E 2=0)

F baud rate
T pi n nunber

HEE R port so PORTA.0 and PORTA.1 are used
L for strings pass O
L vari abl e

'because the baud rate is passed with a variable in theis exanple, you
could change it under user control
"for exanple check sone DIP switches and change the variable nybaud

SEROUT

Action

Sends serial data through a dynamic software UART.

Syntax
SEROUTvar , bts, port, pin, baud , parity , dbits , shits

Remarks

While the OPEN and CLOSE statemerts can be used for software UARTS, they do not permit to
use the same pin for input and output. The settings used when opened the communication channel
can also not be changed at run time.

The SERIN and SEROUT statements are dynamic software UART routines to perform input and
output. You can use them on the same pin for example send some data with SEROUT and get
back an answer using SERIN.

Since the SERIN and SEROUT routines can use any pin and can use different parameter values,
the code size of these routines is larger.

Parameter Description
Var A variable which content is send through the UART. A constant can NOT be used.
Bts The number of bytes to receive. String variables will wait for a return (ASCII 13). There

is no check if the variable you assign is big enough to hold the result.

Port The name of the port to use. This must be a letter like A for portA.

Pin The pin number you want to use of the port. This must be in the range from 0-7.
Baud The baud rate you want to use. For example 19200.

Parity A number that codes the parity. 0= NONE, 1 = EVEN, 2 = ODD

Dbits The number of data bits. Use 7 or 8.

Shits The number of stop bits. 1 to 2.

The use of SEROUT will create an internal variable named ___ SER_BAUD. This is a LONG
variable. It is important that you specify the correct crystal value with $CRYSTAL so the correct
calculation can be made for the specified baud rate.

Note that __ SER_BAUD will not hold the passed baud rate but will hold the bit delay used internal.

Since the SW UART is dynamic you can change all the params at run time. For example you can
store the baud rate in a variable and pass this variable to the SEROUT routine.

Your code could change the baud rate under user control this way.

It is important to realize that software timing is used for the bit timing. Any interrupt that occurs
during SERIN or SEROUT will delay the transmission. Disable interrupts while you use SERIN or
SEROUT.

The SEROUT will use the pin in Open Collector mode. This means that you can connect sevel
AVR chips and poll the ‘ bus’ with the SERIN statement.

ASM
The routine called is named _serout and is stored in mcs.lib
For the baud ate calculation, _calc_baud is called.

See also
SERIN

Example
serin_out. bas
' (c) 2004 MCS Electronics
dermonstration of DYNAM C software UART

"tip : Also look at OPEN and CLOSE

"tell the conpiler which XTAL was used
$crystal = 4000000

"tell the conpiler which chip we use
$regfile = "2313def. dat”

"some variables we wll use

DmS As String * 10

Dim Mybaud As Long

"when you pass the baud rate with a variable, nmeke sure you dinesion it
as a LOG

Mybaud = 19200

Do

"first get sone data

Serin s, 0, D, 0, Whbaud , 0, 8 , 1

‘now send it

Serout S, 0, D, 1, Mbaud , 0, 8, 1

' N1 stop bit

' A--- 8 data bits

AL even parity (0=N, 1 = E 2=0
S baud rate

A e pin nunber
o port so PORTA.0 and PORTA.1 are used
e for strings pass 0
e vari abl e

'because the baud rate is passed with a variable in theis e&anple, you
could change it wunder user control
‘for exanple check sone DIP swtches and change the variable nybaud

SGN

Action
Returns the sign of a single value.

Syntax
var =SGN(x)

Remarks

Var A single variable that is assigned with the SGNS of variable x.

X The single to get the sign of.

For values <0, -1 will be returned
For 0, 0 will be returned
For values >0, 1 will be returned

See Also
INT, EIX, ROUND

Example

DmS As Single , x As Single, y As Single
x= 2.3 : S= ROUND(x) '2

= -2.3 : S= ROUND(Xx) '-2

Print S

| SHIFT
Action

Shift all bits one place to the left or right.

Syntax

SHIFT var, LEFT/RIGHT [, shifts]

Remarks

Var Byte, Integer/Word, Long or Singlevariable.
Shifts The number of shifts to perform.

The SHIFT statement rotates all the bits in the variable to the left or right.

When shifting LEFT the most significant bit, will be shifted out of the variable. The LS bit becomes
zero. Shifting a variable to the left, multiplies the variable with a value of two.

When shifting to the RIGHT, the least significant bit will be shifted out of the variable. The MS bit
becomes zero. Shifting a variable to the right, divides the variable by two.

A Shift performs faster than a multiplication or division.

See also
ROTATE, SHIFTIN , SHIFTOUT

Example

Dim a as Byte

a = 128

Shift A, Left , 2
Print a'0

End

| SHIFTCURSOR

Action

Shift the cursor of the LCD display left or right by one position.

Syntax
SHIFTCURSOR LEFT / RIGHT

See also
SHIFTLCD

Example

LCD "Hello"

SHI FTCURSOR LEFT
End

SHIFTIN
Action
Shifts a bit stream into a variable.
Syntax
SHIFTIN pin , pclock , var , option [, bits , delay]
Remarks
Pin The port pin which serves as an input.PINB.2 for example
Pclock The port pin which generates the clock.
Var The variable that is assigned.
Option Option can be :
0 — MSB shifted in first when clock goes low
1 - MSB shifted in first when clock goes high
2 — LSB shifted in first when clock goes low
3 — LSB shifted in first when clock goes high
Adding 4 to the parameter indicates that an external clock signal is used for the
clock. In this case the clock will not be generated. So using 4 will be the same a 0
(MSB shifted in first when clock goes low) but the clock must be generated by an
external signal.
4 — MSB shifted in first when clock goes low with ext. clock
5 — MSB shifted in first when clock goes high with ext. clock
6 — LSB shifted in first when clock goes low with ext. clock
7 — LSB shifted in first when clock goes high with ext. clock
Bits Optional number of bits to shift in. Maximum 255.
Delay Optional delay in uS. When you specify the delay, the number of bits must also be
specified. When the number of bits is default you can use NULL for the BITS
parameter.

If you do not specify the number of bits to shift, the number of shifts will depend on the type of the
variable.

When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a Long and
Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.

The PIN is normally connected with the output of chip that will send information.

The PCLOCK pin can be used to clock the bits as a master, that is the clock pulses will be
generated. Or it can sample a pin that generates these pulses.

The VARIABLE is a normal BASIC variable. And may be of any type except for BIT. The data read
from the chip is stored in this variable.

The OPTIONS is a constant that specifies the direction of the bits. The chip that outputs the data
may send the LS bit first or the MS bit first. It also controls on which edge of the clock signal the
data must be stored.

When you add 4 to the constant you tell the compiler that the clock signal is not generated but that
there is an external clock signal.

The number of bits may be specified. You may omit this info. In that case the number of bits of the
element data type will be used.

The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can specify a
delay time(in uS).

See also
SHIFTOUT , SHIFT

Example

Dim A As Byte

Config Pinb.0 = Input
Config Pinb.1 = CQutput
Portbh.0 = 1

Shiftin Pinb.0 , Porth.1 , A, 4, 4, 10
external clock

shift A, Right , 4 'adjust

Shiftin Pinb.0 , Porth.1 , A 'read 8 bits

set pin to input

End

"shiftin 4 bits and use

SHIFTOUT

Action

Shifts a bit stream out of a variable into a port pin .

Syntax

SHIFTOUT pin, pclock , var , option [, bits , delay]

Remarks

Pin The port pin which serves as a data output.

Pclock The port pin which generates the clock.

Var The variable that is shifted out.

Option Option can be :
0 — MSB shifted out first when clock goes low
1 - MSB shifted out first when clock goes high
2 — LSB shifted out first when clock goes low
3 — LSB shifted out first when clock goes high

Bits Optional number of bits to shift out.

Delay Optional delay in uS. When you specify the delay, the number of bits
must also be specified. When the default must be used you can also
use NULL for the number of bits.

If you do not specify the number of bits to shift, the number of shifts will depend on the type of the
variable.

When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a Long and
Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.

The PIN is normally connected with the input of a chip that will receive information.

The PCLOCK pin is used to clock the bits out of the chip.

The VARIABLE is a normal BASIC variable. And may be of any type except for BIT. The data that is
stored in the variableis sent with PIN.

The OPTIONS is a constant that specifies the direction of the bits. The chip that reads the data may
want the LS bit first or the MS bit first. It also controls on which edge of the clock signal the data is
sent to PIN.

The number of bits may be specified. You may omit this info. In that case the number of bits of the
element data type will be used.

The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can specify a
delay time(in uS).

See also
SHIETIN, SHIET

Example

Dim a as byte

Config Pinb.0 = Qutput

Config Pinb.1 = Input

Shiftout Portbh.0 , Portb.1, A, 3, 4, 10 'shiftout 4 bits

Shiftin Pinb.0 , Portbh.1 , A, 3 'shiftout 8 bhits
o | SHIFTLCD

Action
Shift the LCD display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks
NONE

See also
SHIFTCURSOR

Example

ds

Lcd "Very long text"
Shiftlcd Left

Wait 1

Shiftlcd Right

End

SHOWPIC

Action
Shows a BGF file on the graphic display

Syntax
SHOWRPIC x, y , label

Remarks

Showpic can display a converted BMP file. The BMP must be converted into a BGF file with the
Tools Graphic Converter.

The X and Y parameters specify where the picture must be displayed. X and Y must be 0 or a
multiple of 8. The picture height and width must also be a multiple of 8.

The label tells the compiler where the graphic data is located. It points to a label where you put the
graphic data with the $BGF directive.

You can store multiple pictures when you use multiple labels and $BGF directives,
Note that the BGF files are RLE encoded to save code space.

See also

Example

' (c) 2001 MCS Electronics
' T6963C graphic display support denp

The connections of the LCD used in this denp
LCD pin connected to
' 1 G\D G\D

"2 GND G\D

'3 +5V +5V

4 -9V -9V potneter
'5 /VWR PORTC. 0

6 /RD PORTC. 1

7 | CE PORTC. 2

C D PORTC. 3

"9 NC not conneted
'10 RESET PORTC. 4
'11-18 DO-D7 PA

'19 FS PORTC. 5

'20 NC not connected

[e)

"First we define that we use a graphic LCD

' Only 240*64 supported yet

Config Graphlcd = 240 * 64 , Dataport = Porta , Controlport = Portc , Ce
=2, =3, W =0, Rd =1, Reset =4, Fs =5

'The dataport is the portname that is connected to the data lines of the

LCD

'The controlport is the portname which pins are used to control the Icd

"CE, CD etc. are the pin nunber of the CONTROLPORT.
' For exanple CE =2 because it is connected to PORTC. 2

"Dim variables (y not used)
Dm X As Byte , Y As Byte

"Clear the screen will both clear text and graph display
Cs

'Other options are :

' CLS TEXT to clear only the text display

' CLS GRAPH to clear only the graphical part

‘locate works like the normal LCD |ocate statenent
' LOCATE LINE, COLUW LINE can be 1-8 and colum G030
Locate 1 , 1

' Show sone text

Lcd "MCS El ectronics”

"And sone othe text on line 2
Locate 2 , 1 : Lcd "T6963c support "

"wait 1 sec
Wait 1

' draw a line using PSET X Y, OV OFF

' PSET on.off paramis 0 to clear a pixel and any other value to turn
on

For X = 0 To 140

Pset X, 20 , 255 ' set the pixel

Next

Wait 1

"Now it is time to show a picture

' SHOWPI C X, Y, | abel

"The |abel points to a label that holds the image data
Showpic 0, 0, Plaatje

Wait 1
Os Text ' clear the text
End

"This label holds the nage data

Pl aatj e:

"$BGF will put the bitmap into the program at this |ocation
$bgf "ncs. bgf"

"You could insert aher picture data here

Label:

$BGF "mcs.bgf" ‘data will be inserted here

it

| SHOWPICE

"Clear the screen will both clear text and graph display
i ds
Action "showpicE is used to show a picture from EEPROM
Shows a BGF file stored in EEPROM on the graphic display ' showpi ¢ nmust be used when the data is located in Flash
Showpice 0 , 0 , Plaatje
End

Syntax

SHOWPICE x, y , label

Remarks

Showpice can display a converted BMP file that is stored in the EEPROM of the micro processor.
The BMP must be converted into a BGF file with the Tools Graphic Converter.

The X and Y parameters specify where the picture must be displayed. X and Y must be 0 or a
multiple of 8. The picture height and width must also be a multiple of 8.

The label tells the compiler where the graphic data is located. It points to a label where you put the
graphic data with the $BGF directive.

You can store multiple pictures when you use multiple labels and $BGF directives,

Note that the BGF files are RLE encoded to save code space.

See also
PSET, $BGF , CONFIG GRAPHLCD , LINE, SHOWPIC , CIRCLE

Example

showpi cE. bas
denonstrates showing a picture from EEPROM

$crystal = 8000000
$regfile = "8535def. dat”
"First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Control port
=2, d=3, W =0, RI=1, Reset =4, Fs =5, Mode =
'The dataport is th e portnane that is connected to the data
LCD
'The controlport is the portnane which pins are used to control the Icd
"CE, CD etc. are the pin nunber of the CONTROLPORT.

For example CE 2 because it is connected to PORTC 2
"nmode 8 gives 240 / 8 = 30 colums , node=6 gives 240 / 6 = 40 colums

= Portc , Ce
8
lines of the

'we will load the picture data into EEPROM so we specify $EEPROM

"the data nust be specified before the showpicE statenent.

$eeprom

Pl aatj e:

"the $BGF directive will load the data into the EEPROM or FLASH depending

on the $EEPROM or $DATA directive

$bgf "ncs. bgf"

"switch back to normal DATA (flash) node
$dat a

SIN

Action

Returns the sine of a single

Syntax

var =SIN(single)

Remarks

Var A numeric variable that is assigned with sinus of variable single.
Single The single variable to get the sinus of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , ATN,COS

Example
Show sample

SINH
Action
Returns the sinus hyperbole of a single
Syntax
var =SINH (single)
Remarks
Var A numeric variable that is assigned with sinus hyperbole of variable
single.
Single The single variable to get the sinus hyperbole of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also

Example
Show sample

SOCKETCONNECT

Action
Establishesaconnection toaTCP/IPserver.

Syntax

Result= SocketConnect(socket, IP, port)

Remarks

Result A byte that is assigned with 0 when the connection succeeded. It
will return 1 when an error occurred.

1P The IP number of the server you want to connect to.
This may be anumber like 192.168.0.2 or aLONG variablethatis
assigned with an IP number.
Note that the LSB of the LONG, must contain the MSB of the IP
number.

Port The port number of the server you are connecting to.

You can only connect to a server. Standardized servers have dedicated port numbers.
For example, the HTTP protocol(web server) uses port 80.

After you have established a connection the server might send data. This depends
entirely on the used protocol. Most servers will send some welcome t ext, thisis called
a banner.

You can send or receive data once the connection is established.

The server might close the connection after this or you can close the connection
yourself. This also depends on the protocol.

See also

CONFIGTCPIP, GETSOCKET , SOCKETSTAT , TCPWRITE, TCPWRITESTR, TCPREAD,
CLOSESOCKET, SOCKETLISTEN

Example
J = Socketconnect(i , 194.109.6.52 , 25) ' sntp server

SOCKETLISTEN

Action

Opens asocketinserver(listen) mode.

Syntax

SocketListensocket

Remarks

Socket I The s ocket number you want to close in the range of 0 -3.

The socket will listen to the port you specified with the GetSocket function.
You can listen to a maximum of 4 sockets at the same time.

After the connection is closed by either the client or the server, a new connection need
to be created and the SocketListen statement must be used again.

