

Power converters AC/DC and DC/AC - MM5

Filters etc.

Content MM6

- 1. Summary from MM5
- 2. Thermal design
- 3. Line disturbance
- 4. Filters (AC & DC)
- 5. Standard & Norms
- 6. Exercises

Temperature is important for

- Life time
- reliability
- Robustness
- Size of the apparatus
- Safeness
- Losses and efficiency

Rules of thumb

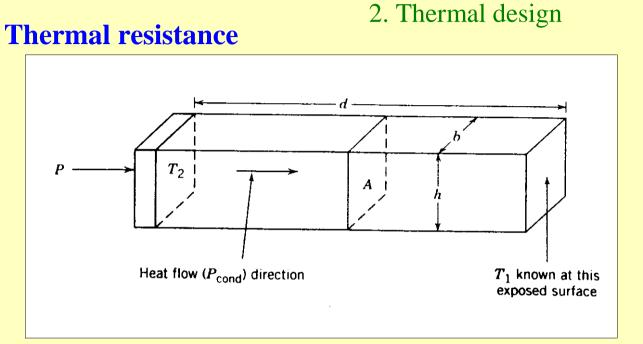
- Max. 150°C (Worst case)
- Failure rate doubles at 10°C increase in temperature
- Forced cooling reduces the size \Rightarrow Acoustic noise
 - \Rightarrow Expensive, life time
 - ⇒ system efficiency
- Water cooling for large amount of losses
- Black in better than polished
- The heat sink have to stand-up
- Ambient temperature typically 40 -50°C

Power electronic components

- Large current small voltage
 Large voltage small currents

Losses there have to be removed

$$P_{tot} \approx P_{on} + P_{off} + P_{switch} + P_{gate}$$


Notes :

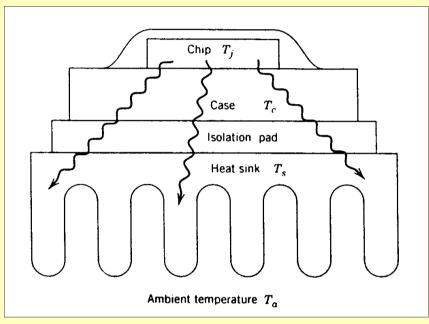
- Junction temperature (silicon 150°C)
- Ambient temperature (specified)
- Short circuit characteristics
- Reliability

How to do it :

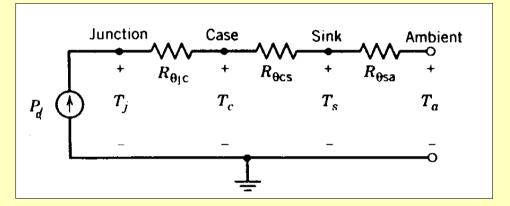
- Heat-sink
- forced cooling (air over)

The conducted power

$$P_{\rm cond} = \frac{\lambda A \ \Delta T}{d}$$


 λ = Thermal conductivity [Wm⁻¹°C⁻¹]

Thermal equivalent resistance


$$R_{\theta,\text{cond}} = \frac{\Delta T}{P_{\text{cond}}}$$

Temperature (stationary)

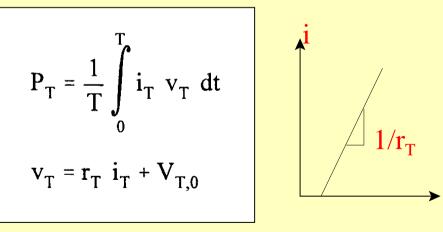
Equivalent model

Total thermal equivalent resistance

$$R_{\theta ja} = R_{\theta jc} + R_{\theta cs} + R_{\theta sa}$$

Temperature

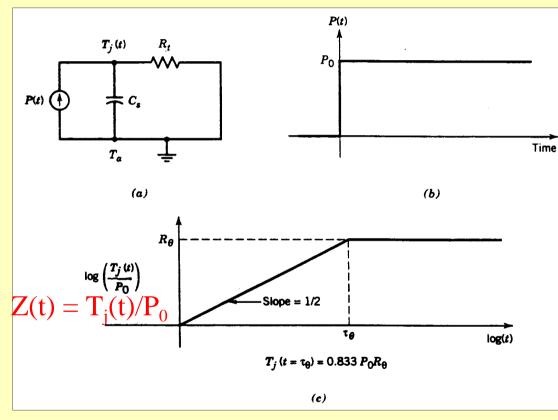
$$T_j = P_d(R_{\theta jc} + R_{\theta cs} + R_{\theta sa}) + T_a$$


$$40 - 60^{\circ}C$$

Thyristor

- Off-losses (~0)
- Turn-off losses (~0, 50/60 Hz)
- Gate losses (~0, 50/60 Hz)
- On-losses

"On" Power losses

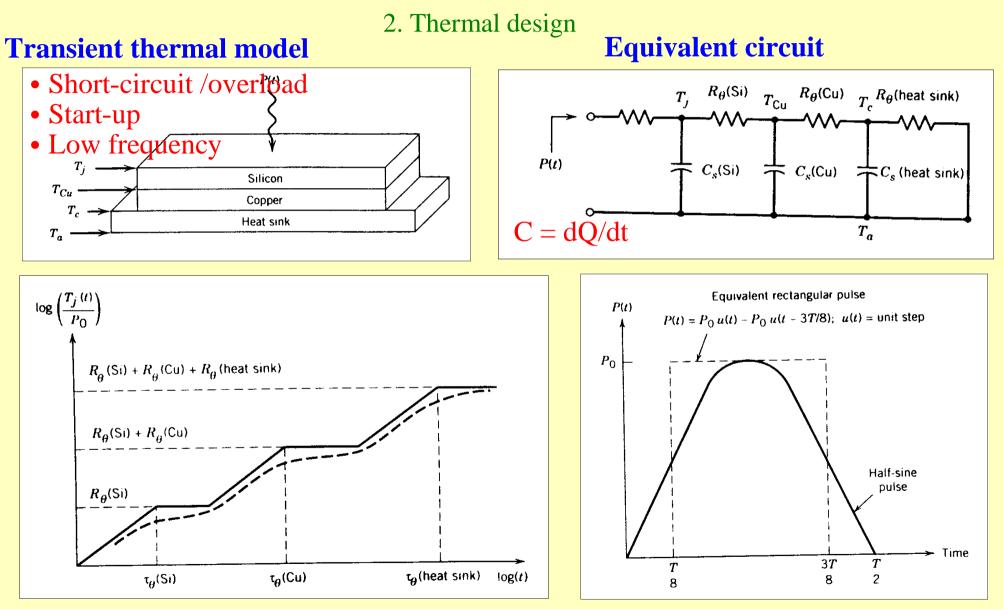


$$p_{T} = \frac{1}{T} \int_{0}^{T} i_{T} (r_{T} i_{T} + V_{T,0}) dt$$

= $r_{T} \frac{1}{T} \int_{0}^{T} i_{T}^{2} dt + V_{T,0} \frac{1}{T} \int_{0}^{T} i dt$
= $r_{T} I_{T,RMS}^{2} + V_{T,0} I_{T,av}$

So we need RMS and average values

Simple transient model



Capacity $dQ/dT = C_{v}$ Capacity per unit volume $C_{s} = C_{v}Ad$

Temperature

$$T_j(t) = P_0 \left[\frac{4t}{(\pi R_{\theta} C_s)} \right]^{1/2} + T_a$$

$$\tau_{\vartheta} = \pi R_{\theta} C_s / 4$$

Power converters AC/DC and DC/AC -MM6

Peter Omand Rasmussen

Pract	ical heat s	ink	S			2.	The	erma	al de	esigr	1			
			YN I I	2					in the second se					
	Heat sink no.	1	2	3	4	5	6	7	8	9	10	11	12	
	$R_{\theta sa}$ (°C/W)	3.2	2.3	2.2	0	2.1	1.7	1.3	1.3	1.25	1.2	0.8	0.65	
	Vol. (cm ³)	76	99	181	0	198	298	435	675	608	634	695	1311	

Many different in lab.