See also

CONFIGTCPIP, GETSOCKET , SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPWRITESTR, TCPREAD, CLOSESOCKET

Example

| = Getsocket(0 , Sock_stream, 5000 , 0) ' @&t a new socket
Socketlisten | ' listen

#if Debug

Print "Listening on socket : " ; |

#endi f

SOCKETSTAT

Action
Returns information of a socket.

Syntax

Result = SocketStat(socket , mode)

Remarks

Result A word variable that is assigned with the result.

Socket The socket number you want to get information of

Mode A parameter that specified what kind of information you want to

retrieve.

SEL_CONTROLor O : returnsthe statusregistervalue

SEL_SEND or 1 : returns the number of bytes that might be placed
into the transmission buffer.

SEL_RECV or 2 : returns the number of bytes that are stored in the
reception buffer.

8 SOCK_LAST_ACK Connection being terminated

9 SOCK_FIN_WAIT1 Connection being terminated

10 SOCK_FIN_WAIT2 Connection being terminated

11 SOCK_CLOSING Connection being terminated

12 SOCK TIME WAIT Connection being terminated

13 SOCK_RESET Connection being terminated after receiving reset
packet from peer.

14 SOCK_INIT Socketinitializing

15 SOCK_UDP Applicable channelisinitializedin UDP mode.

16 SOCK_RAW Applicablechannelisinitializedin IP layer RAW
mode

17 SOCK_UDP_ARP Standing by for reply after transmitting ARP
request packet to the destination for UDP
transmission

18 SOCK_UDP_DATA Data transmission in progressin UDP RAW mode

19 SOCK_RAW_INIT W3100Ainitialized in MAC layer RAW mode

The SocketStat function contains actual 3 functions. One to get the status of the
connection, one to determine how many bytes you might write to the socket, and one
to determine how many bytes you can read from the buffer.

When you specify mode 0, one of the following byte values will be returned:

Value State Description

0 SOCK_CLOSED Connectionclosed

1 SOCK_ARP Standing by for reply after transmitting ARP
request

2 SOCK_LISTEN Standing by for connection setup to the client
when acting in passive mode

3 SOCK_SYNSENT Standing by for SYN,ACK after transmitting SYN
for connecting setup when acting in active mode

4 SOCK_SYNSENT_ACK Connectionsetupiscomplete after SYN,ACKis
received and ACK is transmitted in active mode

5 SOCK_SYNRECV SYN,ACKisbeingtransmitted afterreceiving SYN
from the clientin listen state, passive mode

6 SOCK_ESTABLISHED Connectionsetupiscompleteinactive, passive

mode

7 SOCK CLOSE WAIT Connection being terminated

The SocketStat function is also used internally by the library.

See also

CLOSESOCKET, SOCKETLISTEN

Example

Tenpw = Socketstat (i , 0) ' get status
Sel ect Case Tenpw
Case Sock_established

End Sel ect

SONYSEND >> 8D1 1000 1101 0001
<< CD1 1100 1101 0001
Action >> 2D1 0010 1101 0001
Sends Sony remote IR code.
Syntax SONY Cassette RM-J901)
SONYSEND address Deck A
Uses stop 1C1 0001 1100 0001
TIMER1 play > 4C1 0100 1100 0001
play < EC1 1110 1100 0001
Remarks >> 2Cc1 0010 1100 0001
| Address The address of the Sony device. << cc1 1100 1100 0001
record 6C1 0110 1100 0001
SONY CD Infrared Remote Control codes (RM-DX55)
- - pause 9C1 1001 1100 0001
Function Hex Bin
Dec B
Power A91 1010 1001 0001
stop 18E 0001 1000 1110
Play 4D1 0100 1101 0001
play > 58E 0101 1000 1110
Stop 1D1 0001 1101 0001
play < 04E 0000 0100 1110
Pause 9D1 1001 1101 0001
. >> 38E 0011 1000 1110
Continue B91 1011 1001 0001
<< D8E 1101 1000 1110
Shuffle AD1 1010 1101 0001
record 78E 0111 1000 1110
Program F91 1111 1001 0001
] pause 98E 1001 1000 1110
Disc 531 0101 0011 0001
1 011 0000 0001 0001 —{ SONY TV Infrared Remote Control codes (RM-694) J---------=---x--nsmnames
2 811 1000 0001 0001
program + = &H090 : 0000 1001 0000
3 411 0100 0001 0001 program - = &H890 : 1000 1001 0000
4 c11 1100 0001 0001 volume + = &H490 : 0100 1001 0000
volume- = &HC90 : 1100 1001 0000
5 211 0010 0001 0001 power = &HA90 : 1010 1001 0000
sound on/off = &H290 : 0010 1001 0000
5 All 1010 0001 0001 1 = &HO10 : 0000 0001 0000
7 611 0110 0001 0001 2 = &H810 : 1000 0001 0000
3 = &H410 : 0100 0001 0000
8 Ell 1110 0001 0001 4 = &HC10 : 1100 0001 0000
6 = &HA10 : 1010 0001 0000
0 051 0000 0101 0001 7 = &H610 : 0110 0001 0000
8 = &HE10 : 1110 0001 0000
>10 ESt 1110 0101 0001 9 = &H110 : 0001 0001 0000
enter D11 1101 0001 0001 0 = &H910 : 1001 0001 0000
clear F11 1111 0001 0001 7-- = &HB90 : 1011 1001 0000
repeat 351 0011 0101 0001 For more SONY Remote Control info:
disc- BD1 1011 1101 0001 http://www.fet.uni-hannover.de/purnhage/
disc + H7D1 0111 1101 0001
|<< oD1 0000 1101 0001

The resistor must be connected to the OC1A pin. In the example a 2313 micro was used. This
micro has pin portB.3 connected to OC1A.

Look in a datasheet for the proper pin when used with a different chip.

An IR booster circuit is shown below:

+5W

.
10K 100uF 18V
— T
(=121 i
= 10nF — [l I
: .
SFH435
See also

CONFIG RC5, GETRCS

Example

' SONYSEND. BAS

' (c) 2004 MCS Electronics

' code based on application note from Ger Langezaal
+5V <--[A Led K]J---[220 Ohni---> Pb.3 for 2313.
RC5SEND is using TIMERL, no interrupts are used

' he resistor nust be connected to the OCL(A) pin , in this case PB.3

$regfile = "2313def. dat"
$crystal = 4000000

Do

Wai t ms 500
Sonysend &HA90
Loop

End

| SOUND
Action
Sends pulses to a port pin.
Syntax
SOUND pin, duration, pulses
Remarks
Pin Any 1/0 pin such as PORTB.O etc.
Duration The number of pulses to send. Byte, integer/word or constant.
Pulses The time the pin is pulled low and high.
This is the value for a loop counter.

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use the SOUND
statement to generate some tones.

The port pin is switched high and low for pulses times.
This loop is executed duration times.

The SOUND statement is not intended to generate accurate frequencies. Use a TIMER to do that.

See also
NONE

Example
SOUND PORTB. 1
End

, 10000, 10 ' BEEP

SPACE

Action

Returns a string that consists of spaces.

Syntax
var = SPACE(x)

Remarks
X The number of spaces.
Var The string that is assigned.

Using 0 for x will result in a string of 255 bytes because there is no check for a zero length assign.

See also
STRING

Example

Dms as String * 15, z as String * 15
s = Space(5)

Print " {" s ")" ()

Dim A as Byte

A=3

S = Space(a)

End

| SPC

Action

Prints the number of specified spaces.

Syntax
PRINTSPC(x)

Remarks

X | The number of spaces to print.

Using 0 for x will result in a string of 255 bytes because there is no check for a zero length assign.
SPC can be used withLCD too.
The difference with the SPACE function is that SPACE returns a number of spaces while SPC() can

only be used with printing. Using SPACE() with printing is also possible but it will use a temporary
buffer while SPC does not use a temporary buffer.

See also

SPACE

Example

Dim s as String * 15, z as String * 15
Print "{" ; SPC(5) ; "}" {1}

LCD "{* ; SPU(5) : "} ()}

SPIIN

Action

Reads a value from the SPI -bus.

Syntax

SPIIN var, bytes

Remarks

Var The variable which receives the value read from the SPI-bus.

Bytes The number of bytes to read.

See also
SPIOUT, SPIINIT, CONFIG SPI , SPIMOVE

Example

Dim A(10) As Byte

Config Spi = Soft , Din = Pinb.0 , Dout = Portbh.1 , Ss
= Portbh.3

Spiinit

Spiin AC1l) , 4 'read 4 bytes and store in a(l), a(2)

End

= Portbh.2 , Clock

a(3)

and a(4)

SPIINIT

Action
Initiate the SPI pins.

Syntax
SPIINIT

Remarks

After the configuration of the SPI pins, you must initialize the SPI pins to set them for the right data
direction. When the pins are not used by other hardware/software, you only need to use SPIINIT
once.

When other routines change the state of the SPI pins, use SPIINIT again before using SPIIN and
SPIOUT.

See also
SPIIN, SPIOUT

ASM

Calls _init_spi

Example

Dim A(10) As Byte

Config Spi = Soft , Din = Pinb.0 , Dout = Porth.1 , Ss = Portbh.2 , Clock
= Porth.3

Spiinit

Spiin AC1l) , 4 'read 4 bytes and store in a(l), a(2) , a(3) and a(4)

End

SOR

| SPIOUT

Action

Sends a value of a variable to the SPI-bus.

Syntax

SPIOUT var, bytes

Remarks

var The variable whose content must be send to the SPI-bus.
bytes The number of bytes to send.

See also

SPIIN, SPIINIT , CONFIG SPI , SPIMOVE

Example

Dim A(10) As Byte

Config Spi = Soft , Din = Pinb.0 , Dout = Porth.1 , Ss = Porth.2
= Porth.3

Spiinit

Spiout A(1l) , 4 "wite 4 bytes a(l), a(2) , a(3) and a(4)

End

Cl ock

Action

Returns the Square root of a variable.

Syntax

var =SQR(single)

Remarks

var A numeric single variable that is assigned with the SQR of variable single.

single The single variable to get the SQR of.

When SQR is used with a single, the FP_TRIG library will be used.

When SQR is used with bytes, integers, words and longs, the SQR routine from MCS.LBX will be
used.

As an alternative you can use the library SQR_IT.LBX or SQR.LBX. By default, the code from

FP_TRIG.LIB will be used.

Different algor

ithm’s can be used to calculate the SQR. By default the fast algoithm code is used.

The following picture shows the difference for the three methods:

4500

4000

SOR_ITLIE

1500

Walues [Lang e=iima L=

O1 Byle
B2 Byles
oon 0 154 Eyies
B acn
¥ COR.LIE COR_FazL LIE
&
3 -
5 2000
1500 —
1000 —
50D T
o 4 l (] I—l I
ENTE WORD LONG Single EYTE-F WIRD-F LONG-F Single-F| BYTE-[WORD-[LONG-[
Example
Dim A As Single
A=09.0
A = Sar (A)

Print A" prints 3.0

START

Action
Start the specified device.

Syntax

START device

Remarks

Device TIMERO, TIMER1, COUNTERO or COUNTER1, WATCHDOG, AC (Analog

comparator power) or ADC(A/D converter power)

You must start a timer/counter in order for an interrupt to occur (when the external gate is disabled).

TIMERO and COUNTERO are the same device.
The AC and ADC parameters will switch power to the device and thus enabling it to work.

See also
STOP

Example

' ADC. BAS
' denonstration of GETADC() function for 8535 micro

$regfile = "nml63def. dat"

"configure single nbde and auto prescaler setting
'The single nmode nust be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15, 32,64 or 128
' Because the ADC needs a clock from 50 200 KHz

'The AUTO feature, wll select the highest clockrate possible
Config Adc = Single , Prescaler = Auto

"Now give power to the chip

Start Adc

"Wth STOP ADC, you can renpve the power from the chip
"Stop Adc

Dm WAs Wrd , Channel As Byte

Channel = 0

"now read A/D value from channel 0

Do

W= Getadc(channel)

Print "Channel " ; Channel ; value "; W

I ncr Channel

If Channel > 7 Then Channel = 0
Loop

End

'The new ML63 has options for the reference voltage

For this chip you can use the additional
"Config Adc = Single , Prescaler = Auto,
'The reference param may be

param :

Reference = Internal

"OFF : AREF, internal reference turned off

"AVCC : AVCC, with external capacitor at
' | NTERNAL
AREF pin

"Using the additional param on chip that
reference will have no effect.

AREF pin

Internal 2.56 voltage reference wth external

do mt have the

capaci tor

i nternal

ar

| STCHECK

Action
Calls a routine to check for various stack overflows. This routine is intended for debug purposes.

Syntax
STCHECK

Remarks
The different stack spaces used by BASCOM-AVR lead to lots of questions about them.

The STCHECK routine can help to determine if the stack size are trashed by your program. The
program STACK.BAS is used to explain the different settings.

Note that STCHECK should be removed form your final program. That is once you tested your
program and found out is works fine, you can remove the call to STCHECK since it costs time and
code space.

The settings used are :
HW stack 8

Soft stack 2

Frame size 14

Below is a part of the memory of the 90S2313 used for the example:
M ClXRBACGB®E®C BXO®CAGBLELODCECE
DO DI D2 D38 D4 Db D6 D7 D8 D9 DA DB DC DD DE OF
FR FR FR FR FR FR FR FR

FR FR FR FR FR FR YY YY SP SP SP SP SP SP SP SP

Since the last memory in SRAM is DF, the hardware stack is occupied by D8DF(8 bytes)

When a call is made or a push is used the data is saved at the position the hardware stack pointer
is pointing to. After this the stack pointer is decreased.

A call uses 2 bytes so SP will be SP-2. (DF-2) =DD

When 8 bytes are stored the SP will point to D7. Another call or push will thus destroy memory
position D7 which is occupied by the soft stack.

The soft stack begins directly after the hardware stack and is also growing down.
The Y pointer(r28+r29) is used to point to this data.

Since the Y pointeris decreased first and then the data is saved, the pointer must point at start up
to a position higher. That is D8, the end of the hardware space.

St -y,r24 will point to D81=D7 and will store R24 at location D7.

Since 2 bytes were allocated in this example we use D7 and D6 to store the data.

When the pointer is at D6 and another St -y,r24 is used, it will write to position D5 which
is the end of the frame space that is used as temporarily memory.

The frame starts at C8 and ends at D5. Writing beyond will overwrite the soft stack.
And when there is no soft stack needed, it will overwrite the hardware stack space.

The map above shows FR(frame), YY(soft stack data) and SP(hardware stack space)

How to determine the right values?

The stack check routine can be used to determine if there is an overflow.
It will check :

4f SP is below it's size. In this case below D8.

4f YY is below it's size in this case when it is D5

if the frame is above its size in this case D6

When is YY(soft stack) used? When you use a LOCAL variable inside a SUB or function. Each local
variable will use 2 bytes.

When you pass variables to user Subroutines or functions it uses 2 bytes for each parameter.
call mysub(x,y) will use 2 * 2 = 4 bytes.
local z as byte ' will use another 2 bytes

This space is freed when the routine ends.
But when you call another sub inside the sub, you need more space.
sub mysub(x as byte,y as byte)

call testsub(r as byte) ' we must add another 2 bytes

When you use empty(no params) call like :
call mytest() , No space is used.

When do you need frame space?
When ever you use a num<>string conversion routine like:
Print b (where b is a byte variable)

Bytes will use 4 bytes max (123+0)
Integer will use 7 bytes max (-12345+0)c

Longs will use 16 bytes max
And the single will use 24 bytes max

When you add strings and use the original the value must be remembered by the compiler.
Consider this :
s$ = "abcd" + s$

Here you give s$ a new value. But you append the original value so the original value must be
remembered until the operation has completed. This copy is stored in the frame too.

So when string s$ was dimmed with a length of 20, you need a frame space of 20+1(null byte)
When you pass a variable by VALUE (BYVAL) then you actually pass a copy of the variable.
When you pass a byte, 1 byte of frame space is used, a long will take 4 bytes.