Power converters AC/DC and DC/AC -MM6

Heat transfer by radiation and convection

Radiation

A = surface area

$$P_{\rm rad} = 5.7 \times 10^{-8} EA(T_s^4 - T_a^4)$$

Black oxidized aluminum : E = 0.9Polished aluminum : E = 0.05

Black oxidized aluminum

$$P_{\rm rad} = 5.1A \left[\left(\frac{T_s}{100} \right)^4 - \left(\frac{T_a}{100} \right)^4 \right]$$

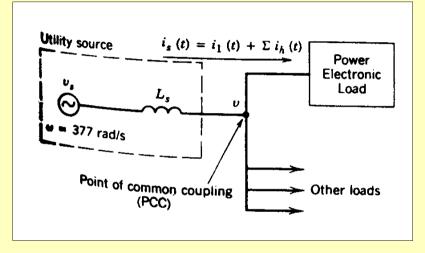
Equivalent thermal resistance

$$R_{\theta,\text{rad}} = \frac{\Delta T}{5.1A \left[\left(\frac{T_s}{100} \right)^4 - \left(\frac{T_a}{100} \right)^4 \right]}$$

Convection (heat-sink → air)

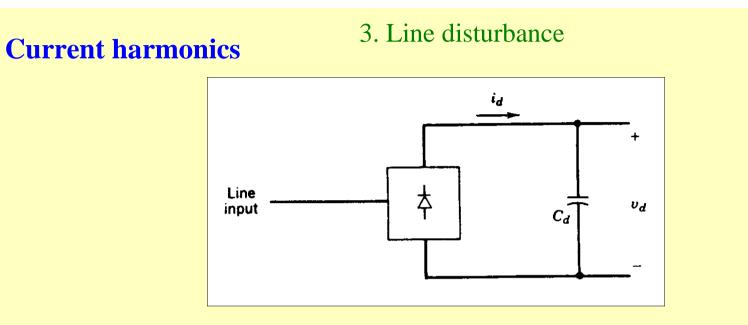
$$P_{\text{conv}} = 1.34A \frac{(\Delta T)^{1.25}}{(d_{\text{vert}})^{0.25}}$$
$$d_{\text{vert}} = \text{vertical height}$$

Equivalent thermal resistance


$$R_{\theta,\text{conv}} = \frac{1}{1.34A} \left(\frac{d_{\text{vert}}}{\Delta T}\right)^{1/4}$$

Total resistance is a parallel connection of $R_{\theta, rad}$ and $R_{\theta, conv}$

3. Line disturbance

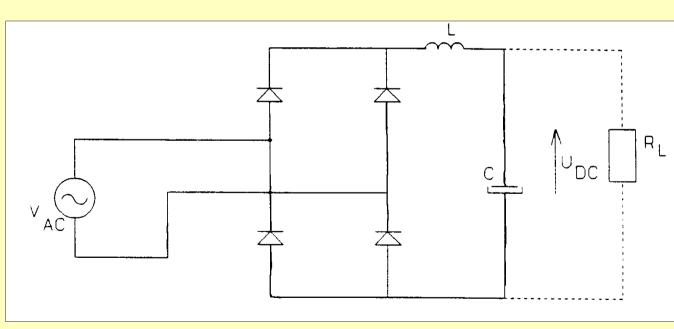

Loading the line

- Line conducted noise
- Airborne noise
- Noise in
- Noise out

L_s means a lot !!!

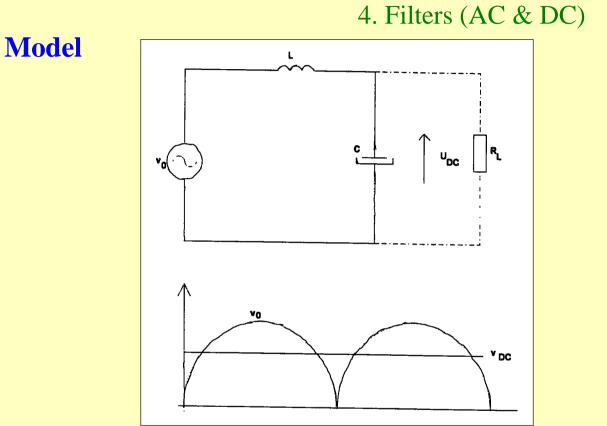
Typical values

h	3	5	7	9		13	15	17
$\left(\frac{I_h}{I_1}\right)$ %	73.2	36.6	8.1	5.7	4.1	2.9	0.8	0.4


+ the use filters for improvement

DC-filters

Circuit


- Filter out DC-voltage and current
- Designed to work in different working points
- Goal is lowest ripple as possible
 - \Rightarrow Large in physical size
 - ⇒ Very expensive

4. Filters (AC & DC)

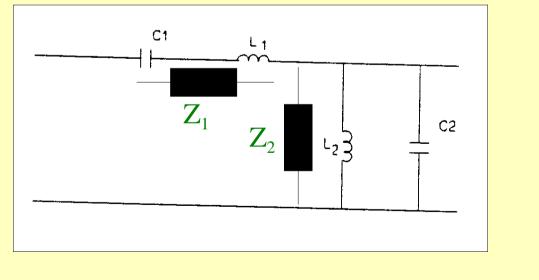
Can be considered as an simple low-pass filter

A method to design could be

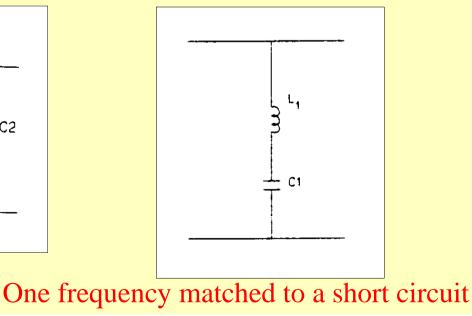
• A wish to damp v_0 (AC-component) as much as possible $20 \rightarrow 40$ dB (10-100 times)

- \Rightarrow A very low ripple voltage in U_{DC}
- \Rightarrow Check that the LC-filter resonance is not excitated by the line (n·f_{line})

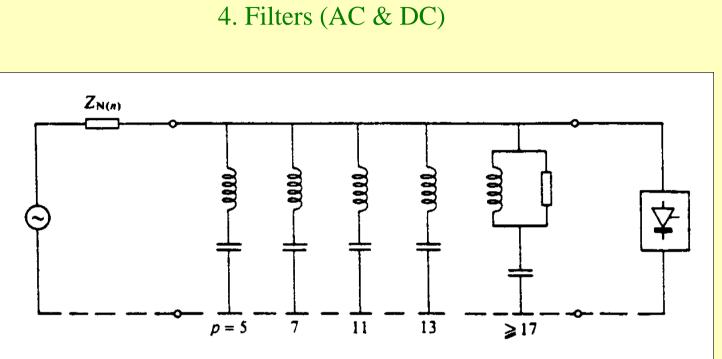
AC-filters


• To give an alternative way for current/voltage harmonics

4. Filters (AC & DC)

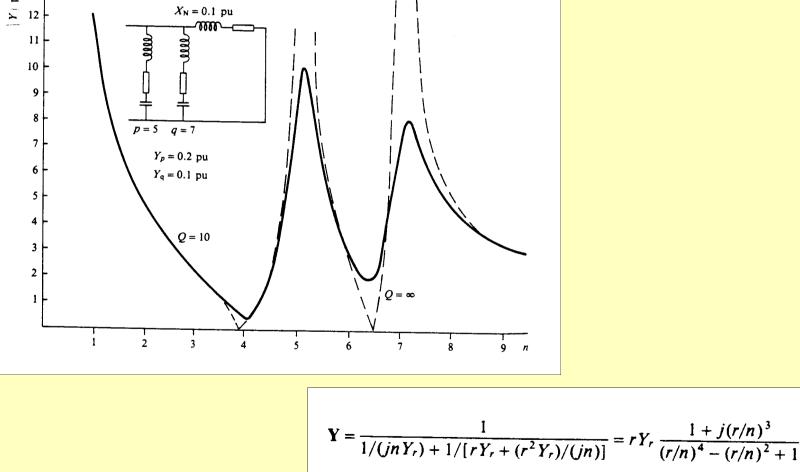

- Frequency depend (50/60 Hz line)
 - \Rightarrow Again large in physical size
 - \Rightarrow Very expensive and additional losses
 - ⇒ Large circulating currents

Different types


Series parallel filter (voltage filter)

Series resonance filter (current filter)

Principle : Each individual filter is turned to each harmonic (L, C) lots of no-load losses