When you use a LOCAL LONG, you also need 4 bytes of frame space to store the local long.

The frame space is reused and so is the soft stack space and hardware stack space.
So the hard part is to determine the right sizes!

The stack check routine must be called inside the deepest nested sub or function.

Gosub test

test:
gosub testl
return

testl:

' this is the deepest level so check the stack here
stcheck

return

Stcheck will use 1 variable named ERROR. You must dimension it yourself.
Dim Error As Byte

Error will be set to :

1: if hardware stack grows down into the soft stack space
2: if the soft stack space grows down into the frame space
3: if the frame space grows up into the soft stack space.

The last 2 errors are not necessarily bad when you consider that when the soft stack is not used for
passing data, it may be used by the frame space to store data. Confusing right.?

ASM
Routines called by STCHECK :
_StackCheck : uses R24 and R25 but these are saved and restored.

Because the call uses 2 bytes of hardware stack space and the saving of R24 and R25 also costs 2
bytes, it uses 4 more bytes of hardware stack space than your final program would do that f course
does not need to use STCHECK.

Example

Here is the stack.bas sample that can be found in the samples dir.
It uses conditional compilation so you can test the various errors.

"this sanple shows how to check for the stack sizes

"note that the @lled routine (_STACKCHECK) will use 4 bytes

' of hardware stack space

'So when your program works, you may subtract the 4 bytes of the needed
hardware stack size

"in your final program that does not include the STCHECK

"testnode =0 will work

"testmode =1 wll use too nmuch hardware stack
"testnode =2 will use too nuch soft stack space
'testnmrode =3 will use too nmuch frane space

Const Testnode = 0
"conpile and test the program with testnode from 03

"you need to dim the ERROR byte !!
Dim Error As Byte

#if Testmode = 2

Decl are Sub Pass(z As Long , Byval K As Long)
#el se

Decl are Sub Pass()

#endi f

Dm | As Long

1 =2

Print |

‘call the sub in your code at the deepest |evel
‘nornmally within a function or sub

#if Testnode = 2
Cal |l Pass(i , 1)
#el se

Cal | Pass()
#endi f

End

#f Testnode = 2

Sub Pass(z As Long , Byval K As Long)
#el se

Sub Pass()

#endi f

#if Testnmode = 3

Local S As String * 13

#el se

Local S As String * 8

#endi f

Print |
Gosub Test
End Sub

Test:

#if Testnode = 1

push r0 ; eat sone hardware stack space
push rl

push r2

#endi f

' *** here we call the routine ***

St check

' *** when error <>0 then there is a problem ***
#if Testnmode = 1

pop r2

pop rl

pop r0

#endi f

Ret urn

STOP

Action
Stop the specified device. Or stop the program

Syntax

STOP device
STOP

Remarks

Device TIMERO, TIMER1, COUNTERO or COUNTER1, WATCHDOG, AC (Analog
comparator power) or ADC(A/D converter power)

The single STOP statement will end your program by generating a never ending loop. When END is
used it will have the same effect but in addition it will disable all interrupts.

The STOP statement with one of the above parameters will stop the specified device.

TIMERO and COUNTERO are the same device.
The AC and ADC parameters will switch power off the device to disable it and thus save power.

See also
START, END

Example
' ADC. BAS
denmonstration of GETADC() function for ML63 micro

$regfile = "ml63def . dat”

‘configure single nobde and auto prescaler setting
'The single node nust be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz

'The AUTO feature, wll select the highest clockrate possible
Config Adc = Single , Prescaler = Auto

'Now give power to the chip

Start Adc

'"Wth STOP ADC, you can renpve the power from the chip
"Stop Adc

Dm WAs Wrd , Channel As Byte

Channel = 0
"now read A/D value from channel 0
Do

W= Getadc(channel)

Print "Channel " ; Channel ; " value ";
I ncr Channel

If Channel > 7 Then Channel = 0

Loop

End

'The new ML63 has options for the reference voltage

For this chip you can use the additional
"Config Adc = Single , Prescaler = Auto,
'The reference param may be

param :

Reference = Internal

"OFF : AREF, internal reference turned off

"AVCC : AVCC, with external capacitor at
' | NTERNAL
AREF pin

"Using the additional param on chip that
reference will have no effect.

AREF pin

Internal 2.56 voltage reference with external

do not have the

capaci tor

i nternal

ar

STR

Action

Returns a string representation of a number.

Syntax

var = Str(x)

Remarks

var A string variable.

X A numeric variable.

The string must be big enough to store the result.

See also

Difference with QB

In QB STR() returns a string with a leading space. BASCOM does not return a leading space.

Example

DmA As Byte, S As String * 10
A = 123

S = Str(a)

Print S' 123

End

| STRING

Action

Returns a string consisting of m repetitions of the character with ASCII
Coden.

Syntax

var = STRING(m ,n)

Remarks

Var The string that is assigned.

N The ASCII-code that is assigned to the string.

M The number of characters to assign.

Since a string is terminated by a 0 byte, yau can't use 0 for n.
Using 0 for m will result in a string of 255 bytes, because there is no check on a length assign of 0.

See also
SPACE

Example

DmS As String * 15
S = String(5, 65)
Print S 'AAAAA

End

SPIMOVE
Action
Sends and receives a value or a variable to the SPI-bus.
Syntax
var = SPIMOVE(byte)
Remarks
Var The variable that is assigned with the received byte(s) from the SPI-bus.
Byte The variable or constant whose content must be send to the SPI-bus.
See also
SPIIN, SPIINIT , CONFIG SPI
Example
CONFIG SPI = SOFT, DIN = PINB.0, DOUT = PORTB.1, SS=PORTB.2, CLOCK =
PORTB. 3
SPIINIT

Dim a(10) as Byte , X As Byte
SPIQUT a(l1l) , 5 'send 5 bytes

SPIOUT X, 1 'send 1 byte
A(1) = SpiMove(5) ' move 5 to SPI and store result in a(1)

End

SUB

Action

Defines a Sub procedure.

Syntax

SUB Name[(varl, ...)]

Remarks
Name Name of the sub procedure, can be any non-reserved word.
varl The name of the parameter.

You must end each subroutine with the END SUB statement.

You can copy the DECLARE SUB line and remove the DECLARE statement. This ensures that you
have the right parameters.

See the DECLARE SUB topic for more details.

SYSSEC

Action

Returns a Number, which represents the System Second

Syntax

Target = SysSec()

Target = SysSec(bSecMinHour)
Target = SysSec(strTime, strDate)
Target = SysSec(wSysDay)

Remarks

Target AVariable (LONG), thatis assigned with the System-Second

BSecMinHour | A Byte, which holds the Sec-value followed by Min(Byte), Hour (Byte),
Day(Byte), Month(Byte) and Year(Byte)

StrTime A time-string in the format ,hh:mm:ss"
StrDate A date-string in the format specified in the Config Date statement
wSysDay A variable (Word) which holds the System Day (SysDay)

The Function can be used with 4 different kind of inputs:
1. Without any parameter. The internal Time and Date of SOFTCLOCK (_sec, _min,
_hour, _day, _month, _year) is used.
2. With a user defined time and Date array. It must be arranged in same way
(Second, Minute, Hour, Day, Month, Year) as the internal SOFTCLOCK

time/date. The first Byte (Second) is the input by this kind of usage. So the
System Second can be calculated of every time/date.

3. With a time-String and a date- string. The time-string must be in the Format
~hh:mm:ss". The date-string must be in the format specified in the Config Date
statement

4. With a System Day Number (Word). The result ist the System Second of thisday
at00:00:00.

The Return-Value is in the Range of O to 2147483647.2000-01-01at00:00:00starts
with 0.

The Function is valid from 2000-01-01to 2068-01-1903:14:07. In the year 2068 a
LONG — overflow will occur.

See also
Date and Time Routines , SYSSECELAPSED, SYSDAY.

Example

Enable Interrupts
Config Clock = Soft
Config Date = YMD , Separator = . ° ANSI-Format

Dim strDate as String * 8

Dim strtime as String * 8

Dim bSec as Byte, bMin as Byte, bHour as Byte

Dim bDay as Byte , bMonth as Byte , bYear as Byte
Dim wSysDay as Word

Dim ISysSec as Long

Example 1 with internal RTC-Clock
Load RTC-Clock for example - testing

_Sec =17 - _Min =35 : _Hour =8 : _Day = 16 : _Month = 4 : _Year = 3
ISysSec = SysSec()
print "System Second of " ; Time$ " at " ; Date$; " is " ; ISysSec

" System Second of 08:35: 17 at 03.04.16 is 103797317

Example 2 with with defined Clock - Bytes (Second, Minute, Hour, Day /
Month 7/ Year)
bSec = 20: bMin = 1: bHour = 7 : bDay = 22 : bMonth = 12 : bYear = 1
ISysSec = SysSec(bSec)
strTime = time_sb(bSec): strDate = date_sb(bDay)
print "System Second of " ; strTime ; " at " ; strDate ; " is " ; ISysSec
" System Second of 07:01:20 at 01.12.22 is 62319680

Example 3 with Time and Date - String
strTime = "04:58:37"

strDate = "02.09.18"
ISysSec = SysSec(strTime, strDate)
print "System Second of " ; strTime ; " at " ; strDate ; " is " ; ISysSec

® System Second of 04:58:37 at 02.09.18 is 85640317

Example 4 with System Day
wSysDay = 2000
ISysSec = SysSec(wSysDay)
print "System Second of System Day " ; wSysbDay ; ™ (00:00:00) is ™ ;
I1SysSec
* System Second of System Day 2000 (00:00:00) is 172800000

SYSSECELAPSED

Action

Returns the elapsed Secondsto aearlier assigned system-time-stamp.

Syntax

Target = SysSecElapsed (SystemTimeStamp)

Remarks

SYSDAY

Target A variable (LONG), that is assigned with the elapsed Seconds

SystemTimeStamp Avariable (LONG), which holds a Systemtimestamp like the
output of an earlier called SysSec()

Action

Returns a number, which represents the System Day

Syntax

Target= SysDay()

Target = SysDay(bDayMonthYear)
Target = SysDay(strDate)

Target = SysDay(ISysSec)

The Return-Value is in the Range of O to 2147483647. The Functionis valid from

2000-01-01to 2068-01-19at03:14:07. In the year 2068 a LONG — overflow will
occur.

The difference to the pair DayOfSec and SecElapsedis, thatSysSecand SysSecElapsed

can be used for event distances larger than 24 hours.

See also
Date and Time Routines , SECELAPSED, SYSSEC

Example

Enable Interrupts
Config Clock = Soft

Dim ISystemTimeStamp as Long
Dim ISystemSecondsElapsed as Long

ISystemTimeStamp = SysSec()
Print "Now it"s ™ ; ISystemTimeStamp ; " seconds past 2000-01-01
00:00:00"

* do other stuff
" some time later

ISystemSecondsElapsed = SysSecElapsed(1SystemTimeStamp)
Print "Now it"s " ; ISystemSecondsElapsed ; " seconds later"

Remarks

Target A Variable (LONG), thatis assigned with the System- Day

bDayMonthDay | A Byte, which holds the Day-value followed by Month(Byte) and Year
(Byte)

strDate A String, which holds a Date-String in the format specified in the
CONFIGDATE statement

ISysSec A variable, which holds a System Second (SysSec)

The Function can be used with 4 different kind of inputs:

1. Without any parameter. The internal Date-valuesofSOFTCLOCK (_day,_month,
_year) are used.

2. With a user defined date array. It must be arranged in same way (Day, Month,
Year) as the internal SOFTCLOCK date. The first Byte (Day) is the input by this
kind of usage. So the Day of the Year can be calculated of every date.

3. With a Date- String. The date-string must b e in the Format specified in the Config
Date Statement.

4. With a System Second Number (LONG)

The Return-Value isin the Range of 0 to 36524. 2000-01-01 starts with O.
The Function is valid in the 21th century (from 2000-01-01t02099-12-31).

See also
Date and Time Routines , ConfigDate , ConfigClock , SysSec

Example

Enable Interrupts
Config Clock = Soft
Config Date = YMD , Separator = . " ANSI-Format

Dim strDate as String * 8
Dim bDay as Byte , bMonth as Byte , bYear as Byte

Dim wSysDay as Word
Dim ISysSec as Long

" Example 1 with internal RTC-Clock
_day = 20 : _Month = 11 : _Year = 2 *
testing

wSysDay = SysDay(Q)

print "System Day of " ; Date$; " is

" System Day of 02.11.20 is 1054

Load RTC-Clock for example -

" ; wSysDay

* Example 2 with defined Clock - Bytes (Day / Month / Year)

bDay = 24 : bMonth = 5 bYear = 8
wSysDay = SysDay(bDay)
print "System Day of Day=";
" is " ; wSysDay

System Day of Day=24 Month=5 Year=8

bDay ;

* Example 3 with Date - String
strDate = "04.10.29"

wSysDay = SysDay(strDate)

print "System Day of " ; strDate
* System Day of 04.10.29 is 1763

Example 4 with System Second
ISysSec = 123456789
wSysDay = SysDay(lISysSec)
print "System Day of System Second " ;

" System Day of System Second 123456789

" Month=";

" s

bMonth ; "

is 3066

; wSysDay

ISysSec ; " is

is 1428

Year=" ;

wSysDay

bYear

SWAP

Action

Exchange two variables of the same type.

Syntax

SWAP varl, var2

Remarks
varl A variable of type bit, byte, integer, word, long or string.
var2 A variable of the same type as varl.

After the swap, varl will hold the value of var2 and var2 will hold the value of varl.

Example

Dim A As Integer , Bl As Integer
A=1: Bl =2 "assign two integers
Swap A, Bl 'swap them

Print A; Bl 'prints 21

End

TAN

Action

Returns the tangent of a single

Syntax

var =TAN (single)

Remarks

Var A numeric variable that is assigned with tangent of variable single.
Single The single variable to get the tangent of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also
RAD2DEG, DEG2RAD , ATN ,COS, SIN

Example
Show sample

TCPREAD

Action

Reads data from an open socket connection.

Syntax

Result= TCPread(socket , var, bytes)

Remarks

Result A word variable that will be assigned with the number of bytes
actually received from the socket.
When there are not enough bytes in the reception buffer, the
routine will wait until there is enough data or the socket is closed.

socket The socket number you want to read data from (0-3).

Var The name of the variable that will be assigned with the data from
the socket.

Bytes The number of bytes to read. Only valid for non-stringvariables.

When you use TCPread with a string variable, the routine will wait for CR + LF and it
will return the data without the CR + LF.

For strings, the function will also not overwrite the string.

For example, your string is 10 bytes long and the line you receive is 80 bytes long, you
will receive only the first 10 bytes after CR + LF is encountered.

Also, for string variables, you do not need to specify the number of bytes to read since
the routine will wait for CR + LF.

For other data types you need to specify the number of bytes.

There will be no check on the length so specifying to receive 2 bytes for a byte will
overwrite the memory location after the memory location of the byte.

See also

CONFIGTCPIP, GETSOCKET , SOCKETCONNECT, SOCKETSTAT,
ICPWRITE, TCPWRITESTR, CLOSESOCKET, SOCKETLISTEN

Example
NONE

TCPWRITE

Action

Write data to a socket.

Syntax
Result= TCPwrite(socket , var , bytes)
Result= TCPwrite(socket, EPROM, address, bytes)

TCPWRITESTR

Action

Sends a string to an open socket connection.

Syntax

Result= TCPwriteStr(socket , var , param)

Remarks

Result A word variable that will be assigned with the number of bytes
actually written to the socket.
When the free transmission buffer is large enough to accept all the
data, the result will be the same as BYTES. When there is not
enough space, the number of written bytes will be returned.
When there is no space, 0 will be returned.

Socket The socket number you want to send data to (0-3).

Var The name of a string variable.

Param A parameter that might be O to send only the string or 255, to send
the string with an additional CR + LF
This option was added because many protocols expect CR + LF after
the string.

Remarks

Result A word variable that will be assigned with the number of bytes
actually written to the socket.
When the free transmission buffer is large enough to accept all the
data, the result will be the same as BYTES. When there is not
enough space, the number of written bytes will be returned.
When there is no space, 0 will be returned.

Socket The socket number you want to send data to(0-3).

Var A constant string like "test" or a variable.
When you send a constant string, the number of bytes to send does
not need to be specified.

Bytes A word variable or numeric constant that specifies how many bytes
must be send.

Address The address of the data stored in the chips internal EEPROM. You
need to specify EPROM too in that case.

EPROM An indication for the compiler so it knows that you will send data
fromEPROM.

The TCPwrite function can be used to write data to a socket that is stored in EEPROM
or in memory.

When you want to send data from an array, you need to specify the element : var(idx)
for example.

See also
CONFIG TCPIP, GETSOCKET, SOCKETCONNECT, SOCKETSTAT,
TCPWRITESTR, TCPREAD, CLOSESOCKET, SOCKETLISTEN

Example
Tempw = Tcpwrite(i , "HTTP/ 1.0 200 OK{013}{010}")

The TCPwriteStr function is a special variant of the TCPwrite function.
It will use TCPWrite to send the data.

See also
CONFIG TCPIP, GETSOCKET, SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPREAD, CLOSESOCKET, SOCKETLISTEN

Example

' SMTP. BAS
(c) 2004 MCS Electronics
sanple that show how to send an enmil wth SMIP protocol

$regfile = "ml6ldef.dat" ' used processor

$crystal = 4000000 ' used crystal

$baud = 19200 ' baud rate

$lib "tcpip.lbx" ' specify the nane of the tcp ip lib

' WB100A constants

Const Sock_stream = $01 Tcp

Const Sock_dgram = $02 ' Udp

Const Sock_ipl_raw = $03 ' Ip Layer Raw Sock

Const Sock_macl _raw = $04 ' Mac Layer Raw Sock
Const Sel _control =0 ' Confirm Socket Status
Const Sel_send = 1 ' Confirm Tx Free Buffer Size
Const Sel _recv = 2 ' Confirm Rx Data Size
'socket status

Const Sock_closed = $00 ' Status O Connection C osed

Const Sock_arp = $01 ' Status O Arp

Const Sock_listen = $02 ' Status O Wiiting For Tcp Connection Setup

Const Sock_synsent = $03 ' Status O Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status O Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status O Setting Up Tcp Connection
Const Sock_established = $06 ' Status O Tcp Connection Established
Const Sock_close_wait = $07 ' Status O Closing Tcp Connection
Const Sock_l ast_ack = $08 ' Status O Closing Tcp Connection

Const Sock_fin_waitl = $09 ' Status O Cosing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status O Cosing Tcp Connection
Const Sock_closing = $0b ' Status O Closing Tcp Connection

Const Sock_time_wait = $0c ' Status O Closing Tcp Connection
Const Sock_reset = $0d ' Status O Closing Tcp Connection

Const Sock_init = $0e ' Status O Socket Initialization

Const Sock_udp = $0f ' Status O Udp

Const Sock_raw = $10 ' Status of |P RAW

Const Debug = -1 ' for sending feedback to the termnal
f Debug

Print "Start of SMIP demp"

#endi f

Enabl e Interrupts enable interrupts

"specify MAC, |P, submask and gateway

'"local port value will be used when you do not specify a port value while
creating a connection

"TX and RX are seup to use 4 connections each with a 2KB buffer

Config Tcpip = Int0O, Mac = 00.44.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Local port = 1000 , Tx =
$55 , Rx = $55

"dim the used variables

Dm S As String * 50 , | As Byte , J As Byte , Tempw As Word
f Debug

Print "setup of WB100A conplete"

#endi f

"First we need a socket

| = Getsocket(0 , Sock_stream, 5000 , 0)

' M socket nuner ~ port

f Debug

Print "Socket : " ; |

"the socket must return the asked socket number. It returns 255 if there
was an error

#endi f

If 1 =0 Then ' all ok

‘connect to sntp server

J = Socketconnect(i , 194.000.000.0002 , 25) ' sntp server and SMIP port
25
' A“socket

' N ip address of the sntp server
' N port 25 for sntp

#if Debug

Print "Connection : " ; J

Print S status(1)

#endi f

If 3 =0 Then ' all ok

#if Debug

Print "Connected"

#endi f

Do

Tenpw = Socketstat (i , 0) ' get status

Sel ect Case Tenpw

Case Sock_established ' connection established

Tenmpw = Tcpread(i , S) ' read line

#if Debug

Print S' show info from sntp server

#endi f

If Left(s , 3) = "220" Then ' ok

Tenmpw = Tcpwrite(i , "HELO xxxxxx{013}{010}") ' send usernane
#if Debug

Print Tempw ; " bytes witten" ' nunber of bytes actual send
#endi f

Tenpw = Tcpread(i , S) ' get response

f Debug

Print S' show response

#endi f

If Left(s , 3) = "250" Then ' ok

Tenpw = Tcpwrite(i , "MAIL FROM <tcpi p@mcsel ec. con>{013}{010}") ' send
from address

Tenpw = Tcpread(i , S) ' get response

#if Debug

Print S

#endi f

If Left(s , 3) = "250" Then ' ok

Tempw = Tcpwrite(i , "RCPT TO <tcpip@mrcsel ec.con>{013}{010}") ' send TO
address

Tenpw = Tcpread(i , S) ' get response

#if Debug

Print S

#endi f

If Left(s , 3) = "250" Then ' ok

Tenmpw = Tcpwrite(i , "DATA{013}{010}") ' speicfy that we are going to
send data

Tenpw = Tcpread(i , S) ' get response

f Debug

Print S

#endi f

If Left(s , 3) = "354" Then ' ok

Tenmpw = Tcpwrite(i , "From tcpip@rmrcselec.com{013}{010}")
Tenmpw = Tcpwrite(i , "To: tcpip@mrselec.com{013}{010}")
Tenmpw = Tcpwrite(i , "Subject: BASCOM SMIP test{013}{010}")
Tenpw = Tcpwrite(i , "X-Miler: BASCOM SMIP{013}{010}")
Tenmpw = Tcpwrite(i , "{013}{010}")

Tenmpw = Tcpwrite(i , "This is a test enail from BASCOM SMIP{013}{010}")
Tenpw = Tcpwrite(i , "Add nore lines as needed{013}{010}")
Tenmpw = Tcpwrite(i , ".{013}{010}") ' end with a single dot
Tenpw = Tcpread(i , S) ' get response

f Debug

Print S

#endi f

If Left(s , 3) = "250" Then ' ok

Tenmpw = Tcpwrite(i , "QUI T{013}{010}") ' quit connection

Tenmpw = Tcpread(i , S)
#if Debug

Print S

#endi f

End If

End If

End If

End If

End If

End If

Case Sock_cl ose_wait

Print "CLOSE_WAIT"

Cl osesocket | ' close the connection
Case Sock_cl osed

Print "Socket CLOSED' ' socket is closed
End

End Sel ect

Loop

End If

End If

End 'end program

TANH
Action
Returns the hyperbole of a single
Syntax
var =TANH (single)
Remarks
Var A numeric variable that is assigned with hyperbole of variable single.
Single The single variable to get the hyperbole of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between radians and
angles.

See Also

Example
Show sample

THIRDLINE

TIMES$

Action
Reset LCD cursor to the third line.

Syntax
THIRDLINE

Remarks
NONE

See also
UPPERLINE, LOWERLINE , EFEOURTHLINE

Example
Dm A As Byte
A = 255

Cs

Lcd A
Thirdline

Lcd A
Upperline

End

Action

Internal variable that holds the time.

Syntax
TIME$ = "hh:mm:ss"
var = TIME$

Remarks

The TIME$ variable is used in combination with the CONFIG CLOCK and CONFIG DATE directive.
The CONFIG CLOCK statement will use the TIMERO or TIMER2 in async mode to create a 1
second interrupt. In this interrupt routine the _Sec, _Min and _Hour variables are updated. The time
format is 24 hours format.

When you assign TIME$ to a string variable these variables are assigned to the TIME$ variable.
When you assign the TIME$ variable with a constant or other variable, the _sec, _Hour and _Min
variables will be changed to the new time.

The only difference with QB/VB is that all digits must be provided when assigning the time. This is
done for minimal code. You can change this behavior of course.

ASM

The following asm routines are called from mcs.lib.
When assiging TIME$: _set_time (calls _str2byte)
When reading TIME$: _make_dt (calls _byte2str)

See also

DATES$, CONFIG CLOCK
CONFIG DATE

Example

' MEGACLOCK. BAS
' (c) 2000-2001 MCS Electronics

' This exanple shows the new TIME$ and DATE$ reserved variables

'"Wth the 8535 and tinmer2 or the MegalO03 and TIMERO you can

"easily inplenent a clock by attaching a 32.768 KHz xtal to the tiner
"And of course some BASCOM code

"This exanple is witten for the STK300 with MLO03
Enabl e Interrupts

"[configure LCD]

$l cd = &HCO00 'address for E and RS

$l cdrs = &HB000 ' address for only E

Config Led = 20 * 4 "nice display from bg mcro

Config Lcdbus = 4 "we run it in bus node and | hooked up only db4 db7
Config Lcdnode = Bus 'tell about the bus node

"[now init the clock]
Config Clock = Soft '"this is how sinple it is

'The above statenment will bind in an ISR so you can not use the TIMER
anynor e!

"For the MLO3 in this case it neans that TIMERO can not be used by the
user anynore

"assign the date to the reserved date$

'"The format is MV DD/ YY

Date$ = "11/11/00"

"assign the time, format in hh:mmss military format(24 hours)

"You may not use 1:2:3 !! adding support for this would nean overhead
"But of course you can alter the library routines used

Time$ = "02:20: 00"

"clear the LCD display

ds

Do

Home ' cursor hone

Lcd Date$; " " ; Time$ 'show the date and tine

Loop

"The clock routine does use the followi ng internal variables:
‘_day , _nonth, _year , _sec, _hour, _mn

'These are all bytes. You can assign or use them directly
_day =1

'"For the _year variable only the year is stored, not the century
End

TIME

Action

Returns atime-value (String or 3 Byte for Second, Minute and Hour) depending of the
Type of the Target

Syntax

bSecMinHour= Time (ISecOfDay)
bSecMinHour= Time (ISysSec)
bSecMinHour= Time (strTime)

strTime= Time (ISecOfDay)
strTime= Time (ISysSec)
strTime= Time (bSecMinHour)

Remarks

bSecMinHour | ABYTE — variable, which holds the Second-value followed by Minute
(Byte) and Hour (Byte)

strTime ATime — String in Format ,hh:mm:ss"
ISecOfDay ALONG - variable which holds Second Of Day (SecOfDay)
ISysSec ALONG — variablewhichholds System Second (SysSec)

Converting to a time-string:

The target string strTime must have a length of at least 8 Bytes, otherwise SRAM after
the target-string will be overwritten.

Converting to Softclock format (3 Bytes for Second, Minute and Hour):

Three Bytes for Seconds, Minutes and Hour must follow each other in SRAM. The
variable-name of the first Byte, that one for Second must be passed to the function.

See also

Example

Enable Interrupts
Config Clock = Soft

Dim strtime as String * 8

Dim bSec as Byte, bMin as Byte, bHour as Byte
Dim ISecOfDay as Long

Dim ISysSec as Long

Time - String

bSec = 20: bMin = 1: bHour = 7

strTime = Time(bSec)

print "Time values: Sec="; bsec ; " Min="; bmin ; * Hour=" ; bHour ;
converted to string " ; strTime

® Time values: Sec=20 Min=1 Hour=7 converted to string 07:01:20

Example 2: Converting System Second to Time - String
ISysSec = 123456789

strTime = Time(lSysSec)

print "Time of Systemsecond " ; ISysSec ;

" Time of Systemsecond 123456789 is 21:33:09

is ; strTime

Example 3: Converting Second of Day to Time - String
1SecOfDay = 12345

strTime = Time(1SecOfDay)

print "Time of Second of Day " ; ISecOfDay ; " is
" Time of Second of Day 12345 is 03:25:45

" strTime

Example 4: Converting System Second to defined Clock - Bytes (Second /
Minute / Hour)
ISysSec = 123456789
bSec = Time (1SysSec)

Print "System Second ; 1SysSec ; converted to Sec="; bsec ;
bmin ; ™ Hour=" ; bHour

" System Second 123456789 converted to Sec=9 Min=33 Hour=21

Min=";

Example 4: Converting Second of Day todefined Clock - Bytes (Second /
Minute / Hour)

I1SecOfDay = 12345

bSec = Time (ISecOfDay)

Print "Second of Day " ; ISecOfDay ; " converted to Sec="; bsec ;
Min="; bmin ; " Hour=" ; bHour

" Second of Day 12345 converted to Sec=45 Min=25 Hour=3

Example 1: Converting defined Clock - Bytes (Second / Minute / Hour) to

TOGGLE

Action

Toggles the state of an output pin or bit variable.

Syntax
TOGGLEpin

Remarks

pin Any port pin like PORTB.O0 or bit variable. A port poin must be configured as an
output pin before TOGGLE can be used.

With TOGGLE you can simply invert the output state of a port pin.

When the pin is driving a relais for example and the relais is OFF, one TOGGLE statement will turn
the relais ON. Another TOGGLE will turn the relais OFF again.

See also
CONFIG PORT

ASM
NONE

Example

Dim Var As Byte

CONFIG PINB.O = QUTPUT ' portB.0 is an output now
TOGGLE PORTB.0 'toggle state

WAI TMS 1000cho 'wait for 1 sec

TOGGLE PORTB.0 'toggle state again

TRIM

UCASE

Action
Returns a copy of a string with leading and trailing blanks removed

Syntax

var =TRIM(org)

Action

Converts a string in to all upper case characters.

Syntax

Target =Ucase(source)

Remarks

Target The string that is assigned with the upper case string of string target.

Source The source string.

Remarks

Var String that receives the result.

Org The string to remove the spaces from
See also

RTRIM, LTRIM

ASM

NONE

Example

DmS As String * 6
S=" AB "

Print Ltrims)
Print Rtrims)
Print Trin(s)

End

See also
LCASE

ASM

The following ASM routines are called from MCS.LIB : _UCASE

X must point to the target string, Z must point to the source string.

The generated ASM code : (can be different depending on the micro used)
V#####E Z = Ucase(s)

Ldi R30, $60

Ldi R31,$00 ; load constant in register

Ldi R26, $6D

Rcal | _Ucase

Example

DmS As String * 12 , Z As String * 12
S "Hello World"

z Lcase(s)

Print Z

Z = Ucase(s)

Print Z

End

UDPREAD

Action

Reads datavia UDP protocol.

Syntax

Result = UDPread (socket , var, bytes)

Remarks

Result A word variable that will be assigned with the number of bytes
actually received from the socket.
When there are not enough bytes in the reception buffer, the
routine will wait until there is enough data or the socketis closed.

socket The socket number you want to read data from (0-3).

Var The name of the variable that will be assigned with the data from
the socket.

Bytes The number of bytes to read. Only valid for non-stringvariables.

When you use UDPread with a string variable, the routine will wait for CR + LF and it
will return the data without the CR + LF.

For strings, the function will also not overwrite the string.

For example, your string is 10 bytes long and the line you receive is 80 bytes long, you
will receive only the first 10 bytes after CR + LF is encountered.

Also, for string variables, you do not need to specify the number of bytes to read since
the routine will wait for CR + LF.

For other data types you need to specify the number of bytes.