Example

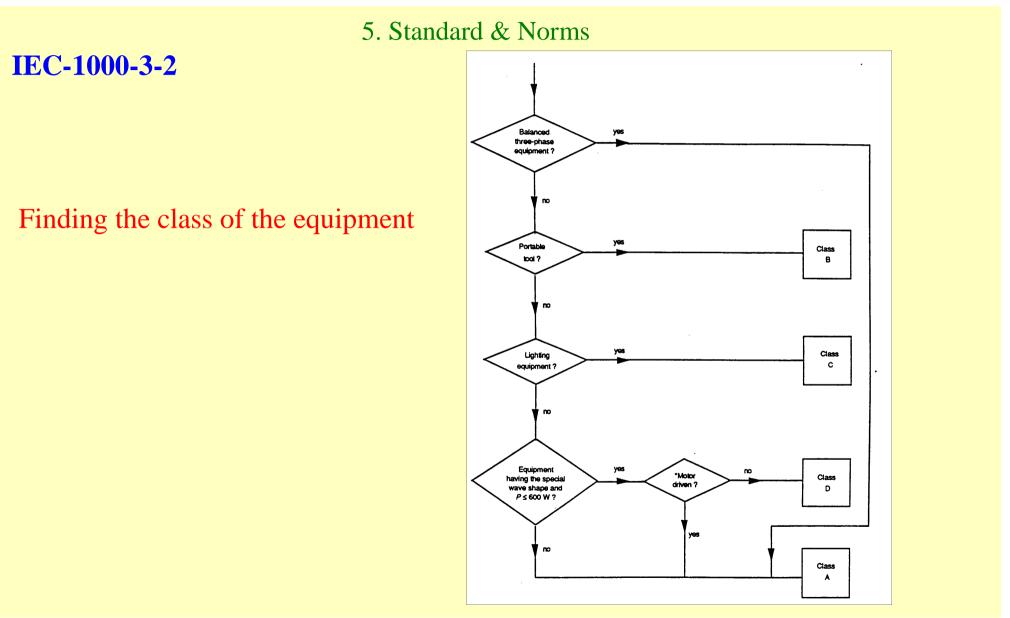
Power converters AC/DC and DC/AC -MM6

Peter Omand Rasmussen

Power converters AC/DC and DC/AC -MM6

Peter Omand Rasmussen

5. Standard & Norms


- New standard and norms comes from time to time (voltage/current)
- Different frequency ranges
- Different power ranges

IEEE-519

	Odd Harmonic Order h (%)						
	h < 11	$11 \leq h < 17$	$17 \le h < 23$	$23 \le h < 35$	$35 \leq h$	Harmonic Distortion (%	
<20	4.0	2.0	1.5	0.6	0.3	5.0	
20 - 50	7.0	3.5	2.5	1.0	0.5	8.0	
50 - 100	10.0	4.5	4.0	1.5	0.7	12.0	
100-1000	12.0	5.5	5.0	2.0	1.0	15.0	
>1000	15.0	7.0	6.0	2.5	1.4	20.0	

Note: Harmonic current limits for nonlinear load connected to a public utility at the point of common coupling (PCC) with other loads at voltages of 2.4–69 kV. I_{sc} is the maximum short-circuit current at PCC. I_1 is the maximum fundamental-frequency load current at PCC. Even harmonics are limited to 25% of the odd harmonic limits above. *Source:* Reference 1.

IEC-1000-3-2

5. Standard & Norms

		Table 1 – Limits for		Table 2 – Limits for Class C equipment						
		Harmonic order Maximum permissible harmonic current n A Odd harmonics			Harmonic	order		um permissible harmonic currrent I as a percentage of the input current t the fundamental frequency		
					n		at			
							*			
		3 2,30 5 1,14			2			2		
		5 1,14 7 0,77 9 0,40 11 0,33 13 0,21 15 \leq n \leq 39 0,15 $\frac{15}{n}$			3 5 7 9		30 · λ.• 10 7 5			
					11 ≤ n ±	39		3		
					(odd harmonics only)					
		Even harmonics			* λ is the circuit pow	er factor	Light equipment			
		2 1,08 4 0,43 6 0,30								
				Table 3 – Limits for Class			Class D equ	s D equipment		
		$8 \le n \le 40$ 0.23 $\frac{8}{n}$								
	3 phase load (- special cases)				Harmonic order Maximum p harmonic curr		1			
					n	mA/	N	Α		
					3	3,4		2,30		
					5	1,9		1,14		
	+ Other				7	1,0		0,77		
	IEC-1000)-3-4 (>16 A)			9	0,5		0,40		
					11	0,3	5	0,33		
				(0	$13 \le n \le 39$ dd harmonics only)	<u>3,85</u> n		See table 1		
					special ci	irve sha	apes (diode rectifie	r)	
Pow	ver converters AC	/DC and DC/AC -MM6			1		1 ~ ()	Peter Omand Rasmussen		

Institute of Energy Technology Department of Electrical Energy Conversion

6. Exercises

Look at Course home-page