There will be no check on the length so specifying to receive 2 bytes for a byte will
overwrite the memory location after the memory location of the byte.

The socketstat function will return a length of the number of bytes + 8 for UDP. This

because UDP sends also a 8 byte header. It contains the length of the data, the IP
number of the peer and the port number.

The UDPread function will fill the following variables with this header data:
Peersize,PeerAddress,PeerPort

You need to DIM these variables in your program when you use UDP.

Use the following line :

Dim Peersize As Integer , Peeraddress As Long, Peerport As Word

Make sure you maintain the shown order.

See also

CONFIGTCPIP, GETSOCKET , SOCKETCONNECT, SOCKETSTAT,
TCPWRITE, TCPWRITESTR, CLOSESOCKET, SOCKETLISTEN, UDPWRITE, UDPWRITESTR

Example

Result = Socketstat(idx , Sel_recv) ' get nunber of bytes waiting
If Result > 0 Then

Print "Bytes waiting : " ; Result

Tenp2 = Result - 8 "the first 8 bytes are always the UDP header which
consist of the length, |IP nurmber and port address

Temp = Udpread(idx , S(1) , Result) ' read the result

For Temp = 1 To Tenp2

Print S(tenp) ; " " ; ' print result

Next

End |f

UDPWRITE

Action

Write UDP data to a socket.

Syntax

Result= UDPwrite(IP, port, socket , var , bytes)

Result= UDPwrite(IP, port, socket , EPROM, address, bytes)

Remarks

Result A word variable that will be assigned with the number of bytes
actually written to the socket.
When the free transmission buffer is large enough to accept all the
data, the result will be the same as BYTES. When there is not
enough space, the number of written bytes will be returned.
When there is no space, 0 will be returned.

1P The IP number you want to send data to.
Use the format 192.168.0.5 oruse a LONG variable that contains
the IP number.

Port The port number you want to send data too.

Socket The socket number you want to send data to(0-3).

Var A constant string like "test" or avariable.
When you send a constant string, the number of bytes to send does
not need to be specified.

Bytes A word variable or numeric constant that specifies how many bytes
must be send.

Address The address of the data stored in the chipsinternal EEPROM. You
need to specify EPROM too in that case.

EPROM An indication for the compiler so it knows that you will send data

fromEPROM.

The UDPwrite function can be used to write data to a socket that is stored in EEPROM

or in memory.

When you want to send data from an array, you need to specify the element : var(idx)

for example.

Note that UDPwrite is almost the same as TCPwrite. Since UDP is a connection-less
protocol, you need to specify the IP address and the port number.

UDPonlyrequiresanopened socket.

See also

CONFIGTCPIP, GETSOCKET , SOCKETCONNECT, SOCKETSTAT,

Example
See UDPwriteStr

UDPWRITESTR

Action
Sends a string via UDP.

Syntax

Result= UDPwriteStr(IP, port, socket, var , param)

Remarks

Result A word variable that will be assigned with the number of bytes
actually written to the socket.

When the free transmission buffer is large enough to accept all the
data, the result will be the same as BYTES. When there is not
enough space, the number of written bytes will be returned.

When there is no space, 0 will be returned.

1P The IP number y ou want to send data to.

Use the format 192.168.0.5 oruse a LONG variable that contains
the IP number.

Port The port number you want to send data too.

Socket The socket number you want to send data to (0-3).

Var The name of a string variable.

Param A parameter that might be O to send only the string or 255, to send
the string with an additional CR + LF

This option was added because many protocols expect CR + LF after
the string.

The UDPwriteStr function is a special variant of the UDPwrite function.
It will use UDPWrite to send the data.

See also

TCPWRITE, TCPREAD, CLOSESOCKET , SOCKETLISTEN , UDPWRITE, UDPREAD

Example

' UDPTEST. BAS
' (c) 2002-2004 MCS Electronics

start the easytcp.exe program after the chip is progranmed and press
UDP button

$regfile = "ML61ldef. dat"
$crystal = 4000000
$baud = 19200

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp

Const Sock_ipl_raw = $03 ' Ip Layer Raw Sock
Const Sock_macl _raw = $04 ' Mac Layer Raw Sock
Const Sel _control =0 ' Confirm Socket S atus

Const Sel_send = 1 ' Confirm Tx Free Buffer Size
Const Sel _recv = 2 ' Confirm Rx Data Size

'socket status

Const Sock_closed = $00 ' Status OF Connection Cl osed

Const Sock_arp = $01 ' Status O Arp

Const Sock_listen = $02 ' Status O Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status O Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status O Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status O Setting Up Tcp Connection
Const Sock_established = $06 ' Status O Tcp Gnnection Established
Const Sock_close_wait = $07 ' Status O Cosing Tcp Connection
Const Sock_l ast_ack = $08 ' Status O Closing Tcp Connection

Const Sock_fin_waitl = $09 ' Status O Cosing Tcp Connection

Const Sock_fin_wait2 = $0a ' Status O Closing Tcp Connection

Const Sock_closing = $0b ' Status O Closing Tcp Connection

Const Sock_time_wait = $0c ' Status O Cosing Tcp Connection

Const Sock_reset = $0d ' Status O Closing Tcp Connection

Const Sock_init = $0e ' Status O Socket Initialization

Const Sock_udp $0f ' Status O Udp

Const Sock_raw = $10 ' Status of |P RAW

$lib "tcpip.lib" ' specify the tcpip library

Print "Init , set IP to 192.168.0.8" ' display a nessage

Enable Interrupts ' before we use config tcpip , we need to enable the
interrupts

Config Tcpip = IntO, Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 0.0.0.0 , Localport = 1000 , Tx = $55
, Rx = $55

"Use the line below if you have a gate way

"Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 19.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
$55 , Rx = $55

Dm Idx As Byte ' socket number

Dim Result As Word ' result

Dim S(80) As Byte

Dim Sstr As String * 20

Dm Tenp As Byte , Tenp2 As Byte ' tenp bytes

"When you use UDP, you need to dinension the following variables in
exactly the sanme order !
Dim Peersize As Integer , Peeraddress As Long , Peerport As Word

Decl are Function Ipnumip As Long) As String ' a handy function

"like with TCP, we need to get a socket first
"note that for UDP we specify sock_dgram

ldx = Getsocket(idx , Sock_dgram , 5000, 0) ' get socket

specify port 5000
Print "Socket " ; ldx ; " " ; ldx

"UDP is a connection |ess protocol which neans that
connect or can get the status
"You can just use send and receive the sanme way as

for UDP node,
you can not listen,
for TCP/IP.

"But since there is no connection protocol, you need to specify the

destination |P address and port
'So conpare to TCP/IP you send exactly the sane, but
the IP and PORT

Do

Tenmp = Inkey() ' wait for termnal input
If Temp = 27 Then ' ESC pressed

Sstr = "Hell o"

Result = Udpwritestr(192.168.0.3 , 5000, Idx , Sstr
End If

Result = Socketstat(idx , Sel _recv)
If Result > 0 Then

Print "Bytes waiting : " ; Result

get nunber of

with the addition of

. 255)

bytes waiting

Tenp2 = Result - 8 "the first 8 bytes are always the UDP header which

consist of the length, |P nunber and port address
Tenp = Udpread(idx , S(1) , Result) ' read the resul
For Tenmp = 1 To Tenp2

Print S(temp) ; " "; ' print result

Next

Print

Print Peersize ; " " ,; Peeraddress ; " " ; Peerport

when you use UDPREAD
Print |pnum peeraddress)

print IP in usual format

t

Result = Udpwrite(192 , 168 , 0, 3 , Peerport , ldx , S(1)
wite the received data back

End If

Loop

"the sanple above waits for data and send the data
tenmp2 is subtracted with 8, the header size

"this function can be used to display an |P nunber
Function Ipnumip As Long) As String

Local T As Byte , J As Byte

I pnum = ""

For J =1 To 4

T = 1Ip And 255

I pnum = I pnum + Str(t)

If J <4 Then |Ipnum = | pnum +
Shift Ip , Right , 8

Next

End Function

End

back for

in nornal

these are assigned

Tenp2)

that reason

f or mat

| UPPERLINE

Action
Reset LCD cursor to the upperline.

Syntax
UPPERLINE

Remarks
NONE

See also
LOWERLINE, THIRDLINE , EQURTHLINE

Example

Dm A As Byte
A = 255

Cs

Led A
Thirdline

Lecd A
Upperline

End

VAL

Action

Converts a string representation of a number into a number.

Syntax

var= Val(s)

Remarks

VARPTR

Action

Retrieves the memory-address of a variable.

Syntax

var =VARPTR(var2)

Remarks

Var The variable that receives the address of var2.

Var A numeric variable that is assigned with the value of s.

Var2 A variable to retrieve the address from.

S Variable of the string type.

See also
STR, HEXVAL , HEX, BIN

Example

Dim a as byte, s As String * 10
s = "123"

a = Val (s) 'convert string

Print A" 123
End

See also
NONE

Example

Dm W As Byte
Print Hex(varptr(w)) ' 0060

VER | WAIT

] Action
Action Suspends program execution for a given time.
Returns the AVR -DOS version
Syntax Syntax
result =Ver() WAIT seconds
Remarks Remarks
Result A numeric variable that is assigned with the AVR-DOS version. The | seconds | The number of seconds to wait.

version number is a byte and the first release is version 1.

No accurate timing is possible with this command.
Whenyou have a problem, MCS can ask you for the AVR -DOS version number. The VER() When you use interrupts, the delay may be extended
function can be used to return the version number then. ' '

See also See also
INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE , DELAY , WAITMS

FILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , GET, PUT

, EILEDATE , FILETIME , FILEDATETIME , DIR , WRITE , INPUT Examp|e
WAIT 3 'wait for three seconds
ASM Print "*"
Calls ~AVRDOSVer
Input
Output R16 loaded with value
Example

DimS As string * 10 , WAs Wrd ,L As Long
S="wite"

Open"wite. dm" For Qutput As #2

Wite #2 , S, W, L' wite is also supported
O ose #2

Print Ver()

| WAITKEY

Action

Wait until a character is received in the serial buffer.

Syntax
var = WAITKEY()
var = WAITKEY (#channel)

WAITMS

Action

Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks

Ms | The number of milliseconds to wait. (1-65535)

Remarks

var Variable that receives the ASCII value of the serial buffer.
Can be a numeric variable or a string variable.

#channel The channel used for the software UART.

See also

INKEY , ISCHARWAITING

Example

Dim A As Byte

A = Waitkey() ‘'wait for character
Print A

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.
When you write to an EEPROM you must wait for 10 mS after the write instruction.

See also
DELAY , WAIT , WAITUS

ASM

WaiMS will call the routine _WAITMS. R24 and R25 are loaded with the number of milliseconds to
wait.

Uses and saves R30 and R31.
Depending on the used XTAL the asm code can look like :

_Wai tMs:

_\Mi t MBLF:

Push R30 ; save Z

Push R31

_\Wait B 1:

Ldi R30,$E8 ;delay for 1 nS

Ldi R31, $03

_WaitMs_2:

Shiw R30,1 ; -1

Brne _‘WAitM5 2 ; until 1 nB is ticked away
Shiw R24,1

Brne _WitM5 1 ; for nunber of nB
Pop R31

Pop R30

Ret

Example
WAI TMS 10
Print "*"

"wai t

for

10 nB

WAITUS

Action

Suspends program execution for a given time in uS.

Syntax
WAITUS uS

Remarks

us The number of microseconds to wait. (1-65535)
This must be a constant. Not a variable!

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.

The minimum delay possible is determined by the used frequency.
The number of cycles that are needed to set and save registers is 17.

When the loop is set to 1, the minimum delay is 21 uS. In this case you can better use a NOP that
generates 1 clock cycle celay.

At 4 MHz the minimum delay is 5 uS. So a waitus 3 will also generate 5 uS delay.
Above these values the delay will become accurate.

When you really need an accurate delay you can use a timer for this purpose.

Set the timer to a value and poll until the overflow flag is set. The disadvantage is that you can not
use the timer for other tasks during this hardware delay.

The philosophy behind BASCOM is that it should not use hardware resources unless there is no
other way to accomplish a task.

See also
DELAY , WAIT, WAITMS

Example
WAITUS 10 'wait for 10 uS
Print "*"

WHILE-WEND

Action

Executes a series of statements in a loop, as long as a given condition is true.

Syntax
WHILE condition
statements
WEND

Remarks

If the condition is true then any intervening statements are executed until the WEND statement is
encountered.

BASCOM then returns to the WHILE statement and checks the condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND statement.

So in contrast with the DO-LOOP structure, a WHILE-WEND condition is tested first so that if the
condition fails, the statements in the WHILE-WE ND structure are never executed.

See also
DO LOOP

Example

Dim A As Byte

While A<= 10 'if a is snaller or equal to 10
Print A'print variable a

Incr A

Wend

WRITE
Action
Writes data to a sequential file
Syntax
Write #ch , data [,datal]
Remarks
Ch A channel number, which identifies an opened file. This can be a hard
coded constant or a variable.
Data , datal A variable who's content are written to the file.

When you write a variables value, you do not write thebinary representatrion but the ASCII
representation. When you look in a file it contains readable text.

When you use PUT, to write binary info, the files are not readable or contain unreadable characters.

Strings written are surrounded by string delimeters "". Multiple variables written are separated by a
comma. Consider this example :

Dim S as String * 10 , W as Word
S="hello" : W = 100

OPEN "test.txt" For OUTPUT as #1
WRITE #1, S , W

CLOSE #1

The file content will look like this : "hello",100

Use INPU T to read the values from value.

See also
INITEILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , EREEFILE ,

EILEATTR , SEEK , BSAVE ,BLOAD , KILL, DISKFREE , GET, PUT

ASM

Calls _FileWriteQuotationMark _FileWriteDecInt
_FilewriteDecByte _FilewriteDecWord
_FileWriteDecLong _FileWriteDecSingle

Input Z points to variable

Output

Example

DimS As string * 10 , WAs Wrd ,L As Long

S="wite"

Open"wite. dm" For Qutput As #2

Wite # , S, W, L' wite is also supported
dose #2

Open"wite.dno" For |nput As #2

Input #2 , S, W, L' wite is also supported
d ose #2

Print S; " " ; W; " " ;L

WRITEEEPROM

Action
Write a variables content to the DATA EEPROM.

Syntax
WRITEEEPROM var , address

Remarks

var The name of the variable that must be stored

address The address in the EEPROM where the variable must be stored.
A new option is that you can provide a label name for the address. See
example 2.

This statement is provided for compatibility with BASCOM-8051.

You can also use :

Dim V as Eram Byte 'store in EEPROM

Dim B As Byte 'normal variable

B =10

V = B 'store variable in EEPROM

When you use the assignment version, the data types must be the same!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0, can be
overwritten during a reset.

For security, register R23 is set to a magic value before the data is written to the EEPROM.

All interrupts are disabled while the EEPROM data is written. Interrupts are enabled automatic
when the data is written.

See also
READEEPROM

ASM
NONE

Example

Dim B As Byte

WiteEEPROM B ,0 ‘'store at first position
ReadEEPROM B, 0 'read byte back

Example 2
' EEPROM2. BAS
' This exanple shows how to use |abels w th READEEPROM

"first dinmension a variable
Dm B As Byte
Dim Yes As String * 1

"Usage for readeeprom and writeeprom :
'readeeprom var, address

"A new option is to use a label for the address of the data

"Since this data is in an external file and not in the code the eeprom

dat a

"should be specified first. This in contrast with the normal DATA lines

whi ch nust
'"be placed at the end of your program!

"first tell the conpiler that we are using EEPROM to store the DATA
$eeprom

"specify a |abel

| abel 1:

Data 1, 2, 3, 4, 5

Label 2:

Data 10 , 20 , 30 , 40 , 50

"Switch back to normal data lines in case they are used
$dat a

"All the code above does not generate real object code
"It only creates a file with the EEP extension

"Use the new |abel option

Readeeprom B , Label 1l

Print B 'prints 1

'Succesive reads will read the next value

"But the first time the label nust be specified so the start is known
Readeeprom B

Print B 'prints 2

Readeeprom B , Label 2
Print B '"prints 10
Readeeprom B

Print B '"prints 20

"And it works for witing too
"but since the programming can interfere we add a stop here

I nput "Ready?" , Yes
B = 100

Witeeeprom B, Labell
B = 101

Witeeeprom B

‘read it back

Readeeprom B , Label 1

Print B 'prints 1

'Succesive reads will read the next value

"But the first time the label nust be specified so the start is known
Readeeprom B

Print B 'prints 2

End

X10DETECT

Action

Returns a byte that indicates if a X10 Power line interface is found.

Syntax
Result= X10DETECT()

Remarks

Result A variable that will be assigned with O if there is no Power Line
Interface found.

frequency is 50 Hz.

frequencyis 60 Hz.

When no TW-523 or other suitable interface is found, the other X10 routines will not

work.

See also
CONFIG X10, X10SEND

Example

' X10. BAS
' (c) 2002-2004 MCS Electronics
' This exanple needs a TW523 X10 interface

$crystal = 8000000
$baud = 19200

"define the house code
Const House = "M ' use code AP

Waitms 500 ' optional delay not really needed

"dim the used variables
Dim X As Byte

‘configure the zero cross pin and TX pin
Config X10 = Pind.4 , Tx = Portbh.0

' /-zero cross

' A-- transmission pin

‘detect the TW 523
X = XlOdetect ()
Print X' O neans error, 1 neans 50 Hz, 2 neans 60 Hz

1 will be returned if the interface is found, and the detected mains

2 will be returned if the interface is found and tre detected mains

Do

Input "Send (1-32) ", X
"enter a key code from %31
'1-16 to address a unit

X10s
Loop
End

all units off
all lights on
ON

OFF

DI M

BRI GHT

Al lights off
ext ended code
hail request

hai| acknow edge
preset dim
preset dim
extended data anal og
status on

status of f

status request

end House , X ' send the code

X10SEND

Action

Sends a house and key code with the X10 protocol.

Syntax

X10SEND house , code

Remarks
House The house code in the form of a letter A-P.
You can use a constant, or you can use a variable
Code The code or function to send. This is a number between 1-32.

The X10SEND command needs a TW-523interface.
Only ground, TX and Zero Cross, needs to be connected for transmission.
Use CONFIG X10 to specify the pins.

X10is a popular protocol used to control equipment via the mains. A 110 Khz signal is
added to the normal 50/60 Hz , 220/110 V power.

Notice thatexperimentingwith 110V-240V can be very dangerous when you do not
know exactly what you are doing !!!

In the US, X10 is very popular and wide spread. In Europe it is hard to get a TW-523
for220/230/240V.

I modified an 110V version so it worked for 220V. On the Internet you can find
modificationinformation. Butas noticed before, MODIFY ONLY WHEN YOU
UNDERSTANDWHATYOUAREDOING.

A bad modified device could resultin a fire, and your insurance will most likely not
pay. A modified device will not pass any CE, or other test.

When the TW-523 is connected to the mains and you use the X10SEND command, you
will notice that the LED on the TW-523willblink.

The following table lists all X10 codes.

Code value Description

1- 16 Used to address a unit. X10 can use a maximum of 16 units per
house code.

17 All units off
18 Alllights on
19 ON
20 OFF

21 DIM

22 BRIGHT

23 All lights off

24 Extendedode

25 Hailrequest

26 Hailacknowledge
27 Preset dim

28 Presetdim

29 Extended dataanalog
30 Status on

31 Status off

32 Status request

Atwww.x10.com you can find all X10 information. The intension of BASCOM is not to
learn you everything about X10, but to show you how you can use it with BASCOM.

See also
CONFIG X10, X10DETECT , X10SEND

Example

' X10. BAS

' (c) 2002-2004 MCS El ectronics

' This exanple needs a TW523 X10 interface
$crystal = 8000000

$baud = 19200

"define the house code
Const House = "M ' use code AP

Waitms 500 ' optional delay not really needed

"dim the used variables
Dim X As Byte

‘configure the zero cross pin and TX pin
Config X10 = Pind.4 , Tx = Porth.0

- zero cross
' A-- transmission pin

‘detect the TWwW 523
X = XlOdetect ()
Print X' O nmeans error, 1 nmeans 50 Hz, 2 neans 60 Hz

Do

Input "Send (1-32) ", X
"enter a key code from %31
'1-16 to address a unit

"17 all wunits off
'18 all lights on
'19 ON

'20 OFF

‘21 DM

'22 BRI GHT

'23 Al lights off
'24 extended code
‘25 hail request

'26 hail acknow edge
‘27 preset dim

'28 preset dim

'29 extended data anal og
'30 status on

'31 status off

'32 status request

X10send House , X ' send the code
Loop
End

#IF ELSE ENDIF

Action

Conditional compilation directives intended for conditional compilation.

Syntax
#IF condition

#ELSE
#ENDIF

Remarks
Conditional compilation is supported by the compiler.

What is conditional compilation?

Conditional compilation will only compile parts of your code that meet the criteria of the condition.

By default all your code is compiled.
Conditional compilation needs a constant to test.
So before a condition can be set up you need to define a constant.

CONST test =1

#IF TEST

Print "This will be compiled"
#ELSE

Print "And this not"
#ENDIF

Note that there is no THEN and that #ENDIF is not #END IF (no space)
You can nest the conditions and the use of #ELSE is optional.
There are a few internal constants that you can use. These are generated by the compiler:

_CHIP =0
_RAMSIZE = 128
_ERAMSIZE = 128
_SIM=0

_XTAL = 4000000
_BUILD = 11162

_CHIP is an integer that specifies the chip, in this case the 2313
_RAMSIZE is the size of the SRAM

_ERAMSIZE is the size of the EEPROM

_SIM is set to 1 when the $SIM directive is used

_XTAL contains the value of the specified crystal

_BUILD is the build number of the compiler.

The build number can be used to write support for statements that are not available in a certain
version :

#IF _BUILD >= 11162

s = Log(1.1)

#ELSE

Print "Sorry, implemented in 1.11.6.2"

#ENDIF

International Resellers

LCD4.LIB

See http://www.mcselec.com/reseller.htm

The built in LCD driver for the PIN mode is written to support a worst case scenario where you use
random pins of the microprocessor to drive the LCD pins.

This makes it easy to design your PCB but it needs more code.

When you want to have less code you need fixed pins for the LCD display.

With the statement $LIB "LCD4.LBX" you specify that the LCD4.LIB will be used.

The following connections are used in the asm code:

Rs = PortB.0

RW = PortB.1 we dont use the R/W option of the LCD in this version so connect to ground
E = PortB.2

E2 = PortB.3 optional for lcd with 2 chips

Db4 = PortB.4 the data bits must be in a nibble to save code

Db5 = PortB.5
Db6 = PortB.6
Db7 = PortB.7

You can change the lines from the Icd4.lib file to use another port.
Just change the address used :

.EQU LCDDDR=$17 ; change to another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demolcdcustom4bit.bas in the SAMPLES dir.
Note that yau still must select the display that you use with the CONFIG LCD statement.
See also the |cd42.lib for driving displays with 2 E lines.

Note that LBX is a compiled LIB file. In order to change the routines you need the commercial
edition with the source code(lib files). After a change you should compile the library with the library
manager.

GLCD GLCDSED

GLCD.LIB (LBX) is a library for Graphic LCD’s based on the T6963C chip. GLCDSED.LIB (LBX) is a library for Graphic LCD’s based on the SEDXXXX chip.

The library contains code for LOCATE, CLS, PSET, LINE, CIRCLE, SHOWPIC and SHOWPICE. The library contains modified code for this type of display.

New special statements for this display are:

LCDAT
SETFONT
GLCDCMD
GLCDDATA

See the SED.BAS sample from the sample directory

LCD4E2

The built in LCD driver for the PIN mode is written to support a worst case scenario where you use

random pins of the microprocessor to drive the LCD pins.
This makes it easy to design your PCB but it needs more code.

When you want to have less code you need fixed pins for the LCD display.

With the statement $LIB "LCD4E2.LBX" you specify that the LCD4.LIB will be used.

The following connections are used in the asm code:

Rs = PortB.0

RW = PortB.1 we don’t use the R/W option of the LCD in this version so connect to ground
E = PortB.2

E2 = PortB.3 the second E pin of the LCD

Db4 = PortB.4 the data bits must be in a nibble to save code

Db5 = PortB.5
Db6 = PortB.6
Db7 = PortB.7

You can change the lines from the Icd4e2.lib file to use another port.
Just change the address used :

.EQU LCDDDR=$%$17 ; changeto another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demolcdcustom4bit2e.bas in the SAMPLES dir.
Note that you still must select the display that you use with the CONFIG LCD statement.

See also the [cd4.lib for driving a display with 1 E line.

A display with 2 E lines actually is a display with 2 control chips. They must both be controlled. This

library allows you to select the active E line from your code.
In your basic code you must first select the E line before you use a LCD statement.

The initialization of the display will handle both chips.

Note that LBX is a compiled LIB file. In order to change the routines you need the commercial
edition with the source code(lib files). After a change you should compile the library with the library

manager.

MCSBYTE

The numeric<>string conversion routines are optimized when used for byte, integer,word and longs.
When do you use a conversion routine ?

‘When you use STR() , VAL() or HEX().

When you print a numeric variable

When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyte.lib library is an optimized version that only support bytes.
Use it by including : $LIB "mcsbyte.lbx" in your code.

Note that LBX is a compiled LIB file. In order to change the routines you need the commercial
edition with the source code(lib files). After a change you should compile the library with the library

manager.

See also the library mcsbyteint.lib

MCSBYTEINT

The numeric<>string conversion routines are optimized when used for byte, integer,word and longs.

When do you use a conversion routine ?
When you use STR() , VAL() or HEX().
“When you print a numeric variable

When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyteint.lib library is an optimized version that only support bytes, integers and words.
Use it by including : $LIB "mcsbyteint.lbx" in your code.

Note that LBX is a compiled LIB file. In order to change the routines you need the commercial
edition with the source code(lib files). After a change you should compile the library with the library
manager.

See also the library mcsbyte.lib

FP_TRIG

The FP_TRIG library is written by Josef Franz Vogel.
MCS would like to thank him for his great contribution!

All trig functions are stored in fp_trig.lib library.
The fp_trig.Ibx contains the compiled object code.

This sample demonstrates all the functions from the library:

' TEST_FPTRI G2. BAS
Denonstates FP trig library from Josef Franz Vogel
' The entire FP_TRIG LIB is witten by Josef Franz Vogel

$regfile = "8515def. dat”
$lib "FP_Trig.|bx"

Dm S1L As Single , S2 As Single, S3 As Single , $4 As Single, S5 As
Singl e

Dim Vcos As Single , Vsin As Single , Vtan As Single , Vatan As Single
DmW As Single , BL As Byte

Dim Ms1 As Single

Const Pi = 3.14159265358979

‘calculate PI
M1 = Atn(1l) * 4

Testi ng_Power:

Print "Testing Power X ~ Y"

Print "X Y x~Y"

For S1 = 0.25 To 14 Step 0.25

S2 =S1\ 2

S3 = Power (sl , S2)

Print S1 ; * ~ ", & ; " =", S3
Next

Print : Print : Print

Testing_EXP_| og:

Print "Testing EXP and LOG'

Print "x exp(x) log([exp(x)]) Error-abs Error-rel"

Print "Error is for calculating exp and back with |og together”
For S1 = -88 To 88

S2 Exp(sl)

S3 Log(s2)

$4 =3 - 81

S5 =4\ Sl

Print s ; " "; s ; " ", & ;" ", & ;" "; S ;" ",
Print

Next

Print : Print : Print

Testing_Trig:

Print "Testing COS, SIN and TAN'

Print "Angle Degree Angle Radiant Cos Sin Tan"
For W = -48 To 48

S1 = W * 15

S2 = Deg2rad(sl)

Vcos = Cos (s2)

Vsin = Sin(s2)

Vtan = Tan(s2)

Print st ; " ", s ; " "; Vcos ; " ", Vsin; " ", Vtan
Next

Print : Print : Print

Testi ng_ATAN:

Print "Testing Arctan”

Print "X atan in Radiant, Degree"
S1 =1/ 1024

Do

S2 = Atn(sl)

S3 = Rad2deg(s2)

Print st ; " ", s ; " "; S3
S1 = S1 * 2

If S1 > 1000000 Then

Exit Do

End If

Loop

Print : Print : Print

Testing_Int_Fract:

Print "Testing Int und Fract of Single"
Print "Value Int Frac"

s2 = pi \ 10

For S1 = 1 To 8

S3 = Int(s2)

A = Frac(s2)

Print S2 ; B¢ I
S2 = S2 * 10
Next

Print : Print : Print

print "Testing degree - radiant - degree converting"
print "Degree Radiant Degree Diff-abs rel”

For S1 = 0 To 90

S2 = Deg2rad(sl)

S3 = Rad2deg(s2)

4 = S3 - Sl

S5 =4\ s1

Print 81 ; " "; & ;" "; &8 ;" "; & ;" "; $
Next

Testing_Hyperbolicus:

Print : Print : Print

Print "Testing SINH, COSH and TANH"
Print "X sinh(x) cosh(x) tanh(x)"

For S1 = -20 To 20
S3 = Sinh(sl)

S2 = Cosh(sl)

$4 = Tanh(sl)

Print S1L ; " ", S3;
Next

Print : Print : Print

TEsting_LOG10:
Print "Testing LOGLO"
Print "X logl0(x)"

S1 = 0.01

S2 = Logl0(s1)
Print S1 ; " ", S
S1 = 0.1

S2 = Logl0(s1)
Print S1 ; " ", S

For S1 = 1 To 100
S2 = Logl0(s1)
Print s1; " ", S2
next

Print : Print : Print
Print "End of testing"

End

Backl

LCD4BUSY SPISLAVE

The LCD4BUSY.LIB can beused when timing is critical. SPISLAVE.LIB (LBX) is a library that can be used to create a SPI slave chip when the chip does
The default LCD library uses delays to wait until the LCD is ready. The lcd4busy.lib is using an not have a hardware SPI interface.

additional pin (WR) to read the status flag of the LCD.

The db4-db7 pins of the LCD must be connected to the higher nibble of the port. Although most AVR chips have an ISP interface to program the chip, the 2313 for example does

) . not have a SPI interface.
The other pins can be defined.

When you want to control various micro’s with the SPI protocol you can use the SPISLAVE library.

' (c) 2004 MCS Electronics

‘| cddbusy. bas shows how to use LCD with busy check The spi-softslave.bas sample from the samples directory shows how you can use the SPISLAVE
D e e o eeeceeaal library.
‘code tested on a 8515 Also look at the spi-slave.bas sample that is intended to be used with hardware SPI.

$regfile = "8515def. dat"

The sendspi.bas sample from the samples directory shows how you can use the SPI hardware

stk200 has 4 Mz interface for the master controller chip.

$crystal = 4000000

‘define the custom library T TS S SSSSSSSCCssossssososoooe-
'uses 184 hex bytes total e

' SPI- SOFTSLAVE. BAS
$lib "lcddbusy.lib" ' (c) 2004 MCS HEectronics
sanple that shows how to inplement a SPI SLAVE with software
‘define the used constants e oo oo o ssssssososo-ss---------
"I used portA for testing s

Const _lcdport = Porta "Sonme atnel chips like the 2313 do not have a SPI port.
Const :| cdddr = Ddra ' The BASCOM SPI routines are all master node routines
Const _lcdin = Pina "This exanple show how to create a slave using the 2313
Const _lcd_e =1 '"ISP slave code
Const _lcd_rw= 2
Const _lcd_rs = 3 'we use the 2313
$regfile = "2313def. dat"
"this is like always, define the kind of LCD ' XTAL used
Config Lcd = 16 * 2 $crystal = 4000000
"and here sone sinple lcd code "baud rate
ds $baud = 19200
Lcd "test"
Lowerline ‘define the constants used by the SPI slave
Lecd "this"” Const _softslavespi _port = Portd ' we used portD

End Const _softslavespi _pin = Pind "we use the PIND register for reading
Const _softslavespi_ddr = Ddrd ' data direction of port D

Const _softslavespi_clock = 5 'pD.5 is used for the CLOCK

Const _softslavespi_mso =3 'pD.3 is MSO

Const _softslavespi_nosi =4 'pd. 4 is MOSI

Const _softslavespi_ss = 2 ' pd.2 is SS

"while you may choose all pins you nust use the INTO pin for the SS
"for the 2313 this is pin 2

"PD.3(7), M SO nust be output
' PD. 4(8), MOSI

"Pd.5(9) , Cdock

"PD.2(6), SS /INTO

"define the spi slave lib
$lib "spislave. | bx"

"sepcify wich routine to use
$external _spisoftslave

"we use the intO interrupt to detect that our slave is addressed
On IntO Isr_sspi Nosave

'we enable the intO interrupt

Enable I nt0

"we configure the INTO interrupt to trigger when a falling edge is
detect ed

Config Int0 = Falling

"finally we enabled interrupts

Enabl e Interrupts

Dim _ssspdr As Byte ' this is out SPI SLAVE SPDR register
Dm _ssspif As Bit ' SPl interrupt revceive bit
Dim Bsend As Byte , | As Byte , B As Byte ' sone other denmo variables

_ssspdr = 0 ' we send a 0 the first tine the naster sends data
Do
If _ssspif =1 Then

Print "received: " ; _ssspdr

Reset _ssspif

_ssspdr = _ssspdr + 1 ' we send this the next tine
End If

Loop

EUROTIMEDATE

The CONFIG CLOCK statement for using the asynchrony timer of the 8535, M163, M103 or M128
allows you to use a software based clock. See TIME$ and DATES.

By default the date format is in MM/DD/YY.

By specifying:
$LIB"EURODATETIME.LBX"

The DATES$ will work in European format : DD-MM-Y'Y

Note that the eurotimedate library should not be used anymore. It is replaced by the
DATETIMEIlibrary which offers more features.

DATETIME

The DatTime library was written by Josef Franz Végel. It extends the clock routines with date and

time calculation.

The following functions are available:
DayOfWeek

DayOfYear

SecOfDay

SecElapsed

SysDay

SysSec

SysSecElapsed

Time

Date

Date and time not to be confused withDate$ and Time$!

TCPIP

The TCPIP library allows you to use the W3100A internet chip from www.i2chip.com

MCS has developed a special development board that can get you started quickly with TCP/IP
communication. Look at http://www.mcselec.com/easy tcp ip.htm for more info.

The tcpip.lib is bundled with the MCS Easy TCP/IP PCB and/or the 1IM7000 module.

By default the library is not available.

The following functions are provided:
CONFIG TCPIP
GETSOCKET
SOCKETCONNECT
SOCKETSTAT
TCPWRITE
ICPWRITESTR
TCPREAD
CLOSESOCKET
SOCKETLISTEN
GETDSTIP
GETDSTPORT
BASE64DEC

UDPWRITE

UDPWRITESTR
UDPREAD

PS2MOUSE_EMULATOR AT_EMULATOR

The PS2 Mouse emulator library is an optional library you can purchase. The PS2 AT Keyboard emulator library is an optional library you can purchase.
The library allows you to emulate an AT PS/2 mouse. The library allows you to emulate an AT PS/2 keyboard.

The following statements become available: The following statements become available:

CONFIG PS2EMU CONFIG ATEMU

PS2MOUSEXY SENDSCANKBD

SENDSCAN

After your main program you need to insert two labels with a return:

I2CSLAVE

When the master needs to read a byte, the following label is always called

The 12C-Slave library is intended to create 12C slave chips. This is an add-on library that is not You must put the data you want to send to the master in variable _al which is register R16

included by default. I2c_master_needs_data:

‘when your code is short, you need to put in a waitms statement

All BASCOM 12C routines are master 12C routines. The AVR is a fast chip and allows to implement 'Take in mind that during this routine, a wait state is active and the master will wait
the 12C slave protocol. 'After the return, the waitstate is ended
You can control the chips with the BASCOM 12C statements like I2CINIT, I2CSEND, 12CRECEIVE, Config Portb = Input ' make it an input
I2CWBYTE, etc. Please consult the BASCOM Help file for using 12C in master mode. _Ralt: Pinb ' Get input from portB and assign it
eturn

Before you begin

Copy the i2cslave.lib and i2cslave.lbx files into the BASCOM-AVR\LIB directory.

The i2cslave.lib file contains the ASM source. The i2cslave.lbx file contains the compiled ASM
source.

Slave address
Every 12C device must have an address so it can be addressed by the master 12C routines.

When you write to an I2C-slave chip the least significant bit (bit0) is used to specify if we want to
read from the chip or that we want to write to the chip.

When you specify the slave address, do not use bit 0 in the address!

For example a PCF8574 has address &H40. To write to the chip use &H40, to read from the chip,
use &H41. When emulating a PCF8574 we would specify address &H40.

Use the CONFIG statement to specify the slave address:

Config I2cslave = &B01000000 ' same as &H40
Optional use : CONFIG I2CSLAVE = address, INT=int, TIMER = tmr
Where INT is INTO, INT1 etc. and TIMER is TIMERO, TIMER1 etc.

When using other interrupts or timers, you need to change the library source. The library was
written for TIMERO and INTO.

The 12C slave routines use the TIMERO and INTO. You can not use these interrupts yourself. It also
means that the SCL and SDApins are fixed.

Note that new AVR chips have a TWI or hardware 12C implementation. It is better to use hardware
12C, then the software 12C. The slave library is intended for AVR chips that do not have hardware
12C.

CONFIG 12CSLAVE will enable the global interrupts.

After you have configured the slave address, you can insert your code.
A do-loop would be best:

Do
‘ your code here

Loop

This is a simple never-ending loop. You can use a GOTO with a label or a While Wend loop too but
ensure that the program will never end.

BCCARD

BCCARD.LIB is a library that is available separately from MCS Electronics.
With the BCCARD library you can interface with the BasicCards from www.basiccard.com

BasicCards are also available from MCS Electronics
A BasicCard is a smart card that can be programmed in BASIC.

The chip on the card looks like this :

Typical Module

Ci veo]
|
c2 Reset ' o]
3 CLK c
G No ct
4 \:nm C8
.
Card Contacts
C1-Vee (+5VDG) C5 - ground
C2 - reset C6 - reserved
C3-clock CT7 - inputioutput
C4 - reserved C8 - reserved

To interface it you need a smart card connector.
In the sample provided the connections are made as following:

Smart Card PIN Connect to

C1l +5 Volt

Cc2 PORTD.4 , RESET

C3 PIN 4 0f 2313, CLOCK
C5 GND

C7 PORTD.5, I/0

The microprocessor must be clocked with a 3579545 crystal since that is the frequency the Smart
Card is working on. The output clock of the microprocessor is connected to the clock pin of the
Smart card.

Some global variables are needed by the library. They are dimensioned automatic by the compiler
when you use the CONFIG BCCARD statement.

These variables are:
_Bc_pcb : a byte needed by the communication protocol.
Swl and SW2, both bytes that correspondent to the BasicCard variables SW1 and SW2

The following statements are especially for the BasicCard:
CONFIG BCCARD, to init the library

BCRESET, to reset the card

BCDEF , to define your function in the card

BCCALL, to call the function in the card

Encryption is not supported by the library.

CONFIG BCCARD

Action
Initializes the pins that are connected to the BasicCard.
This statements uses BCCARD.LIB, a library that is available separately from MCS Electronics.

Syntax
CONFIG BCCARD = port , 10=pin, RESET=pin

Remarks

Port The PORT of the micro that is connected to the BasicCard. This can be B
or D for most micro’s. (PORTB and PORTD)

10 The pin number that is connected to the 10 of the BasicCard. Must be in
the range from 0-7

RESET The pin number that is connected to the RESET of the BasicCard. Must
be in the range from 07

The variables SW1, SW2 and _BC_PCB are automatically dimensioned by the CONFIG BCCARD
statement.

See Also
BCRESET, BCDEF., BCCALL

Example

R configure the pins we use ------------
Config Bccard = D, lo = 5, Reset = 4

'~ PORTD. 4

BCRESET

Action
Resets the BasicCard by performing an ATR.
This statements uses BCCARD.LIB, a library that is available separately from MCS Electronics.

Syntax
BCRESET
Array(1) = BCRESET()

Remarks

Array(1) When BCRESET is used as a function it returns the result of the ATR to
the array named array(1). The array must be big enough to hold the
result. Dim it as a byte array of 25.

An example of the returned output when used as a function:
TS =3B

'TO = EF

‘TB1 = 00

'TC1 = FF

'TD1 = 81 T=1 indication

'TD2 = 31 TA3,TB3 follow T=1 indicator

'TA3 = 50 or 20 IFSC ,50 =Compact Card, 20 = Enhanced Card
'TB3 = 45 BWT block waiting time

'T1-Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00
'BasicCardzC123

See the BasicCard manual for moreinformation

When you do not need the result you can also use the BCRESET statement.

See Also
CONFIG BCCARD, BCDEF , BCCALL

Example (no init code shown)

----and now perform an ATR as a function

Dim Buf (25) As Byte , | As Byte
Buf (1) = Bcreset()

For I =1 To 25

Print I ; " " Hex(buf (i))
Next

"typical returns

'"TS = 3B

'TO = EF

' TB1 00

"TCL = FF

' TD1
' TD2
' TA3
'TB3 =
'T1 -Tk
' Bas

81
31
50
45

T=1 indication

TA3, TB3 follow T=1 indicat or

or 20 IFSC ,50 =Conpact Card, 20 = Enhanced Card
BWI blocl waiting tinme

42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00

c Car

dzcC123

BCDEF

Action

Defines a subroutine name and it's parameters in BASCOM so it can be called in the BasicCard.
This statements uses BCCARD.LIB, a library that is available separately from MCS Electronics.
Syntax

BCDEF name([paraml , paramn])

Remarks

name The name of the procedure. It may be different than the name of the
procedure in the BasicCard but it is advised to use the same names.

Paraml Optional you might want to pass parameters. For each parameter you
pass, you must specify the data type. Supported data types are byte,
Integer, Word, Long, Single and String

For example :

BCDEF Calc(string)

Would define a name ‘Calc’ with one string parameter.
When you use strings, it must be the last parameter passed.
BCDEF name(byte,string)

BCDEF does not generate any code. It only informs the compiler about the data types of the
passed parameters.

See Also
CONFIG BCCARD, BCCALL , BCRESET

Example (no init code shown)

"define the procedure in the BasicCard program
Bcdef Parantest (byte , Word , Long)

BCCALL

Action
Calls a subroutine or procedure in the BasicCard.
This statements uses BCCARD.LIB, a library that is available separately from MCS Electronics.

Syntax
BCCALL name(nad , cla, ins, p1, p2 [paraml , paramn])

Remarks

name The name of the procedure to all in the BasicCard. It must be defined first
with BCDEF. The name used with BCDEF and BCCALL do not need to
be the same as the procedure in the BasicCard but it is advised to use
the same names.

NAD Node address by te. The BasicCard responds to ao all node address
values. Use 0 for default.

CLA Class byte. First byte of two byte CLA-INS command. Must match the
value in the BasicCard procedure.

INS Instruction byte. Second byte of two byte CLA-INS command. Must match
the value in the BasicCard procedure.

P1 Parameter 1 of CLA-INS header.

P2 Parameter 2 of CLA-INS header

When in your BasicCard basic program you use:

'test of passing parameters

Command &hfé &h01 ParamTest(b as byte, w as integer,| as long)
b=b+1

w=w+1

I=1+1

end command

You need to use &HF6 for CLA and 1 for INS when you call the program:
Bccall Parantest(O0, &F6 , 1, 0, 0, B, W, L)

~ NAD

~CLA

NS

~P1

P2

When you use BCCALL, the NAD, CLA, INS, P1 and P2 are sent to the BasicCard. The parameter
values are also sent to the BasicCard. The BasicCard will execute the command defined with CLA
and INS and will return the result in SW1 and SW2.

The parameter values altered by the BasicCard are also sent by the BasicCard.

You can not sent constant values. Only variables may be sent. This because a constant can not be
changed.

See Also
CONFIG BCCARD, BCDEF , BCRESET

Example

' BCCARD. BAS

' This AN shows how to use the BasicCard from Zeitcontrol
www. basi ccard. com

' *** The library source is available from MCS for 19 USD ***

connections:
= 45V
' C2 = PORTD.4 - RESET

' C3 PIN 4- CLOCK

"5 o= aD

' C7 = PORTD.5- 1/0
e \
S

] a G|

@2 G|

B I C< R er

B B e

S
Nl /

----------- configure the pins we use ------------
Config Bccard = D, lo = 5, Reset = 4

'~ PORTD. 4

B L PORTD. 5

e PORT D

Load the sanple calc.bas into the basiccard

" Now define the procedure in BASCOM
' We pass a string and also receive a string
Bcdef Cal c(string)

'"We need to dim the follow ng variables
'"SW and SW2 are returned by the BasicCard
"BC_PCB nust be set to O before you start a session

"Qur program uses a string to pass the data so DIM it
DmS As String * 15

'Baudrate night be changed
$baud = 9600
' Crystal used nust be 3579545 since it is connected to the Card too

$crystal = 3579545

"Perform an ATR

Bcreset
"and anot her test
"define the procedure in the BasicCard program

"Now we call the procedure in the BasicCard Bcdef Parantest(byte , Word , Long)
"becall funcname(nad, cla,ins, pl, p2, PRM as TYPE, PRM as TYPE)
S = "1+1+3" ' we want to calculate the result of this expression
"dim sonme variables
Bccall Calc(O, &H20 , 1, 0, 0, 9) DmB As Byte , WAs Word, L As Long
' N-- variable to pass that holds the expression
B P2 ‘assign the variables
R P1 B=1: W= &H1234 : L = &H12345678
' L | NS
B CLA Bccall Paramest(O0, &F6 , 1, 0, 0, B, W, L)
B R NAD Print Hex(swl) ; Spc(3) ; Hex(sw2)
"For info about NAD, CLA, INS, Pl and P2 see your BasicCard nanual "and see that the variables are changed by the BasicCard !
"if an error occurs ERR is set Print B; Spc(3) ; Hex(w) ; " " ; Hex(l)
' The BCCALL returns also the variables SW and SW
Print "Result of calc : "; S
Print "SW = "; Hex(swl) "try the echotest conmmand
Print "SW2 = " ; Hex(sw2) Bcdef Echotest(byte)
"Print Hex(_bc_pcbh) ' for test you can see that it toggles between 0 and Bccal | Echotest(0O , &HCO , &H14 , 1 , 0 , B)
40 Print B
Print "Error : " Err End 'end program
"You can call this or another function again in this session “ The source code of the used program in the BasicCard :
S = "242" Rem BasicCard Sample Source Code
Bccall Calc(O, &H20 , 1, 0, 0, 9) Rem
g[: :I . gai“':t Of fs)l((CSM) P S Rem Copyright (C) 1997-2001 ZeitControl GmbH
Print "SW2 = "; Hex(sw2) Rem You have a royalty-free right to use, modify, reproduce and
' gr int Hex(_bc_pcb) ' for test you can see that it toggles between 0 and Rem distribute the Sample Application Files (and/or any modified
ér int "Error : " Err Rem version) in any way you find useful, provided that you agree

Rem that ZeitControl GmbH has no warranty, obligations or liability

"perform another ATR Rem for any Sample Application Files.

Bcreset Rem

I nput "expression " , S

Bccall Calc(O, &H20 , 1, 0, 0, S) #Include CALCKEYS.BAS
Print "Answer : " ; S

Declare ApplicationID = "BasicCard Mini-Calculator"

'----and now perform an ATR as a function

Dim Buf (25) As Byte , | As Byte Rem This BasicCard program contains recursive procedure calls, so the

EUf (ll) :1B_C|_f e;gt 0 Rem compiler will allocate all available RAM to the P-Code stack unless
or = [¢]

Print | ; " ": Hex(buf (i)) Rem otherwise advised. This slows execution, because all strings have to

Next Rem be allocated from EEPROM. So we specify a stack size here:

"typical returns

'TS = 3B #Stack 120

'TO = EF

'TB1 = 00

"TC1 = FF ' Calculator Command (CLA = &H20, INS = &H01)

"TD1 = 81 T=1 indication '

31 TA3,TB3 follow T=1 indicator)
50 or 20 IFSC ,50 =Conpact Card, 20 = Enhanced Card

'"TB3 = 45 BWI blocl waiting tine

'"T1 -Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00 TE %+ &N
'"BasicCardzcC123 ,

Input: an ASCII expression involving integers, and these operators:

' (Parentheses are also allowed.)

' Output: the value of the expression, in ASCII.
' P1 = 0: all numbers are decimal
' P1 <> 0: all numbers are hex

' Constants

Const SyntaxError = &H81

Const ParenthesisMismatch = &H82
Const InvalidNumber = &H83

Const BadOperator = &H84

' Forward references

Declare Function EvaluateExpression (S$, Precedence) As Long
Declare Function EvaluateTerm (S$) As Long

Declare Sub Error (Code@)

'test for passing a string
Command &H20 &HO1 Calculator (S$)

Private X As Long

S$ = Trim$ (S$)

X = EvaluateExpression (S$, 0)

If Len (Trim$ (S$)) <> 0 Then Call Error (SyntaxError)
If P1 = 0 Then S$ = Str$ (X) : Else S$ = Hex$ (X)

End Command

'test of passing parameters

Command &hf6 &h01 ParamTest(b as byte, w as integer,| as long)
b=b+1

w=w+1

I=1+1

end command

Function EvaluateExpression (S$, Precedence) As Long
EvaluateExpression = EvaluateTerm (S$)

Do

S$ = LTrim$ (S$)

If Len (S$) = 0 Then Exit Function

Select Case S$(1)

Case "*"

If Precedence > 5 Then Exit Function
S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression * _
EvaluateExpression (S$, 6)

Case "I"

If Precedence > 5 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression / _
EvaluateExpression (S$, 6)

Case "%"

If Precedence > 5 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression Mod _
EvaluateExpression (S$, 6)

Case "+"

If Precedence > 4 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression + _
EvaluateExpression (S$, 5)

Case "

If Precedence > 4 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression - _
EvaluateExpression (S$, 5)

Case "&"

If Precedence > 3 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression And _
EvaluateExpression (S$, 4)

Case "

If Precedence > 2 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression Xor _
EvaluateExpression (S$, 3)

Case "|"

If Precedence > 1 Then Exit Function

S$ = Mid$ (S$, 2)

EvaluateExpression = EvaluateExpression Or _
EvaluateExpression (S$, 2)

Case Else

Exit Function

End Select

Loop
End Function

Function EvaluateTerm (S$) As Long

Do ' Ignore unary plus

S$ = LTrim$ (S$)

If Len (S$) = 0 Then Call Error (SyntaxError)
If S$(1) <> "+" Then Exit Do

S$ = Mid$ (S$, 2)

Loop

If S$(1) = "(" Then ' Expression in parentheses

S$ = Mid$ (S$, 2)

EvaluateTerm = EvaluateExpression (S$, 0)

S$ = LTrim$ (S$)

If S$(1) <> ")" Then Call Error (ParenthesisMismatch)

S$ = Mid$ (S$, 2)
Exit Function

Elself S$(1) = *" Then ' Unary minus
S$ = Mid$ (S$, 2)

EvaluateTerm = -EvaluateTerm (S$)
Exit Function

Else ' Must be a number

If P1 =0 Then ' If decimal
EvaluateTerm = Val& (S$, L@)
Else

EvaluateTerm = ValH (S$, L@)
End If

If L@ = 0 Then Call Error (InvalidNumber)

S$ = Mid$ (S$, L@ + 1)
End If

End Function

Sub Error (Code@)

SW1 = &H64
SW2 = Code@
Exit

End Sub

Compact FlashCard Driver

The compact flash card driver library is written by Josef Franz V6gel. He can be contacted via the
BASCOM user list.

Note that Josef has put a lot of effort in writing and especially testing the routines.
Josef nor MCS Electronics can be held responsible for any damage or data loss of your CF-
cards.

Compact flash cards are very small cards that are compatible with IDE drives. They work at 3.3V or
5V and have a huge storage capacity.
The FlashCard Driver provides the functions to access a Compact Flash Card.

At the moment there are six functions:

DriveCheck, DriveReset , Drivelnit , DriveGetldentity , DriveWriteSector, DriveReadSector

The Driver can be used to access the Card directly and to read and write each sector of the card or
the driver can be used in combination with a file-system with basic drive access functions.

Because the file system is separated from the driver you can write your own driver.

This way you could use the file system with a serial eprom for example.

For a filesystem at least the functions for reading (DriveReadSector / _DriveReadSector) and
writing (DriveWriteSector / _DriveWriteSector) must be provided. The preceeding underslash _ is
the label of the according asm-routine. The other functions can, if possible implemented as a NOP
— Function, which only returns a No-Error (0) or a Not Supported (224) Code, depending, what
makes more sense.

For writing your own Driver to the AVR-DOS FileSystem, check the ASM-part of the functions-
description.

ErrorCodes:

Code Compiler — Alias Remark

0 CpErrDriveNoError No Error

224 cpErrDriveFunctionNotSupported This driver does not supports this function
225 cpErrDriveNotPresent No Drive is attached

226 cpErrDriveTimeOut During Reading or writing a time out occured
227 cpErrDriveWriteError Error during writing

228 cpErrDriveReadError Error during reading

At http://www.mcselec.com/an_123.htm you can find the application.

More info about Compact Flash you can find at :
http://www.sandisk.com/download/Product%20Manuals/cf_r7.pdf

A typical connection to the micro is shown below.

AT Meaga 103 Testhoand

Elektor CF-Interface

E :* o
Luy iz # f
1
[
z N i LI
E ! "
L] o
N 1 2} 1n B
1 i 4 g
-) ta| =
i =
H . =
I — 5
1 f | <
n
@ oo R REY| o
ﬁ Jj BT [] [7T-] .y
a gt L@ HET] ot =
- b H L1 Y i
e - F] 1 o - | LEEL
nhes o codl o
. ide | 8 =
e L E ! nfE
1 | b o |an
P il —] —
[] o= -] L1} 1 (=] .l
£ NET ® ks| M
2 = F =108 alae
3 T 1 1= =| 418
[y ;# ! LE] g
o - i [1:1
I 1 o 1
a]

The popular Electronics magazine Elektor, published an article about a CF-card interface. This
interface was connected to an 89S8252. This interface can be used and will use little pins of the
micro.

Note that because of the FAT buffer requirement, it is not possible to use a 8051 micro.,

At this moment, only the Megal28 and the Megal03 AVR micro’s are good chips to wise with AVR-
DOS.

You can use external memory with other chips like the Megal62.

. EijiR
B e o o

]

E

el Ay
_— B
it S
o
o rr =

Changes of the hardware pins is possible in the file Config_FlashCardDrive_EL_PIN.bas.

The default library is FlashCardDrive.lib but this interface uses the library
FlashCardDrive_EL_PIN.lib.

XRAM CF-Interfaceforsimulation

The XRAM CF-Card interface is created for the purpose of testing the File System routines without
hardware.

You can use an external RAM chip (XRAM) for the CF-interface but of course it is not practical in a
real world application unless you backup the power with a battery.

For tests with the simulator it is ideal.
Just specify the Config_XRAMDrive.bas file and select a micro that can address external memory
such as the M128. Then specify that the system is equipped with 64KB of external RAM.

You can now simulate the flashdisk.bas sample program !

In order to simulate Flashdisk.bas, set the constant XRAMDRIVE to 1. Then select 64KB of esternal
RAM and compile.

New CF-Card Drivers

New CF-Card drivers can be made relatively simple.
Have a look at the supplied drivers.

There are always a few files needed :

?? A config file in the format : CONFIG_XXX.bas
?? FlashCardDrive_XXX.LIB
?? FlashCardDrive_XXX.lbx is derived from the LIB file

XXX stands for the name of your driver.

AVR-DOS File System

The AVR-DOS file system is written by Josef Franz V6gel. He can be contacted via the BASCOM
user list. Note that it is not permitted to use the AVR-DOS file system for commercial applications
without the purchase of a license. A license comes with the ASM source.

Note that Josef has put a lot of effort in writing and espedally testing the routines.
Josef nor MCS Electronics can be held responsible for any damage or data loss of your CF-
cards.

The File-System works with Compact — Flash Cards (
from BASCOM and Compact Flash) and is written for the needs for embedded systems for logging
data. There are further functions for binary read and write.

The intention in developing the DOS — filesystem was to keep close to the equivalent QB/VB
functions.

The Filesystem works with:

?? FAT16, this means you need to use >= 32MB CF cards

?? Short file name (8.3)
(Files with a long file name can be accessed by their short file name alias)

?? Files in Root Directory. Subdirs are allowed but the files from the subdir cannot be accessed
with the AVR-DOS routines. The root dir can store 512 files. Take in mind that when you
use long file names, less filenames can be stored.

Requirements:
?? Hardware: see AN 123 on http://www.mcselec.com/an 123.htm

?? Software: appr. 2K-Word Code-Space (4000 Bytes)

?? SRAM: 561 Bytes for Filesystem Info and DIR-Handle buffer
517 Bytes if FAT is handled in own buffer (for higher speed), otherwise it is handled with
the DIR Buffer

?? 534 Bytes for each Filehandle

?? This means that a Megal03 or Megal28 is the perfect chip. Other chips have too little
internal memory. You could use XRAM memory too with a Mega8515 for example.

File System Configuration in CONFIG_AVR-DOS.BAS

gbNumberOfFATs Byte Count of FAT copies

gwSectorsPerFat Word Count of Sectors per FAT
glRootFirstSector Long Number of first Sector of Root Area on the Card
gwRootEntries Word Count of Root Entries

glDataFirstSector Long Number of first Sector of Data Area on the Card
gbSectorsPerCluster Byte Count of Sectors per Cluster
gwMaxClusterNumber Word Highest usable Cluster number
gwLastSearchedCluster Word Last cluster number found as free
gwFreeDirEntry Word Last directory entry number found as free
glFS_Templ Long temorary Long variable for file system
gsTempFileName String * 11 temporary String for converting file names
2. Directory

Variable Name Type Usage

gwDirRootEntry Word number of last handled root entry
glDirSectorNumber Long Number of current loaded Sector
gbDirBufferStatus Byte Buffer Status

gbDirBuffer Byte (512) Buffer for directory Sector

3. FAT

Variable Name Type Usage

glFATSectorNumber Long Number of current loaded FAT sector
gbFATBUufferStatus Byte Buffer status

gbFATBuffer Byte(512) buffer for FAT sector

4. File handling
Each file handle has a block of 534 Bytes in the variable abFileHandle which is a bytearray of size
(534 * cFileHandles)

cFileHandles: Count of Filehandles: for each file opened at same time, afilehandle
buffer of 534 Bytes is needed
cSepFATHandle: For higher speed in handling file operations the FAT info can be stored in a own

buffer, which needs additional 517 Bytes.
Assign Constant cSepFATHandle with 1, if wanted, otherwise with 0.

Memo ry Usage of DOS — File System:

1. General File System information

Variable Name Type Usag e

FileNumber Byte File number for identification of the file in 1/0 operations to the
opened file

FileMode Byte File open mode

FileRootEntry Word Number of root entry

FileFirstCluster Word First cluster

FATCluster Word cluster of current loaded sector

FileSize Long file size in bytes

FilePosition Long file pointer (next read/write) 0-based

FileSectorNumber Long number of current loaded sector

FileBufferStatus Byte buffer Status

FileBuffer Byte(512) buffer for the file sector

SectorTerminator Byte additional 00 Byte (string terminator) for direct reading ASCII
files from the buffer

ErrorCodes:

Variable Name Type Usage

gbDOSError Byte holds DOS Error of last file handling routine
gbFileSystem Byte File System Code from Master Boot Record
glFATFirstSector Long Number of first Sector of FAT Area on the Card

Code | Compiler — Alias Remark

Open mode
Action Input Output Append Binary
Attr » L] L] »
Close n n [] n
Put -
Get -
LOF L] L 2 L L
LOC L L] L
EOF - 2 R -
SEEK * » L »
SEEK Set »
Line Input n »
Print »] »
Input i 3 i 3
Write - - -

0 cpNoError No Error

1 cpEndOfFile Attempt behind End of File

17 cpNoMBR Sector 0 on Card is not a Master Boot Record

18 cpNoPBR No Partition Sector

19 cpFileSystemNotSupported Only FAT16 File system is supported

20 cpSectorSizeNotSupported Only sector size of 512 Bytes is supported

21 cpSectorsPerClusterNotSupported Only 1, 2, 4, 8, 16, 32, 64 Sectors per Clusteris
supported. This are values of normal formatted
partitions. Exotic sizes, which are not power of 2
are not supported

33 cpNoNextCluster Error in file cluster chain

34 cpNoFreeCluster No free cluster to allocate (Disk full)

35 cpClusterError Errorinfile cluster chain

49 cpNoFreeDirEntry Directoryfull

50 cpFileExist

65 cpNoFreeFileNumber No free file number available, only theoretical
error, if 255 file handles in use

66 cpFileNotFound File not found

67 cpFileNumberNotFound No file handle with such file number

68 cpFileOpenNoHandle All file handles occupied

69 cpFileOpenHandlelnUse File handle number in use, can't create a new
file handle with same file number

70 cpFileOpenShareConflict Tried to open a file in read and write modus in
two file handles

71 cpFilelnUse Can't delete file, which is in use

72 cpFileReadOnly Can't open a read only file for writing

73 cpFileNoWildCardAllowed No wildcard allowed in this function

97 cpFilePositionError

98 cpFileAccessError function not allowed in this file open mode

99 cplnvalidFilePosition new file position pointe is invalid (minus or 0)

100 cpFileSizeToGreat File size to great for function BLoad

Buffer Status: Bit definitions of Buffer Status Byte (Directory, FAT and File)

Bit DIR FAT | File | Compiler Alias Remark
0 L dBOF Bottom of File (not yet supported)
(LSB)

1 n dEOF End of File

2 L 3 dEOFinSector End of File in this sector (last sector)

3 -] =B dWritePending Something was written to sector, it must be
saved to Card, before loading next sector

4 % dFATSector This is an FAT Sector, at writing to Card,
Number of FAT copies must be checked and
copy updated if necessary

5 » dFileEmpty File is empty, no sector (Cluster) is allocated in

FAT to this file

Validity of the file 1/0 operations regarding the opening modes

 position pointer is always at End of File

Supported statements and functions:

INITFILESYSTEM , OPEN , CLOSE, FLUSH , PRINT, LINE INPUT, LOC, LOF , EOF , FREEFILE ,
FILEATTR , SEEK , BSAVE ,BLOAD , KILL , DISKFREE , DISKSIZE , GET ,PUT ,FILEDATE ,